
CGT 353: Principles of Interactive and Dynamic Media
Intro to Flash Gaming and Basic Physics

Many Types of Games You Can Create:

• Action – ex. Space Invaders, Half-Life
• Adventure – action + story (different from

RPG in that player actions do not affect
characters overall abilities) – ex. Super Mario
Bros

• Casino – gambling games – ex. Poker,
Roulette

• Educational – learn something as you go
• First-Person Shooter
• Puzzle
• Sports
• Role Playing Game (RPG) – main

distinction is that character attributes change
as you play the game

• Strategy – try to build or run something – ex. Sim City

Game Views:

• 3D
• Chase
• First person
• Isometric
• Side
• Third Person
• Top Down

General Terminology:

• Algorithm - logical process by which a problem can be solved or a decision made
• Artificial Intelligence - set of algorithms that can make decisions in a logical

way
• Avatar - graphical representations of people in a game or chat room
• Collision detection - also called a hit detection
• Collision reaction - what happens after a collision has been detected
• Console - computer designed for the sole purpose of playing video games
• Map - area that defines the world of the game
• Real-time -

• Render - process of drawing an object to the screen
• Source Code - original work created by the developer
• Turn-based - the restriction on which the player can make a move (you have to

wait for your turn)
• Vector graphics - duh…
• World - the environment of the game

Flash Pros in Gaming:

1. Web Deployment
2. Small File size
3. Plug-in Penetration
4. Server-side integration
5. File sharing between programmer and

designers
6. Ease of Use

Flash Cons in Gaming:

1. Performance
2. Lack of 3D Support
3. Lack of Operating System Integration

Difficult Game Features:

3D Games:

• True 3D Flash games exist, but not as common
as 2D games

• Most aren’t true 3D - Usually involve a “rig”
that simulates 3D or other technology such as
the Shockwave player

Three basic limitations to 3D engines in Flash gaming:

1. Texture mapping - cannot map textures well in Flash

2. Z-sorting - limited to sorting at the movie-clip level

3. Speed - usually can only handle simple shapes

Some “3D” Flash Game Resources:

• http://www.gameshot.org/?search=3D&cat=games
• http://www.gskinner.com/games/puki
• http://www.albinoblacksheep.com/games/3d
• http://www.dabontv.com/3dgames.html
• http://www.desq.co.uk/braincell/braincell.htm

Real-Time Multiplayer Games:

• Possible... but much more challenging.

• Requires the use of a real-time interactive media server.

• Becoming more common....

• Graphics have to be relatively simple....

Intense Real-Time Calculation:

• Limitations to Flash player as a Web plugin....

Game Mathematics:

• Math is vital to creating games in Flash,
specifically trigonometry....

• Useful for:
o Rotating objects
o Calculating trajectories
o Collision detection and reaction

http://www.gameshot.org/?search=3D&cat=games�
http://www.gskinner.com/games/puki�
http://www.albinoblacksheep.com/games/3d�
http://www.dabontv.com/3dgames.html�
http://www.desq.co.uk/braincell/braincell.htm�

The Flash Coordinate System:

• Uses a version of the Cartesian Coordinate System

• The origin of every Flash movie is in the upper left-hand corner, and the
registration point of every movie clip is it’s own separate origin...

Angles:

• Of course, the ability to calculate angles is

vital...

• Must be measured in radians rather than
degrees in Flash....

• Only time you use degrees directly is when

you’re changing the _rotation property of a
movie clip...

• Can work with degree in ActionScript but have

to be converted to radians:

angle in radians = angle in degrees * (Math.PI/180)

+X

+Y

(4,3)

Using a Triangle:

• Sounds simple, but vital to gaming…

• Triangles made of three lines joined by three vertices.

• Three angles of a triangle must always equal 180 degrees or PI radians.

