
TOOLBOX
Rich AJAX Data Controls, Analyzing HTTP Traffic, And More
Scott Mitchell

All prices confirmed at press time and are subject to change. The opinions expressed in this column are
solely those of the author and do not necessarily reflect the opinions at Microsoft.

 Contents
Rich Data Web Controls for Client-Centric Ajax Development
Blogs of Note
Inspect and Analyze HTTP Traffic
The Bookshelf

Rich Data Web Controls for Client-Centric Ajax Development
The ASP.NET AJAX framework offers two models for building Ajax-enabled Web applications: server-centric
and client-centric. With the server-centric model, page developers continue to use the standard ASP.NET
Web controls, but place them within an UpdatePanel control. When a control in an UpdatePanel causes a
postback, the UpdatePanel replaces the typical postback with a JavaScript-induced partial page postback and
seamlessly updates the controls within it with the server's response. With the client-centric model, page
developers are tasked with writing the JavaScript to initiate a partial-page postback and to update the page
on response. Programming using the client-centric model requires that the page developer use the client-
side ASP.NET AJAX libraries and write JavaScript and HTML themselves to initiate partial page postbacks and
to update the page on response.
ASP.NET developers new to Ajax development typically prefer the server-centric model, as it is easier to
implement and uses the existing Web controls ASP.NET developers are already familiar with. However, the
client-centric model offers more control over the page's behavior and the information shuttled between the
browser and the Web server, thereby enabling a more unique and responsive user experience. These two
models force developers to make a tough decision: use ASP.NET's existing Web controls to ease
implementation, or forgo the familiar controls and write a lot of JavaScript and HTML in order to maximize
performance.
The good news is that there is a third option, thanks to the Ajax Data Controls project version 1.0, which is a
collection of ASP.NET controls for displaying data in an Ajax-enabled Web application. The Ajax Data
Controls marry the ease of server-centric development with the performance enhancements enjoyed by
client-centric development.
Adding an Ajax Data Control to a Web page and configuring its appearance and behavior is done much in the
same way as any other Web control—from Visual Studio, drag the control from the Toolbox onto the page
and configure its settings via the Properties window. But unlike ASP.NET's built-in data controls, the Ajax
Data Controls retrieve their data from the server using client-side script, providing a more responsive user
experience and consuming less bandwidth than the standard data controls when used within an
UpdatePanel.
For example, to display categories from the Northwind database using the Ajax Data Control's GridView,
start by adding the GridView to an ASP.NET page. Next, create a script service that queries the database and
returns the data to display. Finally, write a bit of JavaScript in the page to bind the GridView to the data.
Figure 1 shows the page's declarative markup while Figure 2 shows the resulting page when viewed
through a browser. When the page is visited by a browser, the client-side pageLoad function executes and
retrieves the data from the script service. Once the server has returned the data, it is bound to the GridView
using JavaScript code that's similar to the server-side C# code used to bind data to ASP.NET's GridView
control.
 Figure 1 Adding the GridView to an ASP.NET Page
Copy Code
<AjaxData:GridView ID="gvCategories" runat="server" CellPadding="4"
CellSpacing="0">
 <HeaderStyle CssClass="HeaderStyle" />

javascript:CopyCode('ctl00_mainContentContainer_ctl06');�
http://msdn.microsoft.com/en-us/magazine/dd483223.aspx#id0200001#id0200001
http://msdn.microsoft.com/en-us/magazine/dd483223.aspx#id0200011#id0200011
http://msdn.microsoft.com/en-us/magazine/dd483223.aspx#id0200022#id0200022
http://msdn.microsoft.com/en-us/magazine/dd483223.aspx#id0200030#id0200030
javascript:CopyCode('ctl00_mainContentContainer_ctl06');

