CGT 353: ActionScripting
Creating and Calling Functions

A Bit about Procedural Programming:

Early programming consisted of one single entity: the main routine.

As programs became more complex, this method became impractical.

Besides length, the fact that the same code was often used over and over made it
even more impractical.

The answer to this problem was in the creation of procedures.
Also called subroutines or functions, procedures were a way of grouping
together blocks of code where execution is deferred until invoked from the main

code.

Programming that uses procedures is called procedural programming.

This type of programming also has its limitations, which is why object-oriented was
created (more on that later...)

Advantages of Procedural over Unstructured Programming:

1.

2.

More readable because of less clutter and redundant coding
More efficient through the use of reusing procedures rather than retyping code

Procedures become a centralized point for making changes (think CSS...)

Well-written procedures can be re-used through many different programs

Beginning with Functions:

Different languages use different terminology, but for ActionScript we use the
term functions.

Functions can serve as subroutines that simply break up the main routine and
help avoid redundancy

In these cases, no values are returned from the function.

Can also, using the return keyword, return a value from the point it was invoked

e Functions can also accept values in the form of parameters or arguments

e Passing arguments allows for greater portability, which is to say that the function
has a greater chance of being reused again in another program

e Functions do not always necessitate passing parameters

e Best to think of functions as "black boxes" that perform a particular operation
In addition to returning values, functions can also accept values...known as parameters
or arguments

function functionName():datatype {
statements

¥

function displayGreeting():VVoid {
Trace(*Hello”);

}
displayGreeting();

Types of Functions:

1. Functions as Subroutines: do not return a value but rather effect something like
moving a clip or invoking a trace action

2. Functions as Data: when functions return a value
3. Functions within Functions: Calling a function from within a function
4. Recursive Functions: when a function calls itself
Flash provides three basic types of predefined functions (or methods): global,
conversion, and mathematical

Global Functions - designed to perform specialized tasks with data.

escape() and unescape() - used for encoding and decoding strings to URL encoded
formats that escape all alphanumeric characters with various hexidecimal sequences

eval() - forces Flash to evaluate the content of a function before executing the rest of the
code in which its contained thereby allowing you to dynamically generate names of
things "on the fly"

Example Code: eval("card"+i) =4

Hardwired Equivalent: Cardl =4

getProperty() - allows you to retrieve Flash properties

Generic format: getproperty (target, property);

getTimer() - allows you to retrieve the time that has elapsed in the Flash movie, returns a
numerical value

getVersion() - returns the current version of the Flash Player along with the platform the
player is running on - handy for detection scripts

targetPath() - allows you to retrieve the target path to an object specified by the
argument
- Used in conjunction with trace, you can determine the absolute path to
an object

trace(targetpath(this));

Conversion Functions:

Boolean() - converts a specified value to a Boolean result, where values of either true or
false are returned

var x=5
var myresult = Boolean(x==10)
Trace(myresult)
Number() and String() - allows you to convert between strings and numbers

Array() - converts data to an array

Object() - converts data to a custom object

Mathematical Functions:

IsFinite() and isNan() - evaluates data to determine if they are finite numbers or
numbers at all

ParseFloat() - converts data to a floating point number

Parselnt() - converts data to an integer

Defining Custom Functions:

e As we have seen, there are a number of built-in functions within ActionScript.

e But these only allow you to do certain things...

e To be able to be truly fluent at any programming language, you must master the
creation of custom functions.

e When you do this keep these things in mind:
o Function names follow the same rules as variables.
o All functions must be declared using the function keyword

o All function definitions must include a pair of parenthesis immediately
before the function body.

0 The body must always be defined by an opening and closing curly brace

{3

o0 Functions can return a single value that is done by the use of the return
keyword

e There are two ways of defining a function, the first of which creates a named
function.

e A named function means it can be referred to by name within ActionScript:
function functionName (parameterl:datatype,

parameter2:datatype):dataType{
FunctionBody
}

function circleArea(radius:Number):Number {
return MATH.PI*(radius*radius);
}

function move(x:Number,y:Number,myMC:Moveiclip): Number {
myMC.X = X;
myMC.y =y;

}

e The second way of creating a function is similar to the first.

e Creates what is called an anonymous function, which cannot refer to itself by
that name.

var functionName: Function = function(param1:datatype, param2datatype):Number{

functionBody
}

var circleArea:Function = function (radius:Number):Number {
return MATH.PI*(radius*radius);
}

var move:Function = function(x:Number,y:Number,myMC:Moveiclip):Number {
MmyMCX = X;
myMCy =y;
}

e There are many reasons for using one or the other, which we will discuss later
e One reason immediately worth noting is that named functions are available from
anywhere within their scope, no matter if they are defined before or after they are
invoked
Calling Functions:
e Unless a function is invoked (called), nothing will happen
function testFunction():Void {
trace("this is a test class™);
}

What will this write to the output window?

e The most common way to invoke a function is by simply calling it by name
within your program, much like an action.

testFunction();

e The function name must always be followed by the parentheses, which together
are called the function call operator

Passing Parameters:

e Some functions do not need any information passed to them, but some do

circleArea = function(radius):Number {
return MATH.PI*(radius*radius);
}

e In the function above, a single parameter is passed to the function...

e To pass a value for that parameter, you would write:
area = circleArea(5);
To pass multiple parameters, you separate them with commas.
function formatMessage(to, from, message){
return "thisisamessageto™ + to+ ", from" + from +
}
And you could call the function like so:

theMessage = formatMessage("'me","you","hi :)");

Calling a Named Function:
writeMsg("before");

function writeMsg(message){
trace(message);

}

writeMsg (“after");

WHAT WOULD THIS WRITE TO THE OUTPUT WINDOW?

before
after

""" + message;

Calling an Anonymous Function:
writeMsg("before");

writeMsg = function(message){
trace(message);
}

writeMsg("after");
WHAT WOULD THIS WRITE TO THE OUTPUT WINDOW?

