
CGT 456
Arrays

Declaring – Single Dimension
 private int[] x;

 private int[] numbers; //declare numbers as an int array of any size

 private string[] words; //declare words as a string array of any size

 private dog[] myDog; //declare myDog as a dog array of any size

Creating a new instance
 After you declare the array, you can specify the size:

 numbers = new int[7]; //numbers is a 7-element array
 numbers = new int[15]; //now it's a 15-element array

 words = new string[5]; //words is a 5-element array
 words = new string[20]; //now it’s a 20-element array

 myDog = new dog[3]; //myDog is an array of 3 dogs
 myDog = new dog[30]; //now it’s a 30-element array

Initializing
 int[] numbers = new int[5] {1, 2, 3, 4, 5};

 string[] words = new string[3] {"Bottle", "Cup", "Art"};

 // dog is a little more involved
 private dog doggie1, doggie2;

…

 dog doggie1 = new dog();
 dog doggie2 = new dog();

 dog[] myDog = new dog[2] {doggie1, doggie2};

Retrieving values from array
 numbers[2] //accesses the 3rd element of the array
 words[0] //accesses the 1st element of the array
 myDog[5] //accesses the 6th element of the array

 numbers[3] = 5;
 //sets the 4th element equal to the number 5

 words[1] = “aardvark”;
 //sets the 2nd element equal to “aardvark”

 myDog[2] = doggie1;
 //sets the 3rd element equal to the dog object: doggie1

Length of an array
 int lengthOfNums, lengthOfWords, lengthOfDog;

 lengthOfNums = numbers.Length;
 lengthOfWords = words.Length;
 lengthOfDog = myDog.Length;

Length of an array

 for(int i=0; i < words.Length; i++)
{

Response.Write(words[i].ToString());
}

Alternately – using foreach

 foreach(int i in words)
{

Response.Write(i);
}

Declaring – Two Dimensional
 private int[,] x;

 private int[,] counters;
 //declare counters as a 2-dimensional int array of any size

 private string[,] names;
 //declare names as a 2-dimensional string array of any size

 private cat[,] kittens;
 //declare kittens as a 2-dimensional cat array of any size

Creating a new instance
 After you declare the array, you can specify the size:

 counters = new int[7,7]; //counters has 7 rows and 7 cols
 counters = new int[3,7]; //now it has 3 rows and 7 cols

 names = new string[5,4]; //names has 5 rows and 4 cols
 names = new string[2,2]; //now it has 2 rows and 2 cols

 kittens = new cat[3,3]; //kittens has 3 rows and 3 cols
 kittens = new cat[9,9]; //now it has 9 rows and 9 cols

Initializing (3 ways to do the same thing)
 int[,] counters = new int[2,3] {{1, 2, 3},

{4, 5, 6}
};

 OR
 int[,] counters = new int[,] {{1, 2, 3},

{4, 5, 6}
};

 OR
 int[,] counters = {{1, 2, 3},

{4, 5, 6}
};

Initializing (3 ways to do the same thing)
 string[,] names = new string[3,2]{{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

 OR
 string[,] names = new string[,] {{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

 OR
 string[,] names = {{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

Initializing (3 ways to do the same thing)
 //cat is a little more involved

 private cat kitten1, kitten2, kitten3, kitten4;
…

 cat kitten1 = new cat();
 cat kitten2 = new cat();
 cat kitten3 = new cat();
 cat kitten4 = new cat();

 //continued on next slide…

Initializing (3 ways to do the same thing)
 //continued from previous slide…
 cat[,] litter = new cat[2,2] {{kitten1, kitten2},

{kitten3, kitten4}
};

 OR
 cat[,] litter = new cat[,] {{kitten1, kitten2},

{kitten3, kitten4}
};

 OR
 cat[,] litter = {{kitten1, kitten2},

{kitten3, kitten4}
};

Declare & Initialize a 9x9 int array
private int[,] solution1 = { {7,9,2,3,5,1,8,4,6},

{4,6,8,9,2,7,5,1,3},
{1,3,5,6,8,4,7,9,2},
{6,2,1,5,7,9,4,3,8},
{5,8,3,2,4,6,1,7,9},
{9,7,4,8,1,3,2,6,5},
{8,1,6,4,9,2,3,5,7},
{3,5,7,1,6,8,9,2,4},
{2,4,9,7,3,5,6,8,1}

};

Retrieving values from array
 counters[0,2]

 //accesses the integer in the 1st row, 3rd column of the array
 names[1,0]

 //accesses the string in the 2nd row, 1st column of the array
 cat[5,4]

 //accesses the cat object in the 6th row, 5th column of the array

 counters[3,1] = 5;
 //sets the integer in the 4th row, 2nd column of the array equal to the number 5

 names[1,3] = “Harry”;
 //sets the string in the 2nd row, 4th column of the array equal to “Harry”

 cat[0,1] = kitten1;
 //sets the cat object in the 1st row, 2nd column equal to the cat object: kitten1

Length of a 2-dimensional array
 int[,] solution = { {1,2,3,4},

{5,6,7,8},
{9,10,11,12}

};

 Response.Write(solution.Length);

 //writes out: 12
 //there are 12 values in the array

for loop for a 2-dimensional array
//rows
for (int i = 0; i < 3; i++)
{

//cols
for (int k = 0; k < 4; k++)
{

//check for last array item-don't put comma after last one
if(((i+1) * (k+1)) == solution.Length)

Response.Write(solution[i,k].ToString());
else

Response.Write(solution[i,k].ToString() + ", ");

} //end inner for loop
} //end outer for loop

//writes out: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

More Advanced…
 3-dimensional array:
 int[,,] items = new int[3,4,5];

 Jagged array:
 int[][] numbers = {new int[]{1,2,3},

new int[]{4,5,6,7,8,9} };

 There are others…

