
CGT 456 Lecture 2
Programming Basics

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

1

Resources
 MSDN Library:

h // d i f / /lib http://msdn.microsoft.com/en-us/library

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

2

Visual Programming Concepts
 Controls

Pl d h f Placed on the form
 Every item you place on the form is called a

Control
 Likewise, because you are placing an item, a , y p g ,

thing, on the form, it is called an Object
 Each control, or object, has methods and properties, j , p p

 Methods perform actions
 Properties contain data about the object

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

3

Variable
 An identifier (usually a letter, word, or

phrase) that is linked to a al e stored in thephrase) that is linked to a value stored in the
system's memory or an expression that can be
evaluated

 A symbolic name associated with a value and A symbolic name associated with a value and
whose associated value may be changed
E l Example:
 numResults is a variable that contains a number

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

4

Naming Conventions
 Variable names shall describe their use, shall be in

mixed case with an initial upper case character for pp
each word, and shall have 'Hungarian' prefixes that
describe their type and scope. Abbreviations shall be
avoided, but where they are used they are to be used
consistently throughout the entire application

 Hungarian prefixes not only identify the type of a
variable but also have the advantage of avoiding

f i b t i bl d f ti th dconfusion between variables and functions, methods
or properties

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

5

Naming Conventions (cont.)
 Example names:

lblAdd (L b l l) lblAddress (a Label control)
 tbAddress (a TextBox control)
 pnlBusinessCard (a Panel control)
 frmMain (a Form control) frmMain (a Form control)
 picBackground (a PictureBox control)

bt R tG (B tt t l) btnResetGame (a Button control)

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

6

Naming Conventions (cont.)
 When confronted with the need for a new name in a program,

a good programmer will generally consider the following
factors to reach a decision:
 Mnemonic value—so that the programmer can remember the name.
 Suggestive value—so that others can read the code Suggestive value so that others can read the code.
 "Consistency"—this is often viewed as an aesthetic idea, yet it also

has to do with the information efficiency of the program text.
Roughly speaking we want similar names for similar quantitiesRoughly speaking, we want similar names for similar quantities.

 Speed of the decision—we cannot spend too much time pondering the
name of a single quantity, nor is there time for typing and editing
extremely long variable namesextremely long variable names.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

7

Naming Conventions (cont.)
 Camel Casing

l i (d F T) f use camel casing (documentFormatType) for
variable names, where the first letter of each word

h fi i i li dexcept the first is capitalized.

 Pascal Casing
 use Pascal casing (CalculateInvoiceTotal) for use Pascal casing (CalculateInvoiceTotal) for

routine names (method names, function names)
where the first letter of each word is capitalized

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

8

where the first letter of each word is capitalized.

Comments
 The best programmers also document their

ork ellwork well.
 The easiest programs to read are those that are

well commented.
 The purpose of a comment is to explain the The purpose of a comment is to explain the

code to a person who is reading it.
 Comments are important to a programmer, but

the program itself ignores them.
1/12/2010 CGT 456

Copyright © 2009 Ronald J. Glotzbach
9

p g g

Comments
 A single line comment begins with //

//this is a comment//this is a comment
 Everything that follows the // on that one line

is a comment.
 It is common to place comments after short It is common to place comments after short

statements:
i // h b f dint counter; //count the number of records

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

10

Comments
 A multi-line comment begins with /* and ends

ith */with */

/* this is a multi-line comment
you can write as much as you want.y y
you can comment out an entire program.
then end the comment with */then end the comment with /

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

11

Bookend Comments
 ///

// GenerateInventory Functiony
///
public void GenerateInventory()
{

//do something
}}
///
// End GenerateInventory Function// End GenerateInventory Function
///

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

12

Ending Comments
 public void GenerateInventory()

{
while(…)
{

if()if(…)
{

…
} //end if

} //end while
} //end GenerateInventory

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

13

Good Programming Practice 3.6
 Following the closing right brace of a method

bod or class declaration ith a commentbody or class declaration with a comment
indicating the method or class declaration to
which the brace belongs improves application
readability.y

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

14

When to use comments
 Beginning of a program

D ib h h i d h i d Describe what the program is and what it does
 Include the author of the program and the date

 You might include the date of original authorship
along with modification dates – especially include the
l difi i dlast modification date

 Within the program
 Our rule of thumb is: one line of comment for

every line of code
1/12/2010 CGT 456

Copyright © 2009 Ronald J. Glotzbach
15

eve y e o code

Declaration
 To define the name and data type of a variable

or other programming constr ctor other programming construct.
 Declaring a variable is the process of

allocating space in memory to store some data
in.in.

