
DATA POINTS
Syndicated Data And Isolated Storage In Silverlight
John Papa

CODE DOWNLOAD AVAILABLE FROM THE MSDN CODE GALLERY
Browse the Code Online

 Contents
Getting Finished
HTTP Web Requests and Threading
Adding a Feed
Parsing Feeds
Cross-Domain Requests for Feeds
Basic Isolated Storage
Organized Isolated Storage
Wrap-Up
Silverlight is ideal for building a syndicated news reader application. It can read RSS and AtomPub
syndicated formats, communicate with Web services via HTTP requests, and handle cross-domain policies.
Once the syndicated data has been received, it can be read into a class structure, parsed with LINQ, and
presented to the user via XAML-based data binding.
In this column I will demonstrate how to utilize these unique features to build a syndicated news reader. I
will also show you how to debug problems with Web service communications from Silverlight and how to
store data locally using isolated storage. All of the examples are available in the MSDN code download.

Getting Finished
Feed syndication provides access to the RSS and AtomPub formats through Web services. Each feed is
accessed through a Uri that returns XML containing the feed items using the RSS or AtomPub formats. The
sample application provided with this column demonstrates techniques that read syndicated data using Web
service requests into a Silverlight application. Before diving into the details, it might be helpful if I show you
the finished version of the application. Then I will discuss the logic and various other aspects of the
application's code.
Figure 1 shows the Silverlight application reading these two syndicated feeds:
Copy Code
 http://pipes.yahooapis.com/pipes/pipe.run?_id=957
 d9624940693fb9f9644d7b12fb0e9&_render=rss
http://pipes.yahooapis.com/pipes/pipe.run?_id=057559bac7aad6640b
 c17529f3421db0&_render=rss

javascript:CopyCode('ctl00_mainContentContainer_ctl04');�
http://code.msdn.microsoft.com/mag200902Data
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070003#id0070003
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070012#id0070012
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070040#id0070040
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070047#id0070047
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070053#id0070053
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070061#id0070061
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070087#id0070087
http://msdn.microsoft.com/en-us/magazine/dd419660.aspx#id0070094#id0070094
javascript:CopyCode('ctl00_mainContentContainer_ctl04');

Figure 1 The SilverlightSyndication Application
A Web request is made to gather the feed data when the user clicks the Add button. The feed's Uri is stored
locally on the client computer, and the title of the feed service is displayed in the upper DataGrid control.
Storing the feed's Uri on the client computer allows the Silverlight application to get the feed data for those
feeds when the application starts. When the feed data is gathered, the items are placed into a list of objects
and then parsed using LINQ. The results are then bound to the lower DataGrid control in sorted order.

HTTP Web Requests and Threading
Consuming syndicated feeds from Silverlight applications starts with being able to make Web requests. Both
the WebClient and the HttpWebRequest classes can make HTTP Web requests from Silverlight applications.
The first step in the process is deciding which technique to use to make HTTP Web requests. In most cases,
the WebClient class is all that is needed since it is simpler to use (it also calls the HttpWebRequest under the
covers). HttpWebRequest allows for more customization of the requests.
This code snippet demonstrates how to make a request through WebClient:
Copy Code
//feedUri is of type Uri

javascript:CopyCode('ctl00_mainContentContainer_ctl06');�
javascript:CopyCode('ctl00_mainContentContainer_ctl06');

WebClient request = new WebClient();
request.DownloadStringCompleted += AddFeedCompleted;
request.DownloadStringAsync(feedUri);
The following code, on the other hand, shows how to make a similar call using HttpWebRequest:
Copy Code
//feedUri is of type Uri
WebRequest request = HttpWebRequest.Create(feedUri);
request.BeginGetResponse(new AsyncCallback(ReadCallback), request);
The WebClient class is easier to use because it wraps some of the functionality of the HttpWebRequest class.
Since all HTTP Web requests from Silverlight are made asynchronously through both WebClient and
HttpWebRequest, it is important to understand how to process the data when the calls return. When
HttpWebRequest makes its asynchronous calls and it completes, the completed event handler is not
guaranteed to be operating on the UI thread. If data were retrieved and meant to be displayed in a UI
element, the call to the UI element must be made using a technique that transfers control back to the UI
thread from the background thread. This can be done with the Dispatcher or through the
SynchronizationContext class. The following code shows how to make a call using the UI thread with the
Dispatcher class's BeginInvoke method:
Copy Code
Deployment.Current.Dispatcher.BeginInvoke(() =>
 {
 MyDataGrid.DataContext = productList;
 });
This code example takes the productList variable (which was filled from the data returned from a Web
service call) and sets it to a UI element's DataContext. In this case, a DataGrid will now be bound to the list
of products. The Dispatcher is not needed, however, if the call was made through the WebClient class. In
that case, the code could simply set the product list directly to the UI element's DataContext.
To use the SynchronizationContext class, an instance of the SynchronizationContext class must be created in
a place where the UI thread is known to be available. The constructor and the load event handler are good
places to create the instance of a SynchronizationContext. This code sample shows the _syncContext field
being initialized in the class constructor:
Copy Code
public Page() {
_syncContext = SynchronizationContext.Current;
}
And this code shows the SynchronizationContext instance using its Post method to make the call to the
LoadProducts method. It makes sure that the LoadProducts method has access to the UI thread:

Copy Code
if (_syncContext != null) {
 _syncContext.Post(delegate(object state){ LoadProducts(products); }
 ,null);
}
Besides being easier to use, WebClient requests always come back on the UI thread. This means that any
results from the WebClient's request can be easily bound to the UI elements without having to involve the
Dispatcher (or, optionally, the SynchronizationContext class instead of the Dispatcher). For reading
syndicated data, the WebClient class is adequate and will be used for this column's sample application.

Adding a Feed
In the sample application, when the user enters a feed address and clicks the Add button, the code shown in
Figure 2 executes. First the code attempts to create a Uri from the address, using the Uri.TryCreate method
if possible. If it can create a Uri, the Uri is returned to the local variable feedUri. Otherwise, feedUri remains
null and the code exits.
 Figure 2 Adding a Feed
Copy Code

private void btnAdd_Click(object sender, RoutedEventArgs e)
{

javascript:CopyCode('ctl00_mainContentContainer_ctl07');�
javascript:CopyCode('ctl00_mainContentContainer_ctl08');�
javascript:CopyCode('ctl00_mainContentContainer_ctl09');�
javascript:CopyCode('ctl00_mainContentContainer_ctl10');�
javascript:CopyCode('ctl00_mainContentContainer_ctl14');�
javascript:CopyCode('ctl00_mainContentContainer_ctl07');
javascript:CopyCode('ctl00_mainContentContainer_ctl08');
javascript:CopyCode('ctl00_mainContentContainer_ctl09');

 Uri feedUri;
 Uri.TryCreate(txtAddress.Text, UriKind.Absolute, out feedUri);
 if (feedUri == null)
 return;

 LoadFeed(feedUri);
}

public void LoadFeed(Uri feedUri)
{
 WebClient request = new WebClient();
 request.DownloadStringCompleted += AddFeedCompleted;
 request.DownloadStringAsync(feedUri);
}
Once a valid Uri is created, the LoadFeed method executes, making the HTTP request to gather the feed data
using the WebClient class. The WebClient instance is created, and an event handler is assigned to the
DownloadStringCompleted event. When the DownloadStringAsync method is executed and is ready to return
its data, it needs to know what event handler to go to. That is why the event handler (in this case,
AddFeedCompleted) must be assigned before the asynchronous event is executed.
Once the request has completed, the AddFeedCompleted event handler will execute (see Figure 3). The
DownloadStringCompletedEventArgs parameter contains a Result property and an Error property, both of
which are important to check after each Web request. The e.Error property will be null if there were no
errors during the request. The e.Result property contains the results of the Web request. For the sample
application, e.Result will contain the XML representing the feed data.
 Figure 3 AddFeedCompleted
Copy Code

private void AddFeedCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 if (e.Error != null)
 return;
 string xml = e.Result;
 if (xml.Length == 0)
 return;
 StringReader stringReader = new StringReader(xml);
 XmlReader reader = XmlReader.Create(stringReader);
 SyndicationFeed feed = SyndicationFeed.Load(reader);
 if (_feeds.Where(f => f.Title.Text == feed.Title.Text).ToList().Count > 0)
 return;
 _feeds.Add(feed); // This also saves the feeds to isolated storage
 ReBindAggregatedItems();
 txtAddress.Text = string.Empty;
}
Once the feed data is gathered, it can be read into the System.ServiceModel.SyndicationFeed class using the
SyndicationFeed class's Load method. Note that when retrieving feed data and using it in a read-only
manner, using LINQ to XML to retrieve the feed and loading it in a custom object may be a better option
than SyndicationFeed. SyndicationFeed has more features, but if they are not being used it may not be
worth the additional size added to the XAP—SyndicationFeed adds about 150KB to the XAP while LINQ to
XML adds about 40KB. With the additional power of SyndicationFeed you also have some cost in size.
SyndicationFeed is a special class that knows how to represent feed data (both RSS and AtomPub) as an
object. It has properties that describe the feed itself, such as Title and Description, as well as an Items
property that contains an IEnumerable<SyndicationItem>. Each SyndicationItem class instance represents a
feed item for the feed. For example, the feeds are represented by instances of the SyndicationFeed class,
and their Items collections contain the individual posts from the feeds.

javascript:CopyCode('ctl00_mainContentContainer_ctl18');�

Once the SyndicationFeed class is loaded with the feed and its items, the code shown in Figure 3 checks to
see if the same feed has already been gathered. If so, the code exits immediately. Otherwise, the feed is
added to the local ObservableCollection<SyndicationFeed> called _feeds. Through the
ReBindAggregatedItems method, the feed items from all of the loaded feeds are then filtered, sorted, and
bound to the lower DataGrid. Since the WebClient class made the HTTP Web request, the AddFeedCompleted
event handler will have access to the UI thread. This is why the code inside the ReBindAggregatedItems
method can bind the data to the DataGrid UI element without the Dispatcher's help.

Parsing Feeds
When the ReBindAggregatedItems method executes, the feed data is stored in a collection of
SyndicatedFeed instances and their respective collections of SyndicatedItem instances. LINQ is ideal for
querying the feed data since it is now in an object structure. The data did not need to be loaded into
SyndicatedFeed objects. Instead it could have been kept in its native XML format (as RSS or AtomPub), and
it could have been parsed using an XmlReader or LINQ to XML. However, the SyndicatedFeed class makes it
easier to manage, and LINQ can still be used to query the data.
Displaying the feed items for several feeds requires that the feed items are all mashed together. The LINQ
query shown in Figure 4 demonstrates how to grab all of the feed items (SyndicationItem instances) for all
of the feeds (SyndicationFeed instances) and sort them by their publication date.
 Figure 4 Querying Feeds with LINQ
Copy Code

private void ReBindAggregatedItems()
{
 //Read the feed items and bind them to the lower list
 var query = from f in _feeds
 from i in f.Items
 orderby i.PublishDate descending
 select new SyndicationItemExtra
 { FeedTitle = f.Title.Text, Item = i };

 var items = query.ToList();
 feedItemsGridLayout.DataContext = items;
}
Notice in Figure 4 that the query returns a list of SyndicationItemExtra classes. The SyndicationItemExtra
class is a custom class that has FeedTitle property of type string and an Item property of type
SyndicationItem. The application displays the feed items in the DataGrid, and most of the data for this can
be found in the SyndicationItem class.
However, since the application mashes together items from several feeds, displaying the title of the feed for
each feed item makes it clear which feed each item is from. The title for the feed is not accessible from the
SyndicationItem class, so the application uses a custom class called SyndicationItemExtra, which will store
the SyndicationItem and the feed's title.
The feed items are then bound to the Grid panel feedItemsGridLayout in the Silverlight application. The Grid
panel contains the DataGrid as well as other UI elements (such as the number of items displayed in a
TextBlock) that are involved in data-binding operations to display information about the feed items.

Cross-Domain Requests for Feeds
Requests to gather feeds are HTTP Web requests that generally make requests to a different Web domain.
Any Web request from Silverlight that communicates with a different domain than the one that hosts the
Silverlight application must comply with the remote domain's cross-domain policy. The diagram in Figure 5
demonstrates this situation.

javascript:CopyCode('ctl00_mainContentContainer_ctl22');�

Figure 5 Cross-Domain Call for a Feed
For more on cross-domain policies, please refer to my September 2008 Data Points column. In that column I
discuss the file formats and how the policies work.
When an HTTP Web request is made across domains, Silverlight preempts the request by first requesting the
cross-domain policy file from the remote Web server. Silverlight first looks for the clientaccesspolicy.xml file
(the Silverlight cross-domain policy file), and if it is not found, it then looks for the crossdomain.xml file (the
Flash cross-domain policy file). If neither file is found, the request fails and an error is thrown. This error can
be caught in the DownloadStringCompleted event handler and presented to the user, if desired.
For example, if the Uri http://johnpapa.net/feed/default.aspx is entered into the sample application,
Silverlight will first look for one of the cross-domain policy files on the johnpapa.net Web server's root. If
neither of the files are found, then an error is returned to the application, at which point the application can
notify the user if desired. Figure 6 shows the FireBug plug-in, which is tracking all requests from the
browser. It shows the browser looking for the cross-domain policy files, not finding them, and returning
without actually making the request for the RSS feed.

Figure 6 Debugging Cross-Domain Feed Calls
FireBug is a great tool for watching HTTP requests in Firefox, and Web Development Helper is a great tool
when using Internet Explorer. Another option is Fiddler2, which is a standalone application that can watch all
traffic on your computer.
One solution to this problem is to ask the Web administrator for the feed to put a clientaccesspolicy.xml file
in the Web server's root. This may not be realistic, since you most likely do not control the remote Web
server nor do you know who does. Another option is to see if the feed uses an intermediary service such as
Yahoo Pipes. For example, the main feed at johnpapa.net can be retrieved through Yahoo Pipes using the Uri
http://pipes.yahooapis.com/pipes/pipe.run?_id=057559bac7aad6640bc17529f3421db0&_render=rss. Since
there is a cross-domain policy file located at http://pipes.yahooapis.com/clientaccesspolicy.xml that allows
open access, this is a good alternative.
A third option is to use a service such as Popfly or FeedBurner to aggregate the feeds, effectively relaying
them through a service that also has an open cross-domain policy. Finally, a fourth option would be to write

http://msdn.microsoft.com/magazine/cc794260

your own custom Web service that gathers the feeds and then relays them to the Silverlight application.
Using a service such as Popfly or Yahoo Pipes offers the simplest solutions.

