
1

CGT 456 Lecture 2

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

1

Programming Basics

Resources
 MSDN Library:
 http://msdn.microsoft.com/en-us/library

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

2

Visual Programming Concepts
 Controls
 Placed on the form

 Every item you place on the form is called a

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

3

Control

 Likewise, because you are placing an item, a
thing, on the form, it is called an Object
 Each control, or object, has methods and properties

 Methods perform actions

 Properties contain data about the object

Variable
 An identifier (usually a letter, word, or

phrase) that is linked to a value stored in the
system's memory or an expression that can be

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

4

evaluated

 A symbolic name associated with a value and
whose associated value may be changed

 Example:
 numResults is a variable that contains a number

Naming Conventions
 Variable names shall describe their use, shall be in

mixed case with an initial upper case character for
each word, and shall have 'Hungarian' prefixes that
describe their type and scope. Abbreviations shall be

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

5

avoided, but where they are used they are to be used
consistently throughout the entire application

 Hungarian prefixes not only identify the type of a
variable but also have the advantage of avoiding
confusion between variables and functions, methods
or properties

Naming Conventions (cont.)
 Example names:
 lblAddress (a Label control)

 tbAddress (a TextBox control)

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

6

 pnlBusinessCard (a Panel control)

 frmMain (a Form control)

 picBackground (a PictureBox control)

 btnResetGame (a Button control)

2

Naming Conventions (cont.)
 When confronted with the need for a new name in a program,

a good programmer will generally consider the following
factors to reach a decision:
 Mnemonic value—so that the programmer can remember the name.
 Suggestive value—so that others can read the code

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

7

 Suggestive value so that others can read the code.
 "Consistency"—this is often viewed as an aesthetic idea, yet it also

has to do with the information efficiency of the program text.
Roughly speaking, we want similar names for similar quantities.

 Speed of the decision—we cannot spend too much time pondering the
name of a single quantity, nor is there time for typing and editing
extremely long variable names.

Naming Conventions (cont.)
 Camel Casing
 use camel casing (documentFormatType) for

variable names, where the first letter of each word
h fi i i li d

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

8

except the first is capitalized.

 Pascal Casing
 use Pascal casing (CalculateInvoiceTotal) for

routine names (method names, function names)
where the first letter of each word is capitalized.

Comments
 The best programmers also document their

work well.

 The easiest programs to read are those that are

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

9

well commented.

 The purpose of a comment is to explain the
code to a person who is reading it.

 Comments are important to a programmer, but
the program itself ignores them.

Comments
 A single line comment begins with //

//this is a comment

 Everything that follows the // on that one line

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

10

is a comment.

 It is common to place comments after short
statements:
int counter; //count the number of records

Comments
 A multi-line comment begins with /* and ends

with */

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

11

/* this is a multi-line comment
you can write as much as you want.
you can comment out an entire program.
then end the comment with */

Bookend Comments
 ///

// GenerateInventory Function
///
public void GenerateInventory()

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

12

{
//do something

}
///
// End GenerateInventory Function
///

3

Ending Comments
 public void GenerateInventory()

{
while(…)
{

if()

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

13

if(…)
{

…
} //end if

} //end while
} //end GenerateInventory

Good Programming Practice 3.6
 Following the closing right brace of a method

body or class declaration with a comment
indicating the method or class declaration to

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

14

which the brace belongs improves application
readability.

When to use comments
 Beginning of a program
 Describe what the program is and what it does

 Include the author of the program and the date

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

15

 You might include the date of original authorship
along with modification dates – especially include the
last modification date

 Within the program
 Our rule of thumb is: one line of comment for

every line of code

Declaration
 To define the name and data type of a variable

or other programming construct.

 Declaring a variable is the process of

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

16

allocating space in memory to store some data
in.

 Variables must be declared before you can
use them.
 This restriction is called strictly typed

Data Types
 There are several simple types that can be used to declare

variables. Here are some of the most common:
 int
 string
 bool

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

17

 decimal
 float
 double
 byte
 long
 short
 char
 We’ll discuss declaring objects later…

Declaration (cont.)
 int myInt; //declares an integer; precision: 32-bit

 -2,147,483,648 to 2,147,483,647
 short myShortInt; //an integer; precision: 16-bit

 -32,768 to 32,767
 long myLongInt; //an integer; precision: 64-bit

 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
 byte myByte; //declares an integer byte; precision: 0 to 255

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

18

y y y ; // g y ; p
 string sName; //declares a string (text)
 char chrLetter; //declares a character – holds a single letter
 bool flag; //declares a boolean (true or false)
 float fProduct; //floating point/decimal number; precision: 7 digits
 double dblMyNum; //a decimal number; precision: 15-16 digits
 decimal decGrade; //decimal number; precision: 28-29 significant digits

4

Good Programming Practice 3.8
 Declare each variable on a separate line.