After

What is an Array?
e Is a composite data structure that can encompass multiple individual data values.

e Can include more than one data value, and should be viewed as a general purpose
container.

Components of an Array:
e Each item stored in an array is an element of that array.
e Each element has a unique numeric position called an index.
e Like avariable each array element can store information just like a variable.
e SO, an array is simply a collection of sequentially named variables.
e To manipulate values in a array, we ask for each element by number.
e Index values start at 0, not 1.
e Can have gaps in the indexing. For example, you could have an array at 0 and 5,
but without 1,2,3, and 4
Creating Arrays:

e Can either create arrays with a data literal or with the array constructor function,
Array()

e Usually easier to use an array literal
[expressionl, expression2, expression3]
[llKeIIenll, IlAmyll’ IIMaryll, llJanell]

e With the array constructor, you would write:

var KellensList = new Array ("Kellen", "Amy", "Mary", "Jane");
or

var KellensList = new Array (4);

Types of Arrays:

Single dimension
Parallel
Associative

Single dimension arrays are what we have been discussing.

A single dimension array simply refers to single columns of indexed data:

oneArray = ["a","b","c"];
twoArray = new Array();
threeArray = new Array("a","b","c");

Parallel arrays come from having two groups of data that are connected.

Much easier than writing out two completely sets of one dimension arrays.

employees = newArray();
employees[0] = "Ty:January 10";
employees[1] = "Kellen:June 13";
employees[2] = "Kara: April 5";

Then you would have to split them with the String object methods..

Much easier to write:

employees = newArray("Ty", "Kellen", "Kara");
birthdays = newArray(""10", "13", "5");

Then retrieve them by:

trace(employees[1] + ™s birthday is " + birthdays [0]);

Associative Arrays:

title= new Array("professor”,"student”,"staff");

person = new Array("Kellen Maicher","Joe Blow","John Doe");
This would be better written like this:

person = new Array(3);

person ["professor”] = "Kellen Maicher";

person ["student”] = "Joe Blow";

person ["staff"] = "John Doe";

For loops with associative arrays:

For (particular title){
Trace(The " + title + " is " + person[title]);

Which to use: Associative or Parallel?
1. The indexes (also called keys) to an associative array must be unique.
2. Associative arrays will maintain relationships where parallel may not
Arrays as Objects:

Because arrays are objects, you can access their elements as properties of the object using
the dot operator

So this...

myArray = new Array();
myArray["a"] = 1,
myArray['b"] = 2;
myArray["c"] = 3;

..... could be written like this.

myArray = new Array();
myArray.a = 1,
myArray.b = 2;
myArray.c = 3;

Multidimensional Arrays:

To create truly complex arrays that index values of many different data
types, you create multidimensional arrays.

/I create the constructor for the employee objects

function Employee(nm,bday, pstn)[

this.name = nm
this.birthday = bday
this.position = pstn

/[create the array

employees = new Array();

/Ipopulate the array

employees[0] = new Employee ("Kellen","June 13","Professor");
employees[1] = new Employee ("Kara","June 19”,"Staff");
employees[2] = new Employee ("Don","June 22”,"Student");

To display the information:

For (i =0; i <employees.length; i++){
report += employees[i].name =" " + employees[i].birthday + " " +
employees[i].position;

¥

Array Object Methods

join() = returns a string value of the elements of an array

Used most commonly to send data from Flash to other applications
animals = new Array("dog","cat","bird);

strAnimalsl = animals.join(); Il returns ""dog,cat,bird"’
strAnimals2 = animals.join(" : "); // returns *dog : cat : bird"
concat() - creates a new array and adds those elements to an existing array

slice() - returns a new array that consists of a slice of the original array

push() - adds elements to the end of an array

e unshift() - puts new elements to the beginning of the array and shifts the others
over right

e pop() - allows you to remove the last element from an array and return its value

e shift() - removes the first element from the array, returns the value, and shifts the
remaining values back one

e splice() - modifies the existing array by removing the number of elements from a
particular element and inserting the new elements

e sort() - sorts elements of the array

e sorton() - used in parallel and multidimensional arrays to sort by a particular
index

e reverse() - reorders the orginal array by placing the last element first and so on....

Array Summary:

e Arrays are indexed data structures in which each piece of data (elements) has a
unique index by which it can be referenced.

e You can use the array access operator [] to read and write from arrays.

o Different types of arrays include basic, parallel, associative, and
multidimensional.

e The many array methods allow you to manipulate arrays in any number of ways.