Basic Isolated Storage
The sample app lets a user add several feeds and view all of the items for each of those feeds. If a user
enters 10 feeds and decides that he needs to close the app and come back later to read them, he would
likely expect that the feeds would be remembered by the application. Otherwise, he'd have to enter the Uri
for each feed every time the app is opened. Since these feeds are specific to a user, they can be stored
either on the server using some token to identify the user that entered them or on the user's computer.
Silverlight allows data to be stored to a protected area of the user's computer using the classes in the
System.IO.IsolatedStorage namespace. Silverlight Isolated Storage is like cookies on steroids: it allows you
to store simple scalar values or even store serialized complex object graphs on the client computer. The
simplest way to save to isolated storage is to create an ApplicationSettings entry and stuff your data in it, as
shown here:

Copy Code
private void SaveFeedsToStorage_UsingSettings()
{
 string data = GetFeedsFromStorage_UsingSettings() + FEED_DELIMITER +
 txtAddress.Text;
 if (IsolatedStorageSettings.ApplicationSettings.Contains(FEED_DATA))
 IsolatedStorageSettings.ApplicationSettings[FEED_DATA] = data;
 else
 IsolatedStorageSettings.ApplicationSettings.Add(FEED_DATA, data);
}
This can be called every time a SyndicationFeed is added or removed from the Observ-
ableCollection<SyndicationFeed> field instance called _feeds. Since the ObservableCollection exposes a
CollectionChanged event, a handler can be assigned to the event that performs the save, as shown here:

Copy Code
_feeds.CollectionChanged += ((sender, e) => {
 SaveFeedsToStorage_UsingSettings(); });
When the SaveFeedsToStorage_UsingSettings method is executed, it first calls the
GetFeedsFromStorage_UsingSettings method, which grabs the addresses of all of the feeds from isolated
storage and puts them in a single string delimited by a special character.
When the app first starts, the LoadFeedsFromStorage_UsingSettings method retrieves the feeds from
isolated storage:

Copy Code
private void LoadFeedsFromStorage_UsingSettings()
{
 string data = LoadFeedsFromStorage_UsingSettings();
 string[] feedList = data.Split(new string[1] { FEED_DELIMITER },
 StringSplitOptions.RemoveEmptyEntries);
 foreach (var address in feedList)
 LoadFeed(new Uri(address));
}
The code first reads the list of Uri addresses for each feed from isolated storage. Then it iterates through the
addresses and loads each individual feed one at a time, using the LoadFeed method.

Organized Isolated Storage
This feature allows the application to remember the feed addresses for the user and load them when the
user runs the application. Packing Uri addresses into a delimited string is simple but neither elegant nor
expansive. For example, if you wanted to store more than just a single scalar value, this would get
complicated using this technique.
Another way to store data in isolated storage is to use the IsolatedStorageFile and
IsolatedStorageFileStream classes, which let you store more complex data structures, including serialized
objects, per user. The data can even be segmented into different files and folders in isolated storage. This is

javascript:CopyCode('ctl00_mainContentContainer_ctl25');�
javascript:CopyCode('ctl00_mainContentContainer_ctl26');�
javascript:CopyCode('ctl00_mainContentContainer_ctl27');�

ideal for organizing data that will be saved in isolated storage. For example, a folder could be created for all
static lists of data, and a separate file for each list could be created. So within a folder in isolated storage, a
file might exist for name prefixes, another for gender, and yet another for U.S. states.
The sample application could create a file in isolated storage to contain the list of Uri addresses. The data
must first be serialized and then sent to the file in isolated storage (as shown in Figure 7). First, an instance
of the IsolatedStorageFile class for the current user is created using the GetUserStoreForApplication method.
Then a file stream is created so the application can write the Uri address. The data is then serialized and
written to the IsolatedStorageFileStream instance. The example for this application serializes a string, but
any serializable object can be written to isolated storage as well.
 Figure 7 Saving Serialized Data to an Isolated Storage File
Copy Code

