
CGT 353: ActionScripting
 Creating and Calling Functions

A Bit about Procedural Programming:

• Early programming consisted of one single entity: the main routine.

• As programs became more complex, this method became impractical.

• Besides length, the fact that the same code was often used over and over made it

even more impractical.

• The answer to this problem was in the creation of procedures.

• Also called subroutines or functions, procedures were a way of grouping

together blocks of code where execution is deferred until invoked from the main
code.

• Programming that uses procedures is called procedural programming.

This type of programming also has its limitations, which is why object-oriented was
created (more on that later…)

Advantages of Procedural over Unstructured Programming:

1. More readable because of less clutter and redundant coding

2. More efficient through the use of reusing procedures rather than retyping code

3. Procedures become a centralized point for making changes (think CSS…)

4. Well-written procedures can be re-used through many different programs

Beginning with Functions:

• Different languages use different terminology, but for ActionScript we use the
term functions.

• Functions can serve as subroutines that simply break up the main routine and

help avoid redundancy

• In these cases, no values are returned from the function.

• Can also, using the return keyword, return a value from the point it was invoked

• Functions can also accept values in the form of parameters or arguments

• Passing arguments allows for greater portability, which is to say that the function

has a greater chance of being reused again in another program

• Functions do not always necessitate passing parameters

• Best to think of functions as "black boxes" that perform a particular operation

In addition to returning values, functions can also accept values…known as parameters
or arguments

function functionName():datatype {
statements
}

function displayGreeting():Void {
Trace(“Hello”);
}

displayGreeting();

Types of Functions:

1. Functions as Subroutines: do not return a value but rather effect something like
moving a clip or invoking a trace action

2. Functions as Data: when functions return a value

3. Functions within Functions: Calling a function from within a function

4. Recursive Functions: when a function calls itself

Flash provides three basic types of predefined functions (or methods): global,
conversion, and mathematical

Global Functions - designed to perform specialized tasks with data.

escape() and unescape() - used for encoding and decoding strings to URL encoded
formats that escape all alphanumeric characters with various hexidecimal sequences

eval() - forces Flash to evaluate the content of a function before executing the rest of the
code in which its contained thereby allowing you to dynamically generate names of
things "on the fly"

Example Code: eval("card"+i) = 4

Hardwired Equivalent: Card1 = 4

getProperty() - allows you to retrieve Flash properties

Generic format: getproperty (target, property);

getTimer() - allows you to retrieve the time that has elapsed in the Flash movie, returns a
numerical value

getVersion() - returns the current version of the Flash Player along with the platform the
player is running on - handy for detection scripts

targetPath() - allows you to retrieve the target path to an object specified by the
argument

- Used in conjunction with trace, you can determine the absolute path to
an object

trace(targetpath(this));

Conversion Functions:

Boolean() - converts a specified value to a Boolean result, where values of either true or
false are returned

var x=5
var myresult = Boolean(x==10)
Trace(myresult)

Number() and String() - allows you to convert between strings and numbers

Array() - converts data to an array

Object() - converts data to a custom object

Mathematical Functions:

IsFinite() and isNan() - evaluates data to determine if they are finite numbers or
numbers at all

ParseFloat() - converts data to a floating point number

ParseInt() - converts data to an integer

Defining Custom Functions:

• As we have seen, there are a number of built-in functions within ActionScript.

• But these only allow you to do certain things…

• To be able to be truly fluent at any programming language, you must master the

creation of custom functions.

• When you do this keep these things in mind:

o Function names follow the same rules as variables.

o All functions must be declared using the function keyword

o All function definitions must include a pair of parenthesis immediately

before the function body.

o The body must always be defined by an opening and closing curly brace

({})

o Functions can return a single value that is done by the use of the return

keyword

• There are two ways of defining a function, the first of which creates a named
function.

• A named function means it can be referred to by name within ActionScript:

function functionName (parameter1:datatype,
parameter2:datatype):dataType{

FunctionBody
}

function circleArea(radius:Number):Number {
 return MATH.PI*(radius*radius);
}

function move(x:Number,y:Number,myMC:Moveiclip): Number {
 myMC.x = x;
 myMC.y = y;
}

• The second way of creating a function is similar to the first.

• Creates what is called an anonymous function, which cannot refer to itself by

that name.

var functionName: Function = function(param1:datatype, param2datatype):Number{
 functionBody
}

var circleArea:Function = function (radius:Number):Number {
 return MATH.PI*(radius*radius);
}

var move:Function = function(x:Number,y:Number,myMC:Moveiclip):Number {

myMCx = x;
 myMCy = y;
}

• There are many reasons for using one or the other, which we will discuss later

• One reason immediately worth noting is that named functions are available from

anywhere within their scope, no matter if they are defined before or after they are
invoked

Calling Functions:

• Unless a function is invoked (called), nothing will happen

function testFunction():Void {
 trace("this is a test class");
}

What will this write to the output window?

