
2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

1

3 Pillars of OOP

CGT 456
Advanced Web Programming, Development, & Database Integration
Lecture 11

Object Oriented Programming
 What is it?

 Object-Orientation is a paradigm for creating software
systems using objects. Objects are tangible and conceptual
things we find in the real world. Using OO, the code is
broken into modular, reusable chunks called classes.
Classes are the "blueprint" for creating instances of
objects. These classes can be used throughout an
application again and again.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

2

Object Oriented Programming
 OO emphasizes creating reusable, robust software in

a way that is easy to understand. By relating
programming to the real world, it becomes much
easier to use. Some of the characteristics of OO are:
 Reusable - faster, modular development
 Robust - increased quality
 Simple - easy maintenance
 Flexible - easy to modify

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

3

Object Oriented Programming
 Concepts Overview
 There are a lot of concepts involved with OO. But

let's just cover the basics for now and maybe this
will help you get a better understanding of OO:

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

4

Object Oriented Programming
 Concepts Overview
 Classes - A generic blueprint used to create

similar objects.
 Encapsulation - Hides object data and

implementation details.
 Inheritance - Allows code reuse by building on

existing classes.
 Polymorphism - Allows objects to assume many

forms.
2/14/2012 CGT 456

Copyright © 2002-Present Ronald J. Glotzbach
5

ENCAPSULATION

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

6

Encapsulation
 Hiding data, but defining properties and

methods to let the caller have access to it.
Protects the state of the object from other
programs and other programs are protected
from changes in implementation.
 get and set methods that access the property, but

you cannot directly access the property itself.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

7

Encapsulation
 Let’s say that we simulate a computer. A computer may have

a method named on() and another method named off(). When
you create an instance of a computer and call its on() method,
you are not worried about what happens to accomplish this,
you just want to make sure that the state of the computer is
changed to ‘running’ afterwards. Instead of manually turning
on the power supply, the fans, the processors, starting the OS,
etc, you simply call the on() method, which takes care of all
of these tasks for you.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

8

Encapsulation
 Another example:

 A contact list
 Contact

 name
 address
 phoneNumber
 getName()
 setName(string cName)
 getAddress()
 setAddress(string address)
 getPhoneNumber()
 setPhoneNumber(string phoneNum)

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

9

Encapsulation

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

10

public class Contact {

 private String phoneNumber;

 public Contact(){
 phoneNumber = "703-567-8860";
 }

 public void setPhoneNumber(String phoneNum){
 phoneNumber = phoneNum;
 }

 public String getPhoneNumber(){
 return phoneNumber.ToString();
 }
 }

Encapsulation
 Another example:

public String CompanyName
{

get { return (String)ViewState["companyName"]; }
set { ViewState["companyName"] = value; }

}

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

11

POLYMORPHISM

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

12

Polymorphism
 Polymorphism by definition means taking

many forms.

 In C# it means the ability for classes to share
the same methods (actions) but implement
them differently.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

13

Polymorphism
 This is the concept where inherited objects "know" what

methods they should use, depending on their position in the
inheritance chain.
 House

 BuildHome()

 TempestHomes
 BuildHome()

 BeazerHomes
 BuildHome()

 PrairieViewHomes
 BuildHome()

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

14

Polymorphism
 A "House" object will know that if it is a

BeazerHomes object, it must call the
BuildHome method in the BeazerHomes class
rather than the one in the House class. You do
not need to know what class an object actually
belongs to in the inheritance chain when you
send it a request.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

15

Polymorphism
 Another example:
 Shape

 draw()

 Rectangle
 draw ()

 Circle
 draw ()

 Polygon
 draw ()

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

16

Polymorphism
 Rectangle.draw() has a different

implementation than Shape.draw() or
Circle.draw(). The same can be said for each
of the other objects.

 Why not have one called square?
 Because a square is just a specific form of a

rectangle.
2/14/2012 CGT 456

Copyright © 2002-Present Ronald J. Glotzbach
17

INHERITANCE

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

18

Inheritance
 The concept of deriving classes from a base

class where the derived class "is a" one of the
base class (e.g. a Manager "is a" Employee).
Inherited classes are always more specialized
than their base (parent) classes, have at least
as many members (although the behavior of
individual members may be different) and
often have new methods that have no
counterpart in the base class.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

19

Inheritance
 All ASP.NET pages should derive (be

created) from System.Web.UI.Page
public class BasePage : System.Web.UI.Page

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

20

Inheritance

 Page2 “is a” BasePage “is a” Page.
 Page3 “is a” BasePage “is a” Page.
2/14/2012 CGT 456

Copyright © 2002-Present Ronald J. Glotzbach
21

AGGREGATION

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

22

Aggregation
 A subset of Inheritance is Aggregation.
 Aggregation is sometimes referred to as the

fourth “Pillar of OOP,” but it should never be
confused as one of the 3 Pillars.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

23

Aggregation
 Aggregation, where the method of an inner

component is to be directly exposed to the
outside world. An object takes the inner
object’s interface, and presents it as its own.
In Aggregation, a host object acts as a liaison
between the outside world and an inner
object.

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

24

Aggregation

2/14/2012 CGT 456
Copyright © 2002-Present Ronald J. Glotzbach

25