private void SaveFeedsToStorage_UsingFile() {
 using (var isoStore = IsolatedStorageFile.GetUserStoreForApplication())
{
 List<string> data = GetFeedsFromStorage_UsingFile();
 if (data == null)
 if (txtAddress.Text.Length == 0)
 return;
 else
 data = new List<string>();
 using (var isoStoreFileStream =
 new IsolatedStorageFileStream(FEED_FILENAME,
 FileMode.Create, isoStore)) {
 data.Add(txtAddress.Text);
 byte[] bytes = Serialize(data);
 isoStoreFileStream.Write(bytes, 0, bytes.Length);
 }
 }
}
Reading the serialized data out of a file from isolated storage is a little more involved than the previous
example. Figure 8 shows that first you must get an instance of the IsolatedStorageFile class for the user,
and then check if the file exists before you read it. If the file exists, the file is opened for read access, which
allows the data to be read via a stream of type IsolatedStorageFileStream. The data is read from the stream,
put together, and then deserialized so it can be used to load the syndicated feeds.
 Figure 8 Reading Serialized Data from an Isolated Storage File
Copy Code

private List<string> GetFeedsFromStorage_UsingFile() {
 byte[] feedBytes;
 var ms = new MemoryStream();
 using (var isoStore =
 solatedStorageFile.GetUserStoreForApplication())
 {
 if (!isoStore.FileExists(FEED_FILENAME)) return null;
 using (var stream = isoStore.OpenFile(FEED_FILENAME,
 FileMode.Open, FileAccess.Read)) {
 while (true) {
 byte[] tempBytes = new byte[1024];
 int read = stream.Read(tempBytes, 0, tempBytes.Length);
 if (read <= 0) {
 //feedBytes = ms.ToArray();
 break;
 }
 ms.Write(tempBytes, 0, read);
 }
 }
 feedBytes = ms.ToArray();

javascript:CopyCode('ctl00_mainContentContainer_ctl31');�
javascript:CopyCode('ctl00_mainContentContainer_ctl35');�

 List<string> feedList = Deserialize(typeof(List<string>),
 feedBytes) as List<string>;
 return feedList;
 }
}

private void LoadFeedsFromStorage_UsingFile() {
 var feedList = GetFeedsFromStorage_UsingFile();
 foreach (var address in feedList) {
 Uri feedUri;
 Uri.TryCreate(address, UriKind.Absolute, out feedUri);
 if (feedUri != null)
 LoadFeed(feedUri);
 }
}
For simpler data structures, using serialized objects and files in isolated storage may not be necessary.
However, when isolated storage is used for several types of local storage, it can help organize the data and
provide easy access to read and write to it. Isolated storage should be used wisely to store data that should
be cached locally.
Also note that users can ultimately clear the storage at any time since they have full control over their
settings. This means that data stored in isolated storage should not be considered guaranteed persistent
storage. Another good example is storing a list of U.S. states in isolated storage so a Web request (and
database hit) does not have to be made every time a combobox needs to be filled with a list of U.S. states.

Wrap-Up
The sample application demonstrates how easy it is to load RSS and AtomPub feeds into a Silverlight
application. Silverlight makes it possible to make a Web request, accept its results, handle cross-domain
policy calls, load feed data into SyndicationFeed classes, query them with LINQ, bind them to UI elements,
and store feed data in isolated storage.
Both last month and this month, Hanu Kommalapati covered building a line-of-business application with
Silverlight, which you can read about in his articles "Silverlight: Build Line-Of-Business Enterprise Apps with
Silverlight, Part 1" and "Silverlight: Build Line-Of-Business Enterprise Apps with Silverlight, Part 2."

Send your questions and comments for John to mmdata@microsoft.com.

John Papa (johnpapa.net) is a Senior Consultant with ASPSOFT and a baseball fan who spends summer
nights rooting for the Yankees with his family. John, a C# MVP and INETA speaker, has authored several
books and is now working on his latest, titled Data-Driven Services with Silverlight 2. He often speaks at
conferences such as DevConnections and VSLive.

http://msdn.microsoft.com/magazine/dd315415
http://msdn.microsoft.com/magazine/dd315415
http://msdn.microsoft.com/magazine/dd349332
mailto:mmdata@microsoft.com
http://johnpapa.net/
http://aspsoft.com/