• With a right triangle, you can calculate the hypotenuse of a triangle using the
Pythagorean theorem (a2 + b2 = c2)

• By doing so, you can calculate the distance between two points.

c = distance = square root of (x2-x1)2+(y2-y1)2

Or in ActionScript:

var Distance:Number = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

Sine, Cosine, and Tangent:

• Trigonometric functions that use various ratios of
triangle side lengths to give results

• Found in the Math class

var angle:Number = 45;
var radians:Number = angle*Math.PI/180;
trace (Math.sin(radians));

+X

+Y

Projection:

• Projection refers to the methods of projecting a quantity such as distance or
velocity onto the x or y axis

X = LEN*COS(ANG)

or with AS:

var x:Number = len*Math.cos(ang);

(See Shooter.swf)

Basic Physics:

• Physical properties such as speed velocity, and acceleration are vital to
programming games...

• Book makes an excellent point,

which is the difference between
real physics and “good-
enough” physics...

+X

+Y

X

Y

ANG

LEN

Speed and Velocity:

• A vector is a mathematical object that has both a) magnitude (numeric value) and
b) direction...

• Speed is normally measured in units of distance/ time, but in Flash we use

units/frames...

• Velocity is a vector, whereas speed is a magnitude of that vector:

speed = distance/time
acceleration = (velocity2 – velocity1)/ (time2-time1)

velocity_future = velocity_now + acceleration*time
xspeed_future = xspeed_now = x acceleration*time

(See car.fla)

Acceleration:

• If you know the acceleration and current velocity of an object, you can predict the
velocity of that object at any point in the future.

• To use acceleration in programming:

1. Create variable to contain the acceleration

var kelvar:Number1 = 2

2. Create initial velocity variables for x and y directions

var xmov:Number = 0;
var ymov:Number = 0;

3. Modify the speed when acceleration should be applied

xmov += accel;
ymov += accel;

4. For every frame, set the new position of the object

car._x += xmov;
car._y += ymov;

(See car4.fla)

Newton’s Laws of Motion:

First Law: The velocity of a system will not change unless it experiences a net external
force.

Second Law: The acceleration of an object is inversely proportional to it’s mass and
proportional to the net external force applied.

net force = mass*acceleration
or

F = m*a

This is a very helpful equation, because you can sum all of the forces acting on an object
(net force) and from that sum determine its acceleration.

(show balloon.fla)

Balloon mass = 1

Force 1: gravitational force = 30 (its weight)

Force 2: buoyant force = - 31 (rising force of helium)

• Negative number of the buoyant force means that the force is going in the –y
direction….or “up”.

• Note that this balloon does not take into account the notion of terminal velocity,
which is a maximum speed of acceleration caused by external factors such as
atmosphere and wind

Gravity: “Real” vs “Good Enough”

Gravitational force experienced by two objects is calculated by:

F = G*(mass1*mass2)/distance

G is the constant of universal gravitation

distance is the distance between the centers of two objects

• Will almost never need to apply this realistic treatment of gravity to your games...

• (see Real Gravity.fla and good enough.fla)

• With GE gravity, the trick is simply to come up with a value for gravity and
add that value to your y velocity in every frame.

(see bounce.fla)

var ymov:Number = 0;

var gravity:Number = 2; // set gravity

_root.onEnterFrame = function(){
 ymov += gravity;

ball._y += ymov;
if (ball._y>400){

ball._y = 400;
ymov *= -1; reverse the velocity

}
}

Real Friction vs Good Enough Friction:

Friction is the force that opposes the direction of motion and is caused by the interaction
of two materials.

Sliding Friction = F = u*mass*gravity

Mass*gravity = weight of the object

Mass1

Mass2 F

-F

u = frictional coefficient = numerical value between 0 and 1 that is different for each
object-object interaction

To Apply Friction:

1. Find the acceleration due to friction (accel = u*gravity)

2. Apply the accel value to the velocity in every frame until velocity reaches 0

(See roll.fla)

Good Enough Friction:

• The difference between real and “good enough” friction is really not worth coding
for our purposes.

• “Real” friction decreases a velocity linearly whereas “GE” decreases it by a
percentage of the current velocity (nonlinearly)

To Apply “GEF”:

1. Choose a number between 0 and 1. Call it decay.

2. Multiply the decay by the velocity in every frame

(see roll2.fla)

var xmov:Number = 10;
var decay:Number = .95;

_root.onEnterFrame = function(){

xmov *= decay;
ball.-_x += xmov;

}

