CGT 353: Principles of Interactive and Dynamic Media
The Display API
Display Tools:
e Two Kkinds of display tools:

0 The display API
o Components

e Components will be discussed later....

e In Flash 8 (AS 2.0) and older, we used the following a LOT:
Movie Clip

Text Field

Button

o]
o]
o]
o Bitmap

e Still used in AS 3.0, but have been reorganized and redesigned to fit within the larger class-
based structure of the new language.
Overview:
e In AS 3.0, all graphical content is created and manipulated with classes

Question: When you create a symbol with the FAT by manually dragging, that’s not using
classes, is it?

Answer: Yes it is...you are just drawing upon the automated features of what the FAT
provides.
e Core display classes — classes that directly represent on-screen content
e Supporting display classes — classes in the display API that indirectly represent on-screen
content
Three Tiers of Display APl Functionality:
1. DisplayObject

2. InteractiveObject
3. DisplayObjectContainer



While these cannot be classified as abstract classes, they function in that respect.

AS does not support true abstract classes.

Abstract classes have a name, parameters, and return type but no implementation (method

body.)

Solely used for extension and to create subclasses.

So in AS, these type of classes are known as abstract-style classes.

DisplayObject

Y

A

A 4

\ 4

Video

DisplayObject is the root of the core display classes and function to provide on-screen display

Good for:

ApwnhE

Note: The phrase “Display object” refers to any object descending from the DisplayObject

StaticText

Bitmap Shape InteractiveObject MorphShape
A\ 4 P \ 4 < \ 4
TextField DisplayObjectContainer SimpleButton
| J

A\ 4 \ 4 \ 4

Stage Sprite Loader

Y
MovieClip

Gray boxes denote classes available to the FAT only

Converting coordinates (ex. globalToLocal, localToGlobal, etc...)

Checking intersections between points and objects (hitTestObject, hitTestPoint(), etc...)

Applying filters, transforms, and masks
Scaling disproportionately for “stretchy” graphical layouts

class...

DisplayObject’s subclasses (Video, Bitmap, Shape, MorphShape, and StaticText) are the
simplest type of on-screen graphics...




e These cannot receive input or contain nested content....

e AsFAT classes....MorphShape and StaticText cannot be instantiated in AS......

InteractiveObject:
e Abstract class of DisplayObject.....
e Establishes second tier of display API functionality: interactivity

e All classes inheriting from 10 can respond to input events from the mouse and keyboard.

DisplayObjectContainer:

e The only abstract subclass of Interactive Object...

Represents the last tier of display API functionality: containment.
e Containment means that these classes can “hold” other classes of the display API...

e Used to group objects so they can be manipulated at once.

e Whenever a DOC is added, manipulated, or deleted...everything inside it goes along with it

e Sprite, MovieClip, Stage, and Loader subclasses each represent a unique containment
structure waiting to be filled with content.

e Sprite is the foundation subclass, while MovieClip is basically a Sprite + animated content

e Stage represents the main display area.
e Loader used to load external graphical content.
e Note that all this functionality used to be contained in the MovieClip class in AS 2.0

e Because AS 3.0 doesn’t provide a way to create timeline elements such as frames and
tweens....no reason to create new empty MovieClips like in AS 2.0

e To make programmatically created graphics in AS3, use one of the core display classes
(Bitmap, Shape, Sprite, Textfield, etc...)

e Remember in a 16-week class we don’t have number to specifically cover the hundreds of new

classes, methods, and properties



Remember...
e Terminology comes to play in display API code and text:

Parent

Child (ex. addChild())
Ancestors
Descendents

O 00O

Example: 2.0 vs. 3.0

2.0
// draw a red rectangle by creating an empty movieclip and using the drawing API

var shape_mc:MovieClip=_root.createEmptyMovieClip('shape’,_root.getNextHighestDepth());
shape_mc.lineStyle(1l, 0x000000);

shape_mc._beginFill (Oxff0000);

shape_mc.moveTo(0, 0);

shape_mc.lineTo(50, 0);

shape_mc.lineTo(50, 50);

shape_mc.lineTo(0, 50);

shape_mc.lineTo(0, 0);

shape_mc.endFill();

// write an event handler

shape_mc.onPress=function(){
text_txt.text=""You pressed the rectangle;
}

// create a textfield object with the createTextField of the root movieclip

var text_txt = _root.createTextField(text", _root.getNextHighestDepth(), 100, 0, 150, 20);
text_txt.text = "Click the rectangle.";

In 3.0:

// create the new Sprite instance

var mySprite:Sprite = new Sprite();
mySprite.graphics.beginFill (Oxff0000);
mySprite.graphics.lineStyle(1, 0x000000);
mySprite.graphics.drawRect(0, 0, 50, 50);
mySprite.graphics.endFill();

//create the event handler

function clickHandler(event:Event):void {
txt.text="You clicked the rectangle.";

mySprite.addEventListener(MouseEvent.CLICK,clickHandler);



// add the Sprite to the top-level container

addChild(mySprite);

//instantiate a text field

var txt:TextField = new TextField();
txt.x = 100;

txt.y = 0;

txt.width = 150;

txt.height = 20;

txt.text = "Click the rectangle.";

// add the text field to the top-level container

addChi 1d(txt) ;

Source: See tutorial at
http://www.adobe.com/devnet/actionscript/articles/display_api.html

The Display List:

e To create actual graphics from theoretical classes you have to create instances of the core
display classes and add them to the display list.

e The display list is the hierarchy of all graphical objects currently displayed by the Flash
runtime.

e When you drag instances of symbols onto the Stage in the FAT this is done automatically.
e Any object added to the list and positioned in a visible area will show up on screen.

e Root of the display list is an instance of the Stage class, automatically created at runtime.

Flash Player Display List

Stage
instance

Stage
instance |
~



http://www.adobe.com/devnet/actionscript/articles/display_api.html�

The Stage — Purposes:

1.

2.

Serves as the outermost container for all graphics displayed.

Provides information about the characteristics of the display area.
Stage instances always accessed relative to some object on the display list
EX. output.txt.stage
In AS2, the Stage class didn’t contain objects on the display list
Used to use the Stage directly
Ex. trace(Stage.align)

In AS3 Stage methods and properties are not accessed directly, and there is no global point of
reference.

Using the Stage:

Remember that when you run a .swf file, the runtime locates the main class and makes an
instance of it.

The runtime then adds that instance to the display list as the Stage instances’ first child.

Even if the first class has no graphics (most will), it’s still added to the display list

Flash Player Display List
e ™
e i Stage
Stage i L instance
instance P i
e § 1
GreetingApp.swi's T i : :
i gL b ' GreetingApp.swr's
Gree’rmqﬁppmstanfex.,x o x Greetinggpﬁnstance




package {

import flash.display.*;
import flash.text.TextField;

//GreetingApp extends a Sprite because this example is not intended for the FAT

public class GreetingApp extends Sprite {
public function GreetingApp() {

// Create a rectangle

var rect:Shape = new Shape();
rect.graphics.lineStyle(1);
rect._graphics.beginFill (Ox0000FF, 1);
rect.graphics.drawRect(0, 0, 75, 50);

// Create a circle

var circle:Shape = new Shape();
circle._graphics.lineStyle(1);
circle.graphics.beginFill (OXFFO000, 1);
circle.graphics.drawCircle(0, 0, 25);
circle.x = 75;

circle.y = 35;

// Create a text message

var greeting_txt:TextField = new TextField();
greeting_txt.text = "Hello world";
greeting_txt.x 60;

greeting_txt.y = 25;

// Add assets to the display list

addChild(greeting_txt); // Depth O
addChild(circle); // Depth 1
addChild(rect); // Depth 2

// Create a triangle

var triangle:Shape = new Shape();
triangle.graphics.lineStyle(1);
triangle.graphics.beginFill (OXO0FF00, 1);
triangle.graphics.moveTo(25, 0);
triangle.graphics.lineTo(50, 25);
triangle.graphics.lineTo(0, 25);
triangle.graphics.lineTo(25, 0);
triangle.graphics.endFill();
triangle.x = 70;

triangle.y = 8;

// Put the triangle beneath the circle.
addChildAt(triangle, getChildIndex(circle));



Sage

GreetingAppswi’s
GreetingApp instance_

Shape instance

TextField instance

instance -
o

I
dre 5
~ = 5

rectAndCircle ==

greeting txt —|

Hash Player

Display List

Stage
instance

GreetingApp.swi's
GreetingApp instance

i

&

4

Sh?pe
instance

TextField
instance

Containers and Depths:

e From CGT 353 we remember that depth controls how objects overlap on the stage....

e The greater the number, the higher the position...

e Lowest object in the stacking order has a depth position of 0.

In AS 2...

e You could have “unoccupied” depths.

e Not allowed in 3.0.....

e Display objects added to a container using addChild() are assigned depth positions

automatically

e Most recently

added will always appear on top....