 Variables must be declared before you can
huse them.

 This restriction is called strictly typed
1/12/2010 CGT 456

Copyright © 2009 Ronald J. Glotzbach
16

Data Types
 There are several simple types that can be used to declare

variables. Here are some of the most common:
i t int

 string
 bool
 decimal
 float
 double
 byte
 long
 shortshort
 char
 We’ll discuss declaring objects later…

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

17

Declaration (cont.)
 int myInt; //declares an integer; precision: 32-bit

 -2,147,483,648 to 2,147,483,647
 short myShortInt; //an integer; precision: 16-bit

 -32,768 to 32,767
 long myLongInt; //an integer; precision: 64-bit

 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
 byte myByte; //declares an integer byte; precision: 0 to 255y y y ; // g y ; p
 string sName; //declares a string (text)
 char chrLetter; //declares a character – holds a single letter
 bool flag; //declares a boolean (true or false)
 float fP od ct //floating point/decimal n mbe p ecision 7 digits float fProduct; //floating point/decimal number; precision: 7 digits
 double dblMyNum; //a decimal number; precision: 15-16 digits
 decimal decGrade; //decimal number; precision: 28-29 significant digits

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

18

Good Programming Practice 3.8
 Declare each variable on a separate line.

hi f ll b il This format allows a comment to be easily
inserted next to each declaration.

 i t R lt //t t l b f lt int numResults; //total number of results

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

19

Assignment Operator (=)
 Assigns the value on the right into the

location on the leftlocation on the left

 lblAddress.Text = “401 N. Grant St.”;
 Th t i f i f ti b k The two pieces of information above are known

as operands…. operand 1 = operand 2

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

20

Assignment Operator (=)
 int counter; //declares a variable named counter

 counter = 0; //initializes the variable, counter, to be equal to zero

 counter = counter + 1; // adds 1 to counter. counter now equals 1

 counter = counter + 1; // adds 1 to counter. counter now equals 2

 counter = counter + 1; // adds 1 to counter. counter now equals 3

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

21

Initialization (and assignment)
 To assign a starting value to a variable.

 myInt = 1000000000; myInt = 1000000000;
 myShortInt = 10000;
 myLongInt = 1000000000000;
 myByte = 210;
 sName = “Ronald J. Glotzbach”;
 chrLetter = ‘a’; //note the use of single quotes; g q
 flag = true;
 fProduct = 3.5F; //the f/F is needed to specify float
 dblM N 7 6 //f i t dblM N 3D dblMyNum = 7.6; //for int: dblMyNum = 3D;
 decGrade = 300.5m; //the m/M is needed to specify decimal

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

22

Good Programming Practice
 Always line up your equal signs, as

demonstrated on the pre io s slidedemonstrated on the previous slide.

 Always line up your comments, as
demonstrated on the previous slidedemonstrated on the previous slide.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

23

Storage Size / Memory Allocation
int

long

short

byte

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

24

Dot operator (dot notation)
 The dot operator is a period (.) that appears

bet een t o ords or phrasesbetween two words or phrases.
 It can often be read as: the item on the right

‘belongs to’ the item on the left
 For example For example
 tbAddress.Text is accessing the Text property of

h bj bAddthe object tbAddress
 Text belongs to the tbAddress object

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

25

Initializing form values
 lblCardName.Text = "";
 lblCardTitle.Text = ""; lblCardTitle.Text ;
 lblCardAddress.Text = "";

 Or
 lblCardName Text = “Ronald J Glotzbach”; lblCardName.Text Ronald J. Glotzbach ;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

26

Initializing form values
lblCardName.Text = “Ronald J. Glotzbach”;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

27

Numeric Literal
 myInt = 1000000000;
 myByte = 210;
 dblMyNum = 7.6;

 Any number that you, yourself, write by hand
is called a numeric literal.