 This format allows a comment to be easily
inserted next to each declaration.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

19

 int numResults; //total number of results

Assignment Operator (=)
 Assigns the value on the right into the

location on the left

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

20

 lblAddress.Text = “401 N. Grant St.”;
 The two pieces of information above are known

as operands…. operand 1 = operand 2

Assignment Operator (=)
 int counter; //declares a variable named counter

 counter = 0; //initializes the variable, counter, to be equal to zero

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

21

 counter = counter + 1; // adds 1 to counter. counter now equals 1

 counter = counter + 1; // adds 1 to counter. counter now equals 2

 counter = counter + 1; // adds 1 to counter. counter now equals 3

Initialization (and assignment)
 To assign a starting value to a variable.

 myInt = 1000000000;

 myShortInt = 10000;

 myLongInt = 1000000000000;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

22

 myByte = 210;

 sName = “Ronald J. Glotzbach”;

 chrLetter = ‘a’; //note the use of single quotes

 flag = true;

 fProduct = 3.5F; //the f/F is needed to specify float

 dblMyNum = 7.6; //for int: dblMyNum = 3D;

 decGrade = 300.5m; //the m/M is needed to specify decimal

Good Programming Practice
 Always line up your equal signs, as

demonstrated on the previous slide.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

23

 Always line up your comments, as
demonstrated on the previous slide.

Storage Size / Memory Allocation

long

int

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

24

short

byte

5

Dot operator (dot notation)
 The dot operator is a period (.) that appears

between two words or phrases.

 It can often be read as: the item on the right

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

25

‘belongs to’ the item on the left

 For example
 tbAddress.Text is accessing the Text property of

the object tbAddress
 Text belongs to the tbAddress object

Initializing form values
 lblCardName.Text = "";

 lblCardTitle.Text = "";

 lblCardAddress.Text = "";

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

26

 Or

 lblCardName.Text = “Ronald J. Glotzbach”;

Initializing form values
lblCardName.Text = “Ronald J. Glotzbach”;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

27

Numeric Literal
 myInt = 1000000000;

 myByte = 210;

 dblMyNum = 7.6;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

28

 Any number that you, yourself, write by hand
is called a numeric literal.

 This is also considered ‘hard coding’ a
number, because the value is not generated
dynamically

Memory Locations

int number1;
int number2;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

29

int sum;

number1=45;
number2=72;

sum = number1+number2;

Memory Allocation

b 1

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

30

number1

number2

sum

6

Text Literal
 lblAddress.Text = “401 N. Grant St.”;

 tbName.Text = “Ronald J. Glotzbach”;

 pictureBox1.ImageLocation = “kitten.jpg”;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

31

 Any text that you, yourself, write by hand and put in
quotation marks is called a text literal.

 This is also considered ‘hard coding’ text because
the value is not generated dynamically

Empty String
 “”

 When initializing strings or emptying strings, you
often initialize using the empty string

lblAdd T t “”

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

32

 lblAddress.Text = “”;

 title = “”;

 phone = “”;

 This removes any text from the property/variable so
that it is empty

 The empty string is a text literal

Clearing a TextBox
 A TextBox is special in that there are two ways to

clear it. Both ways perform the same action.

 TextBox myTextBox;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

33

 TextBox myTextBox;
myTextBox.Text = “something”;

 The first way:
 myTextBox.Text = “”; //empty string

 The second way:
 myTextBox.Clear(); //call the clear method

Concatenation
 Concatenation is performed using the +
 string greeting = “”
 greeting = “hello.” + “how are you?”;

 greeting now contains: “hello how are you?”

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

34

 greeting now contains: hello.how are you?

 string part1 = “Hey!”;
 string part2 = “How are you doing?”;
 string space = “ ”;
 greeting = part1 + space + part2;

 greeting now contains: “Hey! How are you doing?”

ToString()
 Access the actual text value of an object, property or

variable by adding .ToString() to the end of it.
 string address;

 string city;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

35

 string city;

 address = tbAddress.Text.ToString();

 city = tbCity.Text.ToString();

 lblCardAddress.Text = address.ToString();

 lblCardCity.Text = city.ToString();

Event Handlers
 When you click someplace on the form, an

event happens.

 These events are handled by event handlers

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

36

private void pictureBox1_Click(object sender, EventArgs e)
{

//do something
}

7

Event Handlers (cont.)
 An event handler can be

added through the visual
interface.

 Make sure the lightning bolt

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

37

 Make sure the lightning bolt
is selected in the Properties
box.

 Simply double click in the
white space to the right of
the word Click.

Event Handlers (cont.)
 private void ClearBusinessCard(object sender, EventArgs e)

{
//do something

}

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

38

 All event handlers will have (object sender, EventArgs e)
 object sender refers to the actual object (control) on the form that

triggered the event

 EventArgs e refers to any arguments that were passed from the
control when the event was triggered

 We will learn more about these later…

Arithmetic Operators

Operation Arithmetic Operator C# Expression

Addition + f + 7

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

39

Subtraction - p – c

Multiplication * b * m

Division / x / y

Remainder % r % s

Order of operation
Operators Operations Order of evaluation
Evaluated First

* Multiplication If there are several operators of
this type they are evaluated from

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

40

this type, they are evaluated from
left to right./ Division

% Remainder

Evaluated Next

+ Addition If there are several operators of
this type, they are evaluated from
left to right.- Subtraction

Proper use of parentheses
 To make sure arithmetic operations execute in

the order you intend them to, use parentheses

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

41

 a * (b + c)

 ((a + b) * c)

Relational operators
Standard algebraic
equality and
relational operators

C# equality or
relational
operator

Sample C#
condition

Meaning of C# condition

Equality operators

i l

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

42

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

8

Precedence and Associativity
Operators Associativity Type

* / % left to right multiplicative

l f i h ddi i

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

43

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Increment & Decrement Operators

 Pre-increment

 ++a;

 Post-increment

 a++;

 Increment a by 1 then use the new
value of a in the expression in which
a resides.

 Use the current value of a in the
expression in which a resides then

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

44

 a++;

 Pre-decrement

 --b;

 Post-decrement

 b--;

expression in which a resides, then
increment a by 1.

 Decrement b by 1 then use the new
value of b in the expression in which
b resides.

 Use the current value of b in the
expression in which b resides, then
decrement b by 1.

Post-increment example
 int versionNum;

 versionNum = 0;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

45

 versionNum++;
is the same as

versionNum = versionNum + 1;

Post-decrement example
 int versionNum;

 versionNum = 10;

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

46

 versionNum--;
is the same as

versionNum = versionNum - 1;

Important Note
 In C#

 If you use ++ or -- alone on a line like this:
 a++;

 You will not see a difference between a++ or ++a

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

47

 This applies to for loops as well (pre and post act the same)

 However, if you use ++ or -- in an equation like:
 a = x++;

 a = ++x;

 Then you will see a difference between the two.

 Show IncrementDecrement application

Increment & Decrement Operators
 Be mindful of where you use

pre/post - increment/decrement operators.
Using one in the wrong location can have

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

48

unintended consequences.

9

Escape Sequences
 The backslash \ is called an escape character
 It indicates to the program that there is a special

character in the string.
 When a \ appears it combines with the next

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

49

 When a \ appears, it combines with the next
character to form an escape sequence
 \r carriage return (needed for Windows Forms)
 \n new line (needed for console applications)
 \t Horizontal tab
 \\ backslash (inserts a backslash into the string)
 \” double quote

Escape Sequences
tbAddress.Text = “401 N. Grant \r Knoy 319 \r”;

In the textbox, prints:

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

50

In the textbox, prints:

401 N. Grant

Knoy 319

Escape Sequences
 You might want to ensure that your program works

correctly in both a console app and a windows form…
so you could add both a \r and a \n

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

51

tbAddress.Text = “401 N. Grant \r\n Knoy 319 \r\n”;

Escaping a drive path
 string fileLocation = “”;

 fileLocation = “C:\\inetpub\\wwwroot\\”;

 Produces:

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

52

 Produces:
 C:\inetpub\wwwroot\

Convert class
 A number stored in a textbox is stored as text, not as a

number. Therefore, you must convert the text to a
number before storing it into a strongly typed variable.

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

53

 int versionNum;

 versionNum = Convert.ToInt32(tbVersionNum.Text.ToString());

Convert class
 The Convert class holds many types of conversions to help

you change types. To list a few:
 ToInt16()
 ToInt32()
 ToInt64()

1/12/2010 CGT 456
Copyright © 2009 Ronald J. Glotzbach

54

 ToInt64()
 ToBoolean()
 ToByte()
 ToChar()
 ToDecimal()
 ToDouble()
 ToDateTime()
 …and several more…

