
SILVERLIGHT

Build Line-Of-Business Enterprise
Apps With Silverlight, Part 2
Hanu Kommalapati

THIS ARTICLE DISCUSSES:

 The Silverlight runtime environment
 Silverlight asynchronous

programming
 Cross-domain policies
 A sample enterprise application

THIS ARTICLE USES THE FOLLOWING
TECHNOLOGIES:
Silverlight 2

CODE DOWNLOAD AVAILABLE FROM THE MSDN CODE GALLERY
Browse the Code Online
 Contents
Integration with Business Services
Service Invocation
Synchronized Service Calls
Message Entity Translation
Silverlight State Change after the Service Calls
Cross-Domain Policies
Cross Domain Policies for Web Services Hosted Outside IIS
Cross-Domain Policies for Services Hosted inside IIS
Application Security
Application Partitioning
Productivity and Beyond
During the first installment of this series, I introduced a call center scenario and showed a screen-
population (screen pop) implementation through the connected sockets that utilized the asynchronous TCP
sockets supported by Silverlight (please see "Build Line-Of-Business Enterprise Apps With Silverlight, Part
1").
The screen pop was implemented through a simulated call dispatcher that picked up a call from an internal
queue and pushed notifications through the previously accepted socket connection cached in a generic list on
the server. Here I will conclude by implementing application security, integrating with business services, and
implementing cross-domain policies for Web services and application partitioning. The logical architecture of
the call center application is shown in Figure 1. The authentication service will be implemented in the utility
service while the business services, ICallService and IUserProfile, will be implemented inside the business
service project, as the name suggests.

http://code.msdn.microsoft.com/mag200902Silverlight
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090004#id0090004
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090012#id0090012
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090019#id0090019
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090035#id0090035
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090053#id0090053
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090056#id0090056
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090064#id0090064
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090073#id0090073
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090080#id0090080
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090093#id0090093
http://msdn.microsoft.com/en-us/magazine/dd434653.aspx#id0090114#id0090114
http://msdn.microsoft.com/magazine/dd315415
http://msdn.microsoft.com/magazine/dd315415

Figure 1 Silverlight Call Center Logical Architecture
Even though the diagram shows event streaming to utility services, in the interest of time, the downloadable
demo does not include this functionality. The implementation of the event capture service feature will be
similar to the business services implementation. However, business events that are not critical errors can be
cached locally into isolated storage and dumped onto the server in a batch mode. I will begin the discussion
with the implementation of business services and conclude with application partitioning.

Integration with Business Services
Integration with services is one of the important aspects of a line-of-business (LOB) application, and
Silverlight provides ample components for accessing Web-based resources and services. HttpWebRequest,
WebClient, and Windows Communication Foundation (WCF) proxy infrastructure are a few of the commonly
used network components for HTTP-based interaction. In this article, I will use WCF services to integrate
with the back-end business processes.
Most of us use Web services for integrating with the back-end data sources during the course of application
development; WCF Web service access with Silverlight is not much different than it is with traditional
applications such as ASP.NET, Windows Presentation Foundation (WPF) or Windows Forms applications. The
differences are the binding support and the asynchronous programming model. Silverlight will only support
basicHttpBinding and PollingDuplexHttpBinding. Note that HttpBinding is the most interoperable binding. For
this reason, I will use it for all integration in this article.
PollingDuplexHttpBinding allows the use of callback contracts to push notifications over HTTP. My call center
could have used this binding for screen-pop notifications. However, the implementation requires the caching

of the HTTP connection on the server, thereby monopolizing one of the two concurrent HTTP connections
allowed by browsers such as Internet Explorer 7.0. This can cause performance issues, as all the Web
content will have to be serialized through one connection. Internet Explorer 8.0 allows six concurrent
connections per domain and will address such performance issues. (Push notifications using
PollingDuplexHttpBinding could be a topic for a future article when Internet Explorer 8.0 is widely available.)
Back to the application. When the agent accepts a call, the screen-pop process populates the screen with the
caller information—in this case, the order details of the caller. The caller information should contain
necessary information to uniquely identify the order in the back-end database. For this demo scenario, I will
assume that the order number was spoken into the interactive voice response (IVR) system. The Silverlight
application will call WCF Web services with the order number as the unique identifier. The service contract
definition and the implementation is shown in Figure 2.
 Figure 2 Business Service Implementation
ServiceContracts.cs
Copy Code
[ServiceContract]
public interface ICallService
{
 [OperationContract]
 AgentScript GetAgentScript(string orderNumber);
 [OperationContract]
 OrderInfo GetOrderDetails(string orderNumber);
}