 This is also considered ‘hard coding’ a
n mber beca se the al e is not generatednumber, because the value is not generated
dynamically

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

28

Memory Locations

int number1;
int number2;
int sum;

number1=45;
b 2 72number2=72;

sum = number1+number2;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

29

Memory Allocation

b 1number1

number2

sum

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

30

Text Literal
 lblAddress.Text = “401 N. Grant St.”;
 tbName Te t “Ronald J Glot bach”; tbName.Text = “Ronald J. Glotzbach”;
 pictureBox1.ImageLocation = “kitten.jpg”;

 Any text that you, yourself, write by hand and put in
i k i ll d li lquotation marks is called a text literal.

 This is also considered ‘hard coding’ text because
the value is not generated dynamically

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

31

Empty String
 “”
 When initiali ing strings or empt ing strings o When initializing strings or emptying strings, you

often initialize using the empty string
lblAdd T t “” lblAddress.Text = “”;

 title = “”;
h “” phone = “”;

 This removes any text from the property/variable so
that it is empty

 The empty string is a text literal
1/12/2010 CGT 456

Copyright © 2009 Ronald J. Glotzbach
32

p y g

Clearing a TextBox
 A TextBox is special in that there are two ways to

clear it Both ways perform the same actionclear it. Both ways perform the same action.

 TextBox myTextBox; TextBox myTextBox;
myTextBox.Text = “something”;

 The first way: The first way:
 myTextBox.Text = “”; //empty string

 Th d The second way:
 myTextBox.Clear(); //call the clear method

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

33

Concatenation
 Concatenation is performed using the +
 string greeting = “” string greeting
 greeting = “hello.” + “how are you?”;

 greeting now contains: “hello how are you?” greeting now contains: hello.how are you?
 string part1 = “Hey!”;
 t i t2 “H d i ?” string part2 = “How are you doing?”;
 string space = “ ”;
 greeting = part1 + space + part2;

 greeting now contains: “Hey! How are you doing?”

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

34

ToString()
 Access the actual text value of an object, property or

variable by adding ToString() to the end of itvariable by adding .ToString() to the end of it.
 string address;
 string city; string city;

 address = tbAddress.Text.ToString(); address tbAddress.Text.ToString();
 city = tbCity.Text.ToString();

 lblCardAddress.Text = address.ToString();
 lblCardCity.Text = city.ToString();

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

35

y y g();

Event Handlers
 When you click someplace on the form, an

e ent happensevent happens.
 These events are handled by event handlers

private void pictureBox1_Click(object sender, EventArgs e)
{

//do something
}}

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

36

Event Handlers (cont.)
 An event handler can be

added through the visualadded through the visual
interface.

 Make sure the lightning bolt Make sure the lightning bolt
is selected in the Properties
boxbox.

 Simply double click in the
hi h i h fwhite space to the right of

the word Click.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

37

Event Handlers (cont.)
 private void ClearBusinessCard(object sender, EventArgs e)

{{
//do something

}

 All event handlers will have (object sender, EventArgs e)
 object sender refers to the actual object (control) on the form that

triggered the event
 EventArgs e refers to any arguments that were passed from the EventArgs e refers to any arguments that were passed from the

control when the event was triggered
 We will learn more about these later…

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

38

Arithmetic Operators
Operation Arithmetic Operator C# Expression

Addition + f + 7

Subtraction - p – c

M lti li ti * b *Multiplication * b * m

Division / x / yDivision / x / y

Remainder % r % s
1/12/2010 CGT 456

Copyright © 2009 Ronald J. Glotzbach
39

Order of operation
Operators Operations Order of evaluation
Evaluated FirstEvaluated First

* Multiplication If there are several operators of
this type they are evaluated fromthis type, they are evaluated from
left to right./ Division