 <AlternatingRowStyle CssClass="AlternatingRowStyle" />
</AjaxData:GridView>

<script type="text/javascript">
 function pageLoad(sender, e) {
 MyScriptService.GetAllCategory(onLoadSuccess);
 }

 function onLoadSuccess(result) {
 var myGrid = $find('gvCategories');

 myGrid.set_dataSource(result);
 myGrid.dataBind();
 }
</script>

Figure 2 The Data Displayed
The Ajax Data Controls include GridView, DataList, Repeater, and Pager. With just a sprinkle of JavaScript,
and without having to write any HTML, you can display, sort, page through, edit, and delete data using
familiar concepts while enjoying the benefits of client-centric development. A number of common data
display scenarios are also easy to implement, such as conditional formatting, using different column types in
the GridView (images, checkboxes, hyperlinks, and so on), nested data controls, and integration with the
Ajax Control Toolkit. There are also rich features not offered by the standard ASP.NET data controls,
including drag and drop and column reordering.
Price: Free, open-source.
codeplex.com/AjaxDataControls

Blogs of Note

http://codeplex.com/AjaxDataControls

Good bloggers share anecdotes with their peers to let them know what technologies they are using, to pass
on what works, what doesn't, and what roadblocks to expect. Rick Strahl's Web Log is an excellent example
of great blogging.
Rick is the founder and lead developer of West Wind Technologies, a company that sells a number of Web-
based applications and utilities, so he spends his days living in the trenches—writing software, bumping into
problems, finding solutions. His blog serves as a virtual water cooler, a place where Rick shares clever tips
and tricks along with the new technologies he's using, problems he's encountered, and workarounds he's
devised.
Because West Wind Technologies primarily builds products for the Web, the majority of Rick's posts center
on such technologies. There is a rich collection of posts on jQuery and JavaScript, plus insights on ASP.NET
and AJAX, Silverlight, Web Services, Visual Studio, and IIS. And in addition to the regular blog posts Rick
adds every two to three days, he also presents a number of in-depth whitepapers on a range of topics from
compilation and deployment options in ASP.NET to load balancing and stress testing Web applications to
setting up and running Subversion (a free source code control system).
Rick's blog offers a wealth of information and know-how that has been learned through real-world
experience. This extensive experience serves as an invaluable resource for Web developers of all skill levels.
west-wind.com/weblog

One of my other favorite blogs is My Secret Life as a Spaghetti Coder, in which Sam Larbi shares his
thoughts and insights with the world. Sam works as a developer creating both Web and desktop applications
using languages and technologies like C#, C++, Ruby, ASP.NET, and ColdFusion. His blog covers a similarly
diverse spectrum of topics.
There are posts focusing on software development methodologies, musings on Web development, and Sam's
experiences with test-driven development. You'll find plenty of fun entries on topics such as game
programming, gift ideas for programmers, and how to get kids interested in programming.
Sam also has a lot to say about all of the non-technology-related aspects of being a software developer:
working with others, meetings, maintaining good customer relations, personal development, and so forth.
There's a great post on how to respond to a major blunder with a boss or customer. Sam's advice is to
embrace failure—take responsibility, explain how you'll avoid the mistake going forward and how you will
rectify the current situation. There are also great tips on how to deal with troublesome customers and what
knowledge and people skills you need to become an invaluable employee in the eyes of your employer.
codeodor.com

Inspect and Analyze HTTP Traffic
When you visit a Web site, your browser sends an HTTP request for each resource and receives an HTTP
response from the server with the requested content. Being able to inspect each HTTP request and response
is useful in a number of Web site development scenarios. For example, when faced with a slow loading Web
site, a good first step is to inspect what, exactly, is being transmitted from the server to the client when a
request for an underperforming page is visited. Perhaps there is a very large CSS or JavaScript file being
shuttled back and forth or maybe the page's background image is exceptionally hefty. Inspecting the HTTP
traffic is also a helpful step when debugging Ajax applications, as it allows you to see the precise content
being shuttled back and forth during a partial postback.
One of my favorite tools for inspecting HTTP traffic is Fiddler version 2.2, created by Eric Lawrence, a
program manager for the Internet Explorer team at Microsoft (see Figure 3). Fiddler serves as a local HTTP
proxy; it sits between your browser and the outside Internet. When Fiddler is enabled, every HTTP request
made from your browser is first sent to Fiddler, which logs the request before sending it along to its intended
destination. When the HTTP response returns, it first arrives at Fiddler, which logs it and then returns it to
the browser.