// The rectangle

var rect:Shape = new Shape( );
rect._graphics.lineStyle(1);
rect.graphics.beginFill1 (OX0000FF, 1);
rect._graphics.drawRect(0, 0, 75, 50);

// The circle

var circle:Shape = new Shape( );
circle._graphics.lineStyle(1);
circle._graphics.beginFil I (OxFFO000, 1);
circle._graphics.drawCircle(0, 0, 25);
circle.x = 75;

circle.y = 35;

// The text message

var greeting_txt:TextField = new TextField( );
greeting_txt._text = "Hello world";
greeting_txt.x = 60;

greeting_txt.y = 25;




addChild(rect); // Depth 0O
addChild(circle); // Depth 1
addChild(greeting_txt); // Depth 2

@r rid

To retrieve the depth position of any object in a display object container, we use
getChildIndex():

trace(getChildlIndex(rect)); // Displays: 0
To add a new object at a specific depth position, we use addChildAt()
theContainer.addChildAt(theDisplayObject, depthPosition)

If the specified depthPosition is already occupied by an existing child, then theDisplayObject
is placed behind that existing child (all others increase by one)

From:

greeting_txt O
circle 1
rect 2

To:

greeting_txt O
triangle 1
circle 2

rect 3

To add a new object above all existing children:

theContainer.addChildAt(theDisplayObject, theContainer.numChildren)

Use addChildAt( ) in combination with getChildindex( ) to add an object below an existing
child:

theContainer.addChildAt(newChild, theContainer.getChildIndex(existingChild))



e To swap depths of two children:
theContainer.swapChildren(existingChildl, existingChild2);
or

theContainer.swapChildrenAt(existingDepthl, existingDepth2);

e The setChildIndex( ) method takes the following form:

theContainer.setChildIndex(existingChild, newDepthPosition);

e Be careful when using this method because of it bumping all the other children up — like
putting a single card into a deck.

Removing Assets:
e Use removeChild() and removeChildAt()

e Be careful, because these only remove from the display hierarchy, not memory.

theContainer.removeChild(existingChild)

theContainer.removeChildAt(depth)

e To remove items from memory, you also have to remove all references to it.

e Even after all references have been removed object is active until the garbage collector deletes
is from memory (more on this later)

Removing All Children:

e No direct method. Must be done with loops:

while (theParent.numChildren > 0) {
theParent.removeChildAt(0);

}

for (GnumChildren > 0;) {
theParent._removeChildAt(0);

}



Manipulating Objects in Containers Collectively:

// Create two rectangles

var rectl:Shape = new Shape( );
rectl_graphics.lineStyle(1);
rectl.graphics.beginFill(0Ox0000FF, 1);
rectl.graphics.drawRect(0, 0, 75, 50);
var rect2:Shape = new Shape( );
rect2.graphics.lineStyle(1);
rect2._graphics.beginFill (OxFFO000, 1);
rect2._graphics.drawRect(0, 0, 75, 50);
rect2.x 50;

rect2.y 75;

// Create the container
var group:Sprite = new Sprite( );

// Add the rectangles to the container
group.addChild(rectl);
group.addChild(rect2);

// Add the container to the main application
someMainApp.addChild(group);

// Move, scale, and rotate container
group.x = 40;

group.scaleY = _15;

group.rotation = 15;

Descendant Access to .swf Main Class Instance:

package {
import flash.display.™;
import flash.geom.*;

public class App extends Sprite {
public function App () {

// Make the descendants...

var rect:Shape = new Shape( );
rect.graphics.lineStyle(1);
rect.graphics.beginFill (OXO000FF, 1);
rect.graphics.drawRect(0, 0, 75, 50);

var sprite:Sprite = new Sprite( );
sprite.addChild(rect);
addChild(sprite);

// Use DisplayObject._root to access this App instance

trace(rect.root); // Displays: [object App]
trace(sprite.root); // Displays: [object App]

}
}



The Rebirth of _root:
e In AS2, root referred to the top-level movie clip....
e Always followed that _root should be avoided because it was inflexible...

e New root variable doesn’t suffer from this...

As for _levelO...
e loadMovieNum() was used to stack external .swf files on top of one another.
e In AS3, external .swf files cannot be loaded directly onto stage instance child list...

e Instead, you have to load the .swf with a Loader object then move it to the Stage using
stage.addChild()

var loader:Loader = new Loader( );
loader.load(new URLRequest(''newContent.swf'"));
stage.addChild(loader);

e Can also no longer remove everything by unloading _levelO
unloadMovieNum(0);

e Can use:

stage.removeChildAt(0);
e But remember that you still have to remove the instances

while (stage.numChildren > 0) {
stage.removeChildAt(stage.-numChildren-1);
// When the last child is removed, stage is set to null,
so quit
it (stage == null) {
break;
}