% Remainder

Evaluated Next

+ Addition If there are several operators of
this type, they are evaluated from
left to right.- Subtraction

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

40

g

Proper use of parentheses
 To make sure arithmetic operations execute in

the order o intend them to se parenthesesthe order you intend them to, use parentheses

 a * (b + c)
 ((a + b) * c) ((a + b) c)

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

41

Relational operators
Standard algebraic
equality and

l i l

C# equality or
relational

Sample C#
condition

Meaning of C# condition

relational operators operator
Equality operators

i l= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

42

y g q y

≤ <= x <= y x is less than or equal to y

Precedence and Associativity
Operators Associativity Type

* / % left to right multiplicative

l f i h ddi i+ - left to right additive

< <= > >= left to right relational< < > > left to right relational

== != left to right equalityg q y

= right to left assignment

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

43

Increment & Decrement Operators
 Pre-increment

 ++a;

 Increment a by 1 then use the new
value of a in the expression in which
a resides ++a;

 Post-increment

 a++;

a resides.

 Use the current value of a in the

expression in which a resides then a++;

 Pre-decrement

expression in which a resides, then
increment a by 1.

 Decrement b by 1 then use the new

 --b;

 Decrement b by 1 then use the new
value of b in the expression in which
b resides.

 Post-decrement

 b--;
 Use the current value of b in the

expression in which b resides, then
decrement b by 1.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

44

Post-increment example
 int versionNum;

i versionNum = 0;

 versionNum++;
i this the same as

versionNum = versionNum + 1;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

45

Post-decrement example
 int versionNum;

i versionNum = 10;

 versionNum--;
i this the same as

versionNum = versionNum - 1;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

46

Important Note
 In C#

 If you use ++ or alone on a line like this: If you use ++ or -- alone on a line like this:
 a++;
 You will not see a difference between a++ or ++a
 This applies to for loops as well (pre and post act the same)

 However, if you use ++ or -- in an equation like:
 a = x++;
 a = ++x;

h ill diff b h Then you will see a difference between the two.

 Show IncrementDecrement application

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

47

Increment & Decrement Operators
 Be mindful of where you use

pre/post increment/decrement operatorspre/post - increment/decrement operators.
Using one in the wrong location can have
unintended consequences.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

48

Escape Sequences
 The backslash \ is called an escape character
 It indicates to the program that there is a special It indicates to the program that there is a special

character in the string.
 When a \ appears it combines with the next When a \ appears, it combines with the next

character to form an escape sequence
 \r carriage return (needed for Windows Forms)\r carriage return (needed for Windows Forms)
 \n new line (needed for console applications)
 \t Horizontal tab
 \\ backslash (inserts a backslash into the string)
 \” double quote

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

49

Escape Sequences
tbAddress.Text = “401 N. Grant \r Knoy 319 \r”;

In the textbox, prints:In the textbox, prints:
401 N. Grant
Knoy 319

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

50

Escape Sequences
 You might want to ensure that your program works

correctly in both a console app and a windows formcorrectly in both a console app and a windows form…
so you could add both a \r and a \n

tbAddress.Text = “401 N. Grant \r\n Knoy 319 \r\n”;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

51

Escaping a drive path
 string fileLocation = “”;

fil i \\i b\\ \\ fileLocation = “C:\\inetpub\\wwwroot\\”;
 Produces: Produces:
 C:\inetpub\wwwroot\

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

52

Convert class
 A number stored in a textbox is stored as text, not as a

number Therefore you must convert the text to anumber. Therefore, you must convert the text to a
number before storing it into a strongly typed variable.

 int versionNum;
 versionNum Convert ToInt32(tbVersionNum Text ToString()); versionNum = Convert.ToInt32(tbVersionNum.Text.ToString());

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

53

Convert class
 The Convert class holds many types of conversions to help

you change types. To list a few:
 ToInt16()
 ToInt32()
 ToInt64() ToInt64()
 ToBoolean()
 ToByte()
 ToChar()
 ToDecimal()
 ToDouble() ToDouble()
 ToDateTime()
 …and several more…

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

54

