
CGT 456

Access Modifiers
Logic

Access Modifiers

 private

 protected

 public

Access Modifiers: private

 A class’s private variables and
methods are not directly accessible
to the class’s clients. They are not
accessible outside the class.

Access Modifiers: protected

 Using protected access offers an
intermediate level of access
between public and private.

 A base class’s protected members
can be accessed by members of
that base class and by members of
it’s derived classes.

Access Modifiers: public

 The primary purpose of public
methods is to present to the class’s
clients a view of the services the class
provides (the class’s public interface).

 Clients of the class need not be
concerned with how the class
accomplishes its tasks.

 public members are accessible
wherever the application has a
reference to an object of that class or
one of its derived classes.

Access Modifiers (cont.)

 Note that members of a class – for
instance, methods and instance
variables – do not need to be
explicitly declared private.

 If a class member is not declared
with and access modifier, it has
private access by default.

Logic

 ALU
 Arithmetic Logic Unit

 The brawn of the computer, the device
that performs the arithmetic operations
like addition and subtraction or logical
operations like AND and OR.

Logic

 Objectives
 Calculate the decimal (base 10)

numeric value of an 8-bit binary
number (base 2).

 Learn to both Logical AND two binary
numbers together, as well as, Logical
OR two binary numbers together.

 Learn to Bitwise AND, as well as,
Bitwise OR two 8-bit binary numbers
together.

 Learn to use AND and OR gates.

AND Gate (c = a * b)

a b c=a*b
0 0 0
0 1 0
1 0 0
1 1 1

a

b
c

OR Gate (c=a+b)

a b c=a+b
0 0 0
0 1 1
1 0 1
1 1 1

a

b
c

NOT Gate (c=ā)

a c=ā
0 1
1 0

a c

Binary Numbers

 Binary numbers are made up of 0
and 1.

 An example of a binary number
would look like: 10010111
 This is an example of an 8-bit binary

number.
 A 16-bit binary number would look like:

1001001011011001

How do we calculate it?

Binary numbers

 Binary Number
 10000000 =
 10000001 =
 00000000 =
 00000001 =
 00000010 =
 00000011 =
 00000100 =
 00000101 =
 11111111 =

 Thus, 0 to 255 offers 256 values within an 8-bit
binary number.

Decimal Value
128
129
0
1
2
3
4
5
255