• The most common way to invoke a function is by simply calling it by name

within your program, much like an action.

testFunction();

• The function name must always be followed by the parentheses, which together
are called the function call operator

Passing Parameters:

• Some functions do not need any information passed to them, but some do

circleArea = function(radius):Number {
 return MATH.PI*(radius*radius);
}

• In the function above, a single parameter is passed to the function…

• To pass a value for that parameter, you would write:

area = circleArea(5);

To pass multiple parameters, you separate them with commas.

function formatMessage(to, from, message){
 return "this is a message to " + to + ", from " + from + ": " + message;
}

And you could call the function like so:

theMessage = formatMessage("me","you","hi :)");

Calling a Named Function:

writeMsg("before");

function writeMsg(message){

trace(message);
}

writeMsg ("after");

WHAT WOULD THIS WRITE TO THE OUTPUT WINDOW?

before
after

Calling an Anonymous Function:

writeMsg("before");

writeMsg = function(message){
 trace(message);
}
writeMsg("after");

WHAT WOULD THIS WRITE TO THE OUTPUT WINDOW?

After

What is an Array?

• Is a composite data structure that can encompass multiple individual data values.

• Can include more than one data value, and should be viewed as a general purpose
container.

Components of an Array:

• Each item stored in an array is an element of that array.

• Each element has a unique numeric position called an index.

• Like a variable each array element can store information just like a variable.

• So, an array is simply a collection of sequentially named variables.

• To manipulate values in a array, we ask for each element by number.

• Index values start at 0, not 1.

• Can have gaps in the indexing. For example, you could have an array at 0 and 5,
but without 1,2,3, and 4

Creating Arrays:

• Can either create arrays with a data literal or with the array constructor function,
Array()

• Usually easier to use an array literal

[expression1, expression2, expression3]

["Kellen", "Amy", "Mary", "Jane"]

• With the array constructor, you would write:

var KellensList = new Array ("Kellen", "Amy", "Mary", "Jane");

or

var KellensList = new Array (4);

Types of Arrays:

• Single dimension
• Parallel
• Associative

• Single dimension arrays are what we have been discussing.

• A single dimension array simply refers to single columns of indexed data:

oneArray = ["a","b","c"];
twoArray = new Array();
threeArray = new Array("a","b","c");

• Parallel arrays come from having two groups of data that are connected.

• Much easier than writing out two completely sets of one dimension arrays.

employees = newArray();
employees[0] = "Ty:January 10";
employees[1] = "Kellen:June 13";
employees[2] = "Kara: April 5";

• Then you would have to split them with the String object methods..

• Much easier to write:

employees = newArray("Ty", "Kellen", "Kara");
birthdays = newArray("10", "13", "5");

Then retrieve them by:

trace(employees[1] + "'s birthday is " + birthdays [0]);

Associative Arrays:

 title= new Array("professor","student","staff");
 person = new Array("Kellen Maicher","Joe Blow","John Doe");

This would be better written like this:

 person = new Array(3);
 person ["professor"] = "Kellen Maicher";

person ["student"] = "Joe Blow";
person ["staff"] = "John Doe";

For loops with associative arrays:

 For (particular title){
 Trace(The " + title + " is " + person[title]);

Which to use: Associative or Parallel?

1. The indexes (also called keys) to an associative array must be unique.
2. Associative arrays will maintain relationships where parallel may not

Arrays as Objects:

Because arrays are objects, you can access their elements as properties of the object using
the dot operator

So this…

myArray = new Array();
myArray["a"] = 1;
myArray["b"] = 2;
myArray["c"] = 3;

…..could be written like this.

 myArray = new Array();
 myArray.a = 1;
 myArray.b = 2;
 myArray.c = 3;

Multidimensional Arrays:

• To create truly complex arrays that index values of many different data
types, you create multidimensional arrays.

// create the constructor for the employee objects

function Employee(nm,bday, pstn)[
 this.name = nm

this.birthday = bday
this.position = pstn

//create the array

employees = new Array();

//populate the array

employees[0] = new Employee ("Kellen","June 13","Professor");
employees[1] = new Employee ("Kara","June 19”,"Staff");
employees[2] = new Employee ("Don","June 22”,"Student");

To display the information:

For (i =0; i <employees.length; i++){
report += employees[i].name = " " + employees[i].birthday + " " +
employees[i].position;

}

Array Object Methods

• join() = returns a string value of the elements of an array

• Used most commonly to send data from Flash to other applications

animals = new Array("dog","cat","bird);
strAnimals1 = animals.join(); // returns "dog,cat,bird"
strAnimals2 = animals.join(" : "); // returns "dog : cat : bird"

• concat() - creates a new array and adds those elements to an existing array

• slice() - returns a new array that consists of a slice of the original array

• push() - adds elements to the end of an array

• unshift() - puts new elements to the beginning of the array and shifts the others
over right

• pop() - allows you to remove the last element from an array and return its value

• shift() - removes the first element from the array, returns the value, and shifts the

remaining values back one

• splice() - modifies the existing array by removing the number of elements from a
particular element and inserting the new elements

• sort() - sorts elements of the array

• sorton() - used in parallel and multidimensional arrays to sort by a particular

index

• reverse() - reorders the orginal array by placing the last element first and so on….

Array Summary:

• Arrays are indexed data structures in which each piece of data (elements) has a
unique index by which it can be referenced.

• You can use the array access operator [] to read and write from arrays.

• Different types of arrays include basic, parallel, associative, and

multidimensional.

• The many array methods allow you to manipulate arrays in any number of ways.

