
CGT 353: Principles of Interactive and Dynamic Media
Data Integration

Introduction:

 One of the most useful (and essential) features of Flash is the ability to pass data to

and from applications.

 Upcoming lectures will deal will integration with LoadVars, XML, and Shared

Objects

The Basics:

 Like HTML forms, Flash's input and dynamic text fields are the primary method
for user-defined data creation

 As such, they are the primary means of passing data into and out of Flash

 Similarities between Flash and HTML methods are very similar

Understanding Data Sources and Data Formats:

 A data source is any place from which Flash can load external data.

 Data transfer is the act of retrieving data from or sending data to a source.

 Any data that one plans to load into Flash must be formatted in a specific way.

Other Terminology:

 External data: Data that is stored in some form outside of the SWF file, and
loaded into the SWF file when needed.

 URL-encoded variables: The URL-encoded format provides a way to represent
several variables (pairs of variable names and values) in a single string of text.
Individual variables are written in the format name=value. Each variable (that is,
each name-value pair) is separated by ampersand characters, like this:
variable1=value1&variable2=value2. In this way, an indefinite number of
variables can be sent as a single message.

 Request method: When a program such as Flash Player or a web browser sends a
message (called an HTTP request) to a web server, any data being sent can be

embedded in the request in one of two ways; these are the two request methods
GET and POST.

o On the server end, the program receiving the request will need to look in
the appropriate portion of the request to find the data, so the request
method used to send data from ActionScript should match the request
method used to read that data on the server.

URL String:

 Data is defined as a string of text

Firstname=Ron&lastname=Glotzbach&website=http://www.tech.purdue.edu/cgt

 This demonstrates the use of the MIME format which is used with
loadVariables(), loadVariablesNum(), or the LoadVars class

 An equals sign(=) associates the variable with the value and an ampersand(&)

marks the junction between variables

 While this formats supports an unlimited number of variables, only simple
variables can be used

 Use escape() and unescape() functions when special characters are in the strings

themselves

//create the string
var mYString:String = escape (“title = War & Peace”);

// send the encoded string to the output panel

trace(myString);
trace(unescape(myString));

//output: title%20%3D%20War%20%26%20Peace
//output: title = War & Peace

AS 2.0 – LoadVars and MovieClip Methods:

 Movieclip methods - getURL(), loadVariables(), loadVariablesNum(),
loadMovie(), and loadMovieNum().

 LoadVars methods - load(), send(), and sendAndLoad()

 XML methods - XML are XML.send(), XML.load(), and XML.sendAndLoad().

 getURL() - returns any information to a browser window, not to Flash Player.
 loadVariables() - loads variables into a specified timeline or level in Flash Player.
 loadMovie() method loads a SWF file into a specified level or movie clip in

Flash Player.
 loadMovieNum()

When you use loadVariables(), getURL(), or loadMovie(), you can specify several parameters:

 URL is the file in which the remote variables reside.

 Location is the level or target in the SWF file that receives the variables. (The
getURL() function does not take this parameter.)
.

 Variables sets the HTTP method, either GET (appends the variables to the end of
the URL) or POST (sends the variables in a separate HTTP header), by which the
variables are sent. When this parameter is omitted, Flash Player defaults to GET,
but no variables are sent.

AS 2.0 Methods and Actions for Sending Data into and Out of Flash:

 getUrl()
 LoadVariable()
 LoadMovie()
 LoadVars.load()
 LoadVar.send()
 LoadVars.sendAndLoad()
 XML.load()
 XML.send()
 XML.sendAndLoad()
 XMLSocket.send()

XML:

 AS script can be written to extract information from XML documents, allowing
XML documents to serve as a database of sorts

 Will discuss this more in upcoming lectures…

Shared Objects:

 The equivalent of Flash cookies and allows you to store object’s locally on the
users hard drive.

 By using shared objects, you can not only store variables but ANY kind of data

object (arrays, XML objects, etc…)

 Especially useful in gaming when you want to store user information such as
names, scores, etc…

Sources that Flash can Load Data From:

Text Files:

 Flash can load test (.txt) files containing data formatted using the URL string
format.

 Can be loaded using loadVariables() or the load() method of the LoadVars class

Server Side Scripts:

 Placed on ASP, CFML, CGI, or JSP pages and executed by a server…

 Can return data in a number of formats including XML and URL string formats…

XML Files:

 Usually a text file with XML formatted data…

 More on this later…

XML Socket:

 Applications that run on a server and connect several simultaneous users to one
another…

 Flash can send or receive information via the socket using the XML format…

GET vs POST:

 Two ways to transfer data from Flash to server-side scripts: GET or POST

 Also used with HTML forms…

 Using GET you’re simply concatenating variable name/ values into the URL

http://www.purdue.edu/login.asp?firstname=Ron&lastname=Glotzbach

 This method is not very secure and also has a 1024-character limitation

 Using POST, the data is contained in the header of the HTTP request, so you
can’t see it transferred…

 POST also doesn’t have a character limit…

Using the LoadVars Class:

 Use the LoadVars class when working with data in the URL string format…

 Enables you to load variable from a text file or to and from a server-side script…

 Note: You cannot directly write to a text file from Flash…

Creating a LoadVars Object:

var RonInfo:LoadVars = newLoadVars();

Loading variables from a URL into a LoadVars Object:

RonInfo.load(http://www.purdue.edu/stupidtext.text);

So, if you had a LoadVars object named RonInfo and loaded the following string from a
text file:

Firstname=Ron&lastname=Glotzbach&age=21

You could reference those names using:

RonInfo.firstname
RonInfo.lastname
RonInfo.age

or

var userAge: Number = RonInfo.age

 If you want to send variables in a LoadVars object to a server side script for
processing, use the send() method.

myLoadVarsObject.send(“http://www.purdue.edu/process.asp);

 Note that using .send does not get a response back

 Use the sendAndLoad method to get a response

myLoadVarsObject.sendAndLoad(“http://www.purdue.edu/process.asp,
receivingLoadVarsObject);

 If you want the same object that is doing the sending to receive variables, just use
the load() method

 Can also use the toString() method of the LoadVars class to create URL-formatted

strings

 So, using the previous example:

RonInfo.toString() would give you firstname=Ron&lastname=Glotzbach&age=21

Properties of the LoadVars Class:

1. contentType – gives you the mime type specified in the HTTP header
2. loaded – returns a true or false value depending on whether or not the data has

finished loading into the object

 The only event available to the LoadVars class is the onLoad method
 Used to call a function when data has finished loading into an object
 To load variables into an object then call a function when the loading is complete:

1. Define a function
2. Create a new LoadVars object
3. Specify the function to be called when loading complete
4. Invoke the load()method of the LoadVars object

function myFunction():Void{

trace(“Data is loaded”);
}

var container:LoadVars = new LoadVars(); //creates the LoadVars object
container.onLoad = myFunction; //calls the function(myFunction) when data is loaded
container.load(“http://www.purdue.edu/myfile.asp:);

Shared Objects:

 Being able to save data to client machine is essential…

 With traditional Web applications, this is done via cookies…

 With Flash, we use shared objects…

 User the SharedObject class…

 Local shared objects allow you to store and retrieve data on client computer…

 Remote shared objects can be used with Flash Communcication Server
(outside the scope of this class)

Creating Shared Objects:

 Process for creating a new shared object and opening and existing shared object is
the same…

 Static method getLocal() opens a local shared object of the specified name if it

exists.

var lsoPreferences:SharedObject = SharedObject.getLocal(“userpreferences”);

 File extension for shared object files is .lso, but don’t include that in the parameter

 Flash either finds the existing file or creates a new one…

Setting Values in Shared Objects:

var lsoPreferences:SharedObject = SharedObject.getLocal(“userpreferences”);
lsopreferences.data.backgroundColor = “red”;
lsoPreferences.data.name = “A Reader”;

 The data property is an object in itself which you can assign additional properties

 Properties assigned to the SharedObject will not be saved, only the properties of
the data object.

Saving the Shared Object to the Client

 Flash automatically tries to save the shared object when the SharedObject
instance is deleted…

o When player closes
o When movie is closed or replaced in the player
o When object is deleted with the delete statement
o When the object is garbage-collected after it falls out of scope

 Don’t rely on automatic saves however, use the flush (method)

 Not only does flush() ensure you save the data, but also allows the user to

determine how much data the shared object can store (default is 100K)

Retrieving the Shared Object Data:

 Still use getLocal() method
 As you will read about and learn in class, there are three basic ways to tie

Flash into a robust data source:
o Flash remoting
o Web services
o Direct server-side integration

 Flash Remoting is a proprietary technology and rather expensive…but easily

the fastest of the three choices

 See Article: Choosing Between XML, Web Services, and Remoting for Rich

Internet Applications

AS 3.0 Shared Object Example:

var so:SharedObject = SharedObject.getLocal("userHighScore");
 so.data.highScore = new Number(1234567890);
 so.flush();

Direct Server-Side Integration:

 The flash.net package contains classes to send and receive data

 As we have already seen, you can load external files with URLLoader and

URLRequest

 Then use a specific class to access the data, depending on the type of data that
was loaded.

 For example, if the remote content is formatted as name-value pairs, you use

the URLVariables class to parse the server results.

 If the file loaded is a remote XML document, you can parse the XML
document using the XML class's constructor, the XMLDocument class's
constructor, or the XMLDocument.parseXML() method

 The advantage here stems from the fact that the code for loading external files

is the same whether you use the URLVariables, XML, or some other class to
parse and work with the remote data.

 flash.net package also contains classes for other types of remote

communication.

o FileReference class for uploading and downloading files from a server

o Socket and XMLSocket classes for communicating directly with
remote computers over socket connections

o NetConnection and NetStream classes, used for communicating with
Flash-specific server resources (such as Flash Media Server and Flash
Remoting servers) as well as for loading video files.

AS 3.0 - Using the URLLoader and URLVariables classes:

 URLLoader class uses the AS 3.0 event-handling model, which allows you to
listen for such events as complete, httpStatus, ioError, open, progress,
and securityError

Loading data from external documents:

var request:URLRequest = new URLRequest("params.txt");
var loader:URLLoader = new URLLoader();
loader.load(request);

or

var loader:URLLoader = new URLLoader(new URLRequest("params.txt"));

XML Example:

package
{
 import flash.display.Sprite;
 import flash.errors.*;
 import flash.events.*;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class ExternalDocs extends Sprite
 {
 public function ExternalDocs()
 {
 var request:URLRequest = new
URLRequest("http://www.[yourdomain].com/data.xml");
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 loader.load(request);
 }
 catch (error:ArgumentError)
 {
 trace("An ArgumentError has occurred.");
 }
 catch (error:SecurityError)
 {
 trace("A SecurityError has occurred.");
 }
 }
 private function completeHandler(event:Event):void
 {
 var dataXML:XML = XML(event.target.data);
 trace(dataXML.toXMLString());
 }
 }
}

Communicating with external scripts:

var variables:URLVariables = new URLVariables("name=Franklin");
var request:URLRequest = new URLRequest();
request.url = "http://www.[yourdomain].com/greeting.cfm";
request.method = URLRequestMethod.POST;
request.data = variables;
var loader:URLLoader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.VARIABLES;
loader.addEventListener(Event.COMPLETE, completeHandler);
try
{
 loader.load(request);
}
catch (error:Error)
{

 trace("Unable to load URL");
}

function completeHandler(event:Event):void
{
 trace(event.target.data.welcomeMessage);
}

Sources:

1. ActionScript 3.0 Cookbook by Lott, Schall, and Peters
2. Adobe LiveDocs
3. PHP 5 for Flash by David Powers

XML (extensible markup language) is:

 “a markup language for documents containing structured information.”

(O’Reilly xml.com)

 self-describing

 well-formed

What is XML?

