
CGT 353: Principles of Interactive and Dynamic Media
The Display API

Display Tools:

• Two kinds of display tools:

o The display API
o Components

• Components will be discussed later….

• In Flash 8 (AS 2.0) and older, we used the following a LOT:

o Movie Clip
o Text Field
o Button
o Bitmap

• Still used in AS 3.0, but have been reorganized and redesigned to fit within the larger class-

based structure of the new language.

Overview:

• In AS 3.0, all graphical content is created and manipulated with classes

Question: When you create a symbol with the FAT by manually dragging, that’s not using
classes, is it?

Answer: Yes it is…you are just drawing upon the automated features of what the FAT
provides.

• Core display classes – classes that directly represent on-screen content

• Supporting display classes – classes in the display API that indirectly represent on-screen

content

Three Tiers of Display API Functionality:

1. DisplayObject
2. InteractiveObject
3. DisplayObjectContainer

• While these cannot be classified as abstract classes, they function in that respect.

• AS does not support true abstract classes.

• Abstract classes have a name, parameters, and return type but no implementation (method
body.)

• Solely used for extension and to create subclasses.

• So in AS, these type of classes are known as abstract-style classes.

 Gray boxes denote classes available to the FAT only

• DisplayObject is the root of the core display classes and function to provide on-screen display

• Good for:

1. Converting coordinates (ex. globalToLocal, localToGlobal, etc…)
2. Checking intersections between points and objects (hitTestObject, hitTestPoint(), etc…)
3. Applying filters, transforms, and masks
4. Scaling disproportionately for “stretchy” graphical layouts

• Note: The phrase “Display object” refers to any object descending from the DisplayObject

class...

• DisplayObject’s subclasses (Video, Bitmap, Shape, MorphShape, and StaticText) are the

simplest type of on-screen graphics...

MorphShape StaticText

Shape Bitmap Video InteractiveObject

DisplayObject

DisplayObjectContainer TextField SimpleButton

Sprite

MovieClip

Loader Stage

• These cannot receive input or contain nested content....

• As FAT classes….MorphShape and StaticText cannot be instantiated in AS......

InteractiveObject:

• Abstract class of DisplayObject.....

• Establishes second tier of display API functionality: interactivity

• All classes inheriting from IO can respond to input events from the mouse and keyboard.

DisplayObjectContainer:

• The only abstract subclass of Interactive Object...

• Represents the last tier of display API functionality: containment.

• Containment means that these classes can “hold” other classes of the display API...

• Used to group objects so they can be manipulated at once.

• Whenever a DOC is added, manipulated, or deleted…everything inside it goes along with it

• Sprite, MovieClip, Stage, and Loader subclasses each represent a unique containment

structure waiting to be filled with content.

• Sprite is the foundation subclass, while MovieClip is basically a Sprite + animated content

• Stage represents the main display area.

• Loader used to load external graphical content.

• Note that all this functionality used to be contained in the MovieClip class in AS 2.0

• Because AS 3.0 doesn’t provide a way to create timeline elements such as frames and
tweens….no reason to create new empty MovieClips like in AS 2.0

• To make programmatically created graphics in AS3, use one of the core display classes

(Bitmap, Shape, Sprite, Textfield, etc…)

• Remember in a 16-week class we don’t have number to specifically cover the hundreds of new
classes, methods, and properties

Remember…

• Terminology comes to play in display API code and text:

o Parent
o Child (ex. addChild())
o Ancestors
o Descendents

Example: 2.0 vs. 3.0

2.0

// draw a red rectangle by creating an empty movieclip and using the drawing API

var shape_mc:MovieClip=_root.createEmptyMovieClip("shape",_root.getNextHighestDepth());
shape_mc.lineStyle(1, 0x000000);
shape_mc.beginFill(0xff0000);
shape_mc.moveTo(0, 0);
shape_mc.lineTo(50, 0);
shape_mc.lineTo(50, 50);
shape_mc.lineTo(0, 50);
shape_mc.lineTo(0, 0);
shape_mc.endFill();

// write an event handler

shape_mc.onPress=function(){
 text_txt.text="You pressed the rectangle";
}

// create a textfield object with the createTextField of the root movieclip

var text_txt = _root.createTextField("text", _root.getNextHighestDepth(), 100, 0, 150, 20);
text_txt.text = "Click the rectangle.";

In 3.0:

// create the new Sprite instance

var mySprite:Sprite = new Sprite();
mySprite.graphics.beginFill(0xff0000);
mySprite.graphics.lineStyle(1, 0x000000);
mySprite.graphics.drawRect(0, 0, 50, 50);
mySprite.graphics.endFill();

//create the event handler

function clickHandler(event:Event):void {
 txt.text="You clicked the rectangle.";
}
mySprite.addEventListener(MouseEvent.CLICK,clickHandler);

// add the Sprite to the top-level container

addChild(mySprite);

//instantiate a text field

var txt:TextField = new TextField();
txt.x = 100;
txt.y = 0;
txt.width = 150;
txt.height = 20;

txt.text = "Click the rectangle.";

// add the text field to the top-level container

addChild(txt);

Source: See tutorial at
http://www.adobe.com/devnet/actionscript/articles/display_api.html

The Display List:

• To create actual graphics from theoretical classes you have to create instances of the core
display classes and add them to the display list.

• The display list is the hierarchy of all graphical objects currently displayed by the Flash

runtime.

• When you drag instances of symbols onto the Stage in the FAT this is done automatically.

• Any object added to the list and positioned in a visible area will show up on screen.

• Root of the display list is an instance of the Stage class, automatically created at runtime.

http://www.adobe.com/devnet/actionscript/articles/display_api.html�

The Stage – Purposes:

1. Serves as the outermost container for all graphics displayed.

2. Provides information about the characteristics of the display area.

• Stage instances always accessed relative to some object on the display list

Ex. output.txt.stage

• In AS2, the Stage class didn’t contain objects on the display list

• Used to use the Stage directly

Ex. trace(Stage.align)

• In AS3 Stage methods and properties are not accessed directly, and there is no global point of
reference.

Using the Stage:

• Remember that when you run a .swf file, the runtime locates the main class and makes an
instance of it.

• The runtime then adds that instance to the display list as the Stage instances’ first child.

• Even if the first class has no graphics (most will), it’s still added to the display list

package {

 import flash.display.*;
 import flash.text.TextField;

 //GreetingApp extends a Sprite because this example is not intended for the FAT

 public class GreetingApp extends Sprite {
 public function GreetingApp() {

// Create a rectangle
 var rect:Shape = new Shape();
 rect.graphics.lineStyle(1);
 rect.graphics.beginFill(0x0000FF, 1);
 rect.graphics.drawRect(0, 0, 75, 50);

 // Create a circle
 var circle:Shape = new Shape();
 circle.graphics.lineStyle(1);
 circle.graphics.beginFill(0xFF0000, 1);
 circle.graphics.drawCircle(0, 0, 25);
 circle.x = 75;
 circle.y = 35;

 // Create a text message
 var greeting_txt:TextField = new TextField();
 greeting_txt.text = "Hello world";
 greeting_txt.x = 60;
 greeting_txt.y = 25;

 // Add assets to the display list
 addChild(greeting_txt); // Depth 0
 addChild(circle); // Depth 1
 addChild(rect); // Depth 2

 // Create a triangle
 var triangle:Shape = new Shape();
 triangle.graphics.lineStyle(1);
 triangle.graphics.beginFill(0x00FF00, 1);
 triangle.graphics.moveTo(25, 0);
 triangle.graphics.lineTo(50, 25);
 triangle.graphics.lineTo(0, 25);
 triangle.graphics.lineTo(25, 0);
 triangle.graphics.endFill();
 triangle.x = 70;
 triangle.y = 8;

 // Put the triangle beneath the circle.
 addChildAt(triangle, getChildIndex(circle));
 }
 }
}

Containers and Depths:

• From CGT 353 we remember that depth controls how objects overlap on the stage....

• The greater the number, the higher the position...

• Lowest object in the stacking order has a depth position of 0.

In AS 2…

• You could have “unoccupied” depths.

• Not allowed in 3.0.....

• Display objects added to a container using addChild() are assigned depth positions
automatically

• Most recently added will always appear on top....