http://west-wind.com/weblog
http://codeodor.com/

Figure 3 Fiddler Analyzing Traffic
The HTTP traffic logged by Fiddler is viewable through a two-paned user interface. The left pane lists each
logged HTTP request/response pair. Selecting one or more HTTP request/response pairs from the left causes
the details to load in the right pane.
The right pane includes a number of tabs with various kinds of information. The Statistics tab lists the total
number of bytes sent and received, estimates on how long the selected request/response pairs would take to
transmit in various settings, and a pie chart that breaks down the various types of requests and their sizes,
relative to one another. The Timeline tab shows a graphical timeline of each selected request/response pair,
illustrates which requests ran concurrently, and shows how long each request took to perform. These two
tabs are the most useful ones for analyzing a Web site's performance.
The other tabs are useful for debugging client-side and server-side logic. The Inspectors tab offers formatted
and raw views of the contents sent in the request and response. From the AutoResponder tab you can "fake"
a response from the server by specifying a predetermined response, a useful technique for debugging client-
side logic in Ajax applications. Also check out the Request Builder tab; from here you can construct a hand-
crafted HTTP request and send it to a specified Web server.
Price: Free.

fiddlertool.com

The Bookshelf
JavaScript was invented in the mid-1990s as a client-side scripting language for the Netscape Navigator Web
browser. For many years it was viewed as somewhat of a toy language— good for form field input validation
and little else. Today, JavaScript is recognized as an important and powerful language. It is often used to
dynamically modify the style and content of a Web page on the client side without requiring an expensive
trip back to the Web server. And the complex interactions that occur in an Ajax-enabled Web page are
possible because of this nifty language.
Due to JavaScript's increasing importance in Web development, several frameworks have been created. One
of the most popular ones is jQuery, a free, open-source, cross-browser JavaScript framework created by
John Resig. (In fact, Visual Studio 2010 will ship with the jQuery library, making it even easier for ASP.NET
developers to get started with jQuery.)
In a nutshell, jQuery makes it easy to grab elements from the Web page and do stuff with them. For
example, many Web pages that display a grid of data vary the style for each alternating row, which can be
accomplished in JavaScript by applying a CSS class to each alternating table row. The following jQuery
statement does just that, quite succinctly:

Copy Code
 $("table tr:nth-child(even)").
 addClass("cssClassName");
jQuery in Action (Manning, 2008), by Bear Bibeault and Yehuda Katz, is a great resource for leaning the ins
and outs of jQuery and for mastering its terse and flexible syntax. jQuery in Action assumes the reader is
already familiar with JavaScript and wastes no time covering the basics of the language. Instead, it starts
with a quick introduction to the motivation behind jQuery and jQuery fundamentals and then moves on to
using jQuery to accomplish common tasks. (Some of the more advanced JavaScript concepts that are used
by jQuery are covered in an appendix.)
Next, the authors walk through jQuery's many features. They show how to select elements from a Web
page, how to modify the style and content of elements, and how to add and remove elements from the
DOM. They reveal how jQuery simplifies event handling, examine jQuery's utility functions, and illustrate
how to use jQuery to communicate with the Web server. The authors provide this information in simple and
straightforward English with just the right amount of code snippets and screenshots. The end result is a very
informative and readable book.
One reason for jQuery's popularity is that it is very easy to extend the framework through plugins. With a
few lines of JavaScript you can add your own functions to the framework. Best of all, developers can share
the plugins they've created at the official jQuery site, where there are currently several hundred plugins
available for download. jQuery in Action includes a chapter that shows you how to create your own plugins,
and another chapter that examines four of the most popular and useful plugins available.
Price: $39.99.
manning.com

javascript:CopyCode('ctl00_mainContentContainer_ctl09');�
http://fiddlertool.com/
http://manning.com/

Send your questions and comments for Scott to toolsmm@microsoft.com.

Scott Mitchell, author of numerous books and founder of 4GuysFromRolla.com, is an MVP who has been
working with Microsoft Web technologies since 1998. Scott is an independent consultant, trainer, and
writer. Reach him at Mitchell@4guysfromrolla.com or via his blog at ScottOnWriting.NET.

mailto:toolsmm@microsoft.com
http://4guysfromrolla.com/
mailto:Mitchell@4guysfromrolla.com
http://scottonwriting.net/