 Based on SGML (Standard Generalized Markup Language)
 Developed because HTML could only function with predefined tags
 Many languages today are based on XML:

o XHTML
o SVG – Sclable Vector Graphics
o RDF Site Summary (RSS)
o Wireless Markup Language (WML)

 In it’s rawest form, XML is simply data holder
 Used for two functions: exchanging and storing data

Components of an XML document

 declaration: tells the XML parser in the browser the document is XML

example: <?xml version=”1.0”?>

 body: contains elements

 element: composed of a start-tag, contents, and an end-tag; the element name is self-

describing of its contents

example: <name>Marcellus</name>
format: <startTag>contents</endTag>

 note: it is important to use “/” in the end-tag for the parser to recognize it as such
note: in Flash elements are referred to as “nodes”

 element relationships: elements can contain elements which can contain other

elements and so on
note: see in the XML example how the <title> element is contained within the
<object> element

 parent element: an element containing an element

note: in the example the <object> element is parent to the <title> element

 child element: an element contained within an element

note: in the example the <title> element is a child of the <object> element

 root element: an XML document can contain only one root element; all elements and

their children are contained within the root element

 element attribute: additional information placed within an element tag

example: <object type=”image”>
format: <element attributeName=”attributeValue”>
note: the attributes value must be placed within quotes to be parsed
note: attributes are not always necessary, in this example the “type” attribute
could be a child element of the <object> element
(<type>image</type>)
note: whether or not to use attributes is entirely up to the developer in how they
choose to design and organize their data

XML Example:

The proceeding examples will refer to the following XML code:

<?xml version="1.0"?>

<portfolio>
 <design>
 <object type="image">
 <name>AT-ST</name>
 <src>images/atstThumb.jpg</src>

<description>Rendering of Star Wars AT-ST</description>
 </object>
 </design>
</portfolio>

Properties and Methods of Flash XML object

Property Description

XML.firstChild Read-only; references the first child in the list for the specified node.

XML.lastChild References the last child in the list for the specified node.

XML.nextSibling Read-only; references the next sibling in the parent node's child list.

XML.nodeName The node name of an XML object.

XML.nodeValue The text of the specified node if the node is a text node.

XML.previousSibling Read-only; references the previous sibling in the parent node's child list.

Method Description

XML.load() Loads a document (specified by the XML object) from a URL.

XML.attributes * Returns an associative array containing all of the attributes of the specified
node.

XML.childNodes
*

Read-only; returns an array containing references to the child nodes of the
specified node.

Instantiating an XML object:

portfolio_xml = new XML();

//instantiates a new XML object
portfolio_xml.load("portfolio.xml");

//loads xml document, in this case portfolio.xml located in the root
//directory

portfolio_xml.ignoreWhite = true;
//ignoreWhite property initiliazed as true, ignores empty elements in XML
//document

portfolio_xml.onLoad = portfolioLoad;
//calls portfolioLoad function when the portfolio_xml object is loaded

Loading XML:

var myXML:XML = new XML();
myXML.load (“http://www.purdue.edu/info.xml”);

To Determine When Loading is Finished:

function init(){

write function to handle and interpret the XML
}

var myXML:XML = new XML();
myXML.onLoad = init;
myXML.load (“http://www.purdue.edu/info.xml”);

Sending XML:

var myXML:XML = new XML(<Message><Text> Starting XML
Data</Text></Message>);

myXML.send(http://www.purdue.edu/xmldealer.asp)

All in One:

var URL:String = http://www.purdue.edu/startup.asp;

function init(){
trace(objtoreceive)
}

var xmlToSend:String =
“<Login><Username>rjglotzbach</Username><Password>smartalleck</Password></Lo
gin>”;
var objToSend:XML = new XML (xmlToSend);
var objToReceive:XML = new XML();
objToReceive.onLoad = init;
objToSend.sendAndLoad(URL, objToReceive);

LoadVars:

 Accomplishes pretty much the same stuff, but with name-value pairs instead of
XML

Loading Data:

var lvData:LoadVars = new LoadVars();
lvData.load (“bookResult.txt”);
lvData.onLoad = function (bSuccess:Boolean):Void{
if(bSuccess){
trace(this.title);
trace(this.author);

}

};

Sending Data:

var lvData:LoadVars = new LoadVars();
lvData.favoriteColor = “red”;
lvData.favoriteSong = “Frayed Ends of Sanity”;
lvData.send (http://www.myserver.com/cgi-bin/surveyResults.cgi);