// The rectangle
var rect:Shape = new Shape();
rect.graphics.lineStyle(1);
rect.graphics.beginFill(0x0000FF, 1);
rect.graphics.drawRect(0, 0, 75, 50);

// The circle
var circle:Shape = new Shape();
circle.graphics.lineStyle(1);
circle.graphics.beginFill(0xFF0000, 1);
circle.graphics.drawCircle(0, 0, 25);
circle.x = 75;
circle.y = 35;

// The text message
var greeting_txt:TextField = new TextField();
greeting_txt.text = "Hello world";
greeting_txt.x = 60;
greeting_txt.y = 25;

addChild(rect); // Depth 0
addChild(circle); // Depth 1
addChild(greeting_txt); // Depth 2

• To retrieve the depth position of any object in a display object container, we use
getChildIndex():

trace(getChildIndex(rect)); // Displays: 0

• To add a new object at a specific depth position, we use addChildAt()

theContainer.addChildAt(theDisplayObject, depthPosition)

• If the specified depthPosition is already occupied by an existing child, then theDisplayObject
is placed behind that existing child (all others increase by one)

From:

greeting_txt 0
circle 1
rect 2

To:

greeting_txt 0
triangle 1
circle 2
rect 3

• To add a new object above all existing children:

theContainer.addChildAt(theDisplayObject, theContainer.numChildren)

• Use addChildAt() in combination with getChildIndex() to add an object below an existing
child:

 theContainer.addChildAt(newChild, theContainer.getChildIndex(existingChild))

• To swap depths of two children:

theContainer.swapChildren(existingChild1, existingChild2);

or

theContainer.swapChildrenAt(existingDepth1, existingDepth2);

• The setChildIndex() method takes the following form:

theContainer.setChildIndex(existingChild, newDepthPosition);

• Be careful when using this method because of it bumping all the other children up – like
putting a single card into a deck.

Removing Assets:

• Use removeChild() and removeChildAt()

• Be careful, because these only remove from the display hierarchy, not memory.

theContainer.removeChild(existingChild)

theContainer.removeChildAt(depth)

• To remove items from memory, you also have to remove all references to it.

• Even after all references have been removed object is active until the garbage collector deletes
is from memory (more on this later)

Removing All Children:

• No direct method. Must be done with loops:

while (theParent.numChildren > 0) {
theParent.removeChildAt(0);
}

for (;numChildren > 0;) {
theParent.removeChildAt(0);
}

Manipulating Objects in Containers Collectively:

// Create two rectangles
var rect1:Shape = new Shape();
rect1.graphics.lineStyle(1);
rect1.graphics.beginFill(0x0000FF, 1);
rect1.graphics.drawRect(0, 0, 75, 50);
var rect2:Shape = new Shape();
rect2.graphics.lineStyle(1);
rect2.graphics.beginFill(0xFF0000, 1);
rect2.graphics.drawRect(0, 0, 75, 50);
rect2.x = 50;
rect2.y = 75;

// Create the container
var group:Sprite = new Sprite();

// Add the rectangles to the container
group.addChild(rect1);
group.addChild(rect2);

// Add the container to the main application
someMainApp.addChild(group);

// Move, scale, and rotate container
group.x = 40;
group.scaleY = .15;
group.rotation = 15;

Descendant Access to .swf Main Class Instance:

package {
import flash.display.*;
import flash.geom.*;

public class App extends Sprite {
public function App () {

// Make the descendants...
var rect:Shape = new Shape();
rect.graphics.lineStyle(1);
rect.graphics.beginFill(0x0000FF, 1);
rect.graphics.drawRect(0, 0, 75, 50);

var sprite:Sprite = new Sprite();
sprite.addChild(rect);
addChild(sprite);

// Use DisplayObject.root to access this App instance
trace(rect.root); // Displays: [object App]
trace(sprite.root); // Displays: [object App]

}
}

}

The Rebirth of _root:

• In AS2, _root referred to the top-level movie clip….

• Always followed that _root should be avoided because it was inflexible…

• New root variable doesn’t suffer from this…

As for _level0…

• loadMovieNum() was used to stack external .swf files on top of one another.

• In AS3, external .swf files cannot be loaded directly onto stage instance child list...

• Instead, you have to load the .swf with a Loader object then move it to the Stage using
stage.addChild()

var loader:Loader = new Loader();
loader.load(new URLRequest("newContent.swf"));
stage.addChild(loader);

• Can also no longer remove everything by unloading _level0

unloadMovieNum(0);

• Can use:

stage.removeChildAt(0);

• But remember that you still have to remove the instances

while (stage.numChildren > 0) {
stage.removeChildAt(stage.numChildren-1);
// When the last child is removed, stage is set to null,
so quit
if (stage == null) {

break;
}

}

