
Data Parallelism
Data parallelism refers to the application of some common operation over an aggregate of data either to
produce a new data aggregate or to reduce the aggregate to a scalar value. The parallelism comes from
doing the same logical operation to each element independent of the surrounding elements. There have
been many languages with various levels of support for aggregate operations, but by far the most successful
has been the one used with databases—SQL. LINQ provides direct support in both C# and Visual Basic for
SQL-style operators, and the queries expressed with LINQ can be handed off to a data provider, such as
ADO.NET, or can be evaluated against in-memory collections of objects or even XML documents.
Part of Parallel Extensions to .NET is an implementation of LINQ to Objects and LINQ to XML that includes
parallel evaluation of the query. This implementation is called PLINQ and can be used to work conveniently
with data aggregates. The following example illustrates the kernel of the standard K-means algorithm for
statistical clustering: at each step you have K points in space that are your candidate cluster centers. Map
every point to the nearest cluster and then, for all points mapped to the same cluster, recompute the center
of that cluster by averaging the location of points in the cluster. This continues until a convergence condition
is met where the positions of the cluster centers become stable. The central loop of this algorithm
description is translated fairly directly into PLINQ, as shown in Figure 4.
 Figure 4 Find Center
Copy Code

// C# using PLINQ
var q = from p in points.AsParallel()
 let center = nearestCenter(p, clusters)
 // "index" of nearest cluster to p
 group p by center into g
 select new
 {
 index = g.Key,
 count = g.Count(),
 position = g.Aggregate(new Vector(0, 0, 0),
 (accumulated, element) => accumulated + element,
 (accumulated1, accumulated2) =>
 accumulated1 + accumulated2,
 (accumulated) => accumulated
) / g.Count()
 };
var newclusters = q.ToList();
The difference between LINQ and PLINQ is the AsParallel method on the data-collection points. This example
also illustrates that LINQ includes the core map-reduce pattern but with clean integration into mainstream
languages. One subtle point in this example is the behavior of the Aggregate operator. The third parameter
is a delegate that provides a mechanism to combine partial sums. When this method is provided, the
implementation is done in a parallel style by blocking the input into chunks, reducing each chunk in parallel,
and then combining the partial results.
The great strength of data parallelism is that suitable algorithms are typically expressed much more cleanly
and readably than if I had applied a structured multithreading approach where data structure assumptions
can become entangled. Furthermore, the more abstract description allows the system greater opportunity to
optimize in ways that would completely obscure the algorithm if done by hand. Finally, this high-level
representation allows greater flexibility with the execution target: multicore CPU, GPU, or scale out to
cluster. And as long as the leaf functions, for example, nearestCenter has no side effects—you don't face any
of the concerns of data races or deadlocks of thread-oriented programming.

javascript:CopyCode('ctl00_mainContentContainer_ctl20');�

