
CGT 456

Access Modifiers
Logic

Access Modifiers

 private

 protected

 public

Access Modifiers: private

 A class’s private variables and
methods are not directly accessible
to the class’s clients. They are not
accessible outside the class.

Access Modifiers: protected

 Using protected access offers an
intermediate level of access
between public and private.

 A base class’s protected members
can be accessed by members of
that base class and by members of
it’s derived classes.

Access Modifiers: public

 The primary purpose of public
methods is to present to the class’s
clients a view of the services the class
provides (the class’s public interface).

 Clients of the class need not be
concerned with how the class
accomplishes its tasks.

 public members are accessible
wherever the application has a
reference to an object of that class or
one of its derived classes.

Access Modifiers (cont.)

 Note that members of a class – for
instance, methods and instance
variables – do not need to be
explicitly declared private.

 If a class member is not declared
with and access modifier, it has
private access by default.

Logic

 ALU
 Arithmetic Logic Unit

 The brawn of the computer, the device
that performs the arithmetic operations
like addition and subtraction or logical
operations like AND and OR.

Logic

 Objectives
 Calculate the decimal (base 10)

numeric value of an 8-bit binary
number (base 2).

 Learn to both Logical AND two binary
numbers together, as well as, Logical
OR two binary numbers together.

 Learn to Bitwise AND, as well as,
Bitwise OR two 8-bit binary numbers
together.

 Learn to use AND and OR gates.

AND Gate (c = a * b)

a b c=a*b
0 0 0
0 1 0
1 0 0
1 1 1

a

b
c

OR Gate (c=a+b)

a b c=a+b
0 0 0
0 1 1
1 0 1
1 1 1

a

b
c

NOT Gate (c=ā)

a c=ā
0 1
1 0

a c

Binary Numbers

 Binary numbers are made up of 0
and 1.

 An example of a binary number
would look like: 10010111
 This is an example of an 8-bit binary

number.
 A 16-bit binary number would look like:

1001001011011001

How do we calculate it?

Binary numbers

 Binary Number
 10000000 =
 10000001 =
 00000000 =
 00000001 =
 00000010 =
 00000011 =
 00000100 =
 00000101 =
 11111111 =

 Thus, 0 to 255 offers 256 values within an 8-bit
binary number.

Decimal Value
128
129
0
1
2
3
4
5
255