[ServiceContract]
public interface IUserProfile
{
 [OperationContract]
 User GetUser(string userID);
}
CallService.svc.cs
Copy Code
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class CallService:ICallService, IUserProfile
{
 public AgentScript GetAgentScript(string orderNumber)
 {
 ...
 script.QuestionList = DataUtility.GetSecurityQuestions(orderNumber);
 return script;
 }

 public OrderInfo GetOrderDetails(string orderNumber)
 {
 ...
 oi.Customer = DataUtility.GetCustomerByID(oi.Order.CustomerID);
 return oi;
 }

 public User GetUser(string userID)
 {
 return DataUtility.GetUserByID(userID);
 }
 }
Web.Config
Copy Code

javascript:CopyCode('ctl00_mainContentContainer_ctl11');�
javascript:CopyCode('ctl00_mainContentContainer_ctl12');�
javascript:CopyCode('ctl00_mainContentContainer_ctl13');�
javascript:CopyCode('ctl00_mainContentContainer_ctl11');
javascript:CopyCode('ctl00_mainContentContainer_ctl12');
javascript:CopyCode('ctl00_mainContentContainer_ctl13');

<system.servicemodel>
 <services>
 <endpoint binding="basicHttpBinding"
contract="AdvBusinessServices.ICallService"/>
 <endpoint binding="basicHttpBinding"
contract="AdvBusinessServices.IUserProfile"/>
 </services>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
<system.servicemodel>
The implementation of these service endpoints is not really very interesting, as these are straightforward
WCF implementations. For simplicity's sake, I will not use any database for business entities but will use in-
memory List objects for storing Customer, Order, and User objects. The DataUtil class (not shown here but
available in the code download) encapsulates access to these in-memory List objects.

Figure 3 Agent Script with Security Questions
WCF service endpoints for Silverlight consumption need access to the ASP.NET pipeline and hence require
the AspNetCompatibilityRequirements attribute on the CallService implementation. This has to be matched
by the <serviceHostingEnvironment/> setting in the web.config file.
As previously mentioned, Silverlight only supports basicHttpBinding and PollingDuplexHttpBinding. If you use
the WCF Service Visual Studio template, it configures the endpoint binding to wsHttpBinding, which must be
manually changed to basicHttpBinding before Silverlight can add a service reference for proxy generation.
The ASP.NET hosting compatibility changes and binding changes will automatically be taken care of if
CallService.svc is added to the AdvBusinessServices project using a Silverlight-enabled WCF Service Visual
Studio template.

Service Invocation
Having implemented a Silverlight callable service, now it is time to create service proxies and use them to
wire up the UI to the back-end service implementations. You can only generate proxies for WCF services
reliably by using the Service References | Add Service Reference sequence in Visual Studio. The proxies in

my demo were generated into the namespace CallBusinessProxy. Silverlight only allows asynchronous calls
to the network resources, and service invocation is no exception. When a customer call comes in, the
Silverlight client will listen to the notification and display an Accept/Reject dialog.
Once a call is accepted by the agent, the next step in the process is to call the Web service to retrieve the
agent script that corresponds to the call situation. For this demo, I will only be using one script as displayed
in Figure 3. The displayed script contains a greeting as well as a list of security questions. The agent will
ensure that a minimum number of questions are answered before moving forward with the assistance.
The agent script is retrieved by accessing the ICallService.GetAgentScript(), providing the order number as
the input. Consistent with the asynchronous programming model enforced by the Silverlight Web services
stack, the GetAgentScript() is available as CallServiceClient.BeginGetAgentScript(). While making the service
call, you will need to provide a callback handler, GetAgentScriptCallback, as shown in Figure 4.
 Figure 4 Service Invocation and Silverlight UI Change
Copy Code
class Page:UserControl
{
 ...
 void _notifyCallPopup_OnAccept(object sender, EventArgs e)
 {
 AcceptMessage acceptMsg = new AcceptMessage();
 acceptMsg.RepNumber = ClientGlobals.currentUser.RepNumber;
 ClientGlobals.socketClient.SendAsync(acceptMsg);
 this.borderCallProgressView.DataContext = ClientGlobals.callInfo;
 ICallService callService = new CallServiceClient();
 IAsyncResult result =
 callService.BeginGetAgentScript(ClientGlobals.callInfo.OrderNumber,
 GetAgentScriptCallback, callService);
 //do a preemptive download of user control
 ThreadPool.QueueUserWorkItem(ExecuteControlDownload);
 //do a preemptive download of the order information
 ThreadPool.QueueUserWorkItem(ExecuteGetOrderDetails,
 ClientGlobals.callInfo.OrderNumber);
 }

 void GetAgentScriptCallback(IAsyncResult asyncReseult)
 {

 ICallService callService = asyncReseult.AsyncState as ICallService;
 CallBusinessProxy.AgentScript svcOutputAgentScript =
 callService.EndGetAgentScript(asyncReseult);
 ClientEntityTranslator astobas =
 SvcScriptToClientScript.entityTranslator;
 ClientEntities.AgentScript currentAgentScript =
 astobas.ToClientEntity(svcOutputAgentScript)
 as ClientEntities.AgentScript;
 Interlocked.Exchange<ClientEntities.AgentScript>(ref
 ClientGlobals.currentAgentScript, currentAgentScript);
 if (this.Dispatcher.CheckAccess())
 {
 this.borderAgentScript.DataContext = ClientGlobals.agentScript;
 ...
 this.hlVerifyContinue.Visibility = Visibility.Visible;
 }
 else
 {
 this.Dispatcher.BeginInvoke(
 delegate()

javascript:CopyCode('ctl00_mainContentContainer_ctl18');�
javascript:CopyCode('ctl00_mainContentContainer_ctl18');

 {
 this.borderAgentScript.DataContext = ClientGlobals.agentScript;
 ...
 this.hlVerifyContinue.Visibility = Visibility.Visible;

 });
 }
 }
 private void ExecuteControlDownload(object state)
 {
 WebClient webClient = new WebClient();
 webClient.OpenReadCompleted += new
 OpenReadCompletedEventHandler(OrderDetailControlDownloadCallback);
 webClient.OpenReadAsync(new Uri("/ClientBin/AdvOrderClientControls.dll",
 UriKind.Relative));
 }
 ...
}
Since the result of the service call can only be retrieved from the callback handler, any changes to the
Silverlight application state will have to happen in the callback handler.
CallServiceClient.BeginGetAgentScript() is invoked by _notifyCallPopup_OnAccept running on the UI thread
and queues the asynchronous request and immediately returns to the next statement. Since the agent script
is not yet available, you have to wait until the callback is triggered before you cache the script and data bind
it to the UI.
Successful completion of the service call triggers GetAgentScriptCallback, which retrieves the agent script,
populates a global variable, and adjusts the UI by data binding the agent script to the appropriate UI
elements. While adjusting the UI, the GetAgentScriptCallback will make sure that it is updated on the UI
thread through the use of Dispatcher.CheckAccess().
UIElement.Dispatcher.CheckAccess() will compare the UI thread ID with that of the worker thread and
return true if both threads are the same; otherwise, it returns false. When GetAgentScriptCallback executes
on a worker thread (actually, since this will always execute on a worker thread you could simply call
Dispatcher.BeginInvoke), CheckAccess() will return false and the UI will be updated by dispatching an
anonymous delegate through Dispatcher.Invoke().

Synchronized Service Calls
Because of the asynchronous nature of the Silverlight networking environment, it is almost impossible to
make an asynchronous service call on the UI thread and wait for it to complete with the intention of
changing the application state based on the results of the call. In Figure 4, _notifyCallPopup_OnAccept
needs to retrieve order details, transform the output message into a client entity, and save it to a global
variable in a thread-safe manner. To accomplish this, one may be tempted to write the handler code as
shown here:
Copy Code
CallServiceClient client = new CallServiceClient();
client.GetOrderDetailsAsync(orderNumber);
this._orderDetailDownloadHandle.WaitOne();
//do something with the results
But this code will freeze the application when it hits the this._orderDetailDownloadHandle.WaitOne()
statement. This is because the WaitOne() statement blocks the UI thread from receiving any dispatched
messages from other threads. Instead, you can schedule the worker thread to execute the service call, wait
for the call to complete, and finish the post processing of the service output in its entirety on the worker
thread. This technique is shown in Figure 5. To prevent the inadvertent use of blocking calls in the UI
thread, I wrapped ManualResetEvent inside a custom SLManualResetEvent and test for UI thread when a call
to WaitOne() is made.
 Figure 5 Retrieve Order Details
Copy Code

javascript:CopyCode('ctl00_mainContentContainer_ctl19');�
javascript:CopyCode('ctl00_mainContentContainer_ctl23');�
javascript:CopyCode('ctl00_mainContentContainer_ctl19');
javascript:CopyCode('ctl00_mainContentContainer_ctl23');

void _notifyCallPopup_OnAccept(object sender, EventArgs e)
{
 ...
 ThreadPool.QueueUserWorkItem(ExecuteGetOrderDetails,
 ClientGlobals.callInfo.OrderNumber);
}
private SLManualResetEvent _ orderDetailDownloadHandle = new
 SLManualResetEvent();
 private void ExecuteGetOrderDetails(object state)
{
 CallServiceClient client = new CallServiceClient();
 string orderNumber = state as string;
 client.GetOrderDetailsCompleted += new
 EventHandler<GetOrderDetailsCompletedEventArgs>
 (GetOrderDetailsCompletedCallback);
 client.GetOrderDetailsAsync(orderNumber);
 this._orderDetailDownloadHandle.WaitOne();
 //translate entity and save it to global variable
 ClientEntityTranslator oito = SvcOrderToClientOrder.entityTranslator;
 ClientEntities.Order currentOrder =
 oito.ToClientEntity(ClientGlobals.serviceOutputOrder)
 as ClientEntities.Order;
 Interlocked.Exchange<ClientEntities.Order>(ref ClientGlobals.
 currentOrder, currentOrder);
}

void GetOrderDetailsCompletedCallback(object sender,
 GetOrderDetailsCompletedEventArgs e)
 {
 Interlocked.Exchange<OrderInfo>(ref ClientGlobals.serviceOutputOrder,
 e.Result);
 this._orderDetailDownloadHandle.Set();
 }
Since SLManualResetEvent is a general-purpose class, you can't depend on the Dispatcher.CheckAccess() of
a particular control. ApplicationHelper.IsUiThread() can check
Application.RootVisual.Dispatcher.CheckAccess(); however, access to this method will trigger an invalid
cross-thread access exception. So the only reliable way of testing this in a worker thread, when there is no
access to a UIElement instance, is to use Deployment.Current.Dispatcher.CheckAccess() as shown here:

Copy Code
public static bool IsUiThread()
 {
 if (Deployment.Current.Dispatcher.CheckAccess())
 return true;
 else
 return false;
 }
For the background execution of tasks, instead of using ThreadPool.QueueUserWorkItem, you could use
BackGroundWorker, which will also use ThreadPool but allows you to wire handlers that can execute on the
UI thread. This pattern allows the execution of several service calls in parallel and waits for all the calls to
complete using SLManualResetEvent.WaitOne() before the results are aggregated for further processing.

Message Entity Translation
The GetAgentScriptCallback also translates the output message entities (also known as DataContracts) from
the service into a client-side entity that represents the client-side usage semantics. For example, the design
of server-side message entities may not care about data binding while paying close attention to the multiuse
nature of the service that will have to serve a broad range of uses, not only the call center.

javascript:CopyCode('ctl00_mainContentContainer_ctl24');�

Also, it is a good practice not to have tight coupling with the message entities, because changes to the
message entities will not be within the client's control. The practice of translating message entities to client-
side entities is not just applicable to Silverlight, but is generally applicable to any Web service consumer
when wanting to avoid design-time tight coupling.
I decided to keep the implementation of the entity translators very simple—no exotic nested generics,
lambda expressions, or inversion of control containers. ClientEntityTranslator is an abstract class that defines
the ToClientEntity() method, which every subclass must override:

Copy Code
public abstract class ClientEntityTranslator
{
 public abstract ClientEntities.ClientEntity ToClientEntity(object
 serviceOutputEntity);
}
Each child class is unique to a service exchange type; hence I will create as many translators as necessary.
In my demo, I have made three types of service calls: IUserProfile.GetUser(), ICallService.GetAgentScript(),
and ICallService.GetOrderDetails(). So I created three translators, as shown in Figure 6.
 Figure 6 Message Entity to Client-Side Entity Translator
Copy Code

public class SvcOrderToClientOrder : ClientEntityTranslator
{
 //singleton
 public static ClientEntityTranslator entityTranslator = new
 SvcOrderToClientOrder();
 private SvcOrderToClientOrder() { }
 public override ClientEntities.ClientEntity ToClientEntity(object
 serviceOutputEntity)
 {
 CallBusinessProxy.OrderInfo oi = serviceOutputEntity as
 CallBusinessProxy.OrderInfo;
 ClientEntities.Order bindableOrder = new ClientEntities.Order();
 bindableOrder.OrderNumber = oi.Order.OrderNumber;
 //code removed for brevity ...
 return bindableOrder;
 }
}

public class SvcUserToClientUser : ClientEntityTranslator
{
 //code removed for brevity ...
}

public class SvcScriptToClientScript : ClientEntityTranslator
{
 //code removed for brevity ...
 }
}
If you noticed, the above translators are stateless and employ a singleton pattern. The translator must be
able to inherit from ClientEntityTranslator for consistency and needs to be a singleton to avoid garbage-
collection churn.
I keep reusing the same instance whenever the respective service call is made. I could also create
ServiOutputEntityTranslator for service interaction that requires large input messages (which generally is the
case for transactional service invocation) with the following class definition:

Copy Code
public abstract class ServiOutputEntityTranslator
{
 public abstract object ToServiceOutputEntity(ClientEntity

javascript:CopyCode('ctl00_mainContentContainer_ctl25');�
javascript:CopyCode('ctl00_mainContentContainer_ctl29');�
javascript:CopyCode('ctl00_mainContentContainer_ctl30');�

 clientEntity);
}
If you notice the return value of the above function, it is "object", as I don't control the base class of the
message entities (in this demo I could, but not in the real world). The type safety will be implemented by
the respective translators. For the simplicity of the demo, I don't save any data back to the server, so this
demo does not include any translators for converting client entities to message entities.

Silverlight State Change after the Service Calls
Silverlight visual state change can only be performed by the code executing on the UI thread. Since the
asynchronous execution of the service calls always returns the results on the callback handler, the handler
will be the right place to make changes to the visual or non-visual state of the application.
Non-visual state changes should be exchanged in a thread-safe manner if there might be multiple services
trying to modify the shared state asynchronously. It is always recommended that you check
Deployment.Current.Dispatcher.CheckAccess() before modifying the UI.

Cross-Domain Policies
Unlike the media applications and the applications that show banner ads, real enterprise-class LOB
applications require integration with a variety of service-hosting environments. For example, the call center
application referenced throughout the article is typical of the enterprise application. This application hosted
on a Web site accesses a stateful socket server for screen-pop, WCF-based Web services for accessing LOB
data, and it may download additional XAP packages (Zipped Silverlight deployment packages) from a
different domain. It will use yet another domain for transmitting instrumentation data.
The Silverlight sandbox doesn't by default allow network access to any domain other than the domain of
origin—advcallclientweb as you saw back in Figure 1. The Silverlight runtime checks for the opt-in policies
when the application accesses any domain other than the domain of origin. Here is a typical list of the
service-hosting scenarios that need to support cross-domain policy requests by the client:

 Web services hosted in a service process (or a console application for simplicity)
 Web services hosted on IIS or other Web servers
 TCP Services hosted in a service process (or a console app)

I discussed cross-domain policy implementation for TCP services last month and hence will focus on Web
services hosted in custom processes and inside IIS.
While it is straightforward to implement cross-domain policies for Web service endpoints hosted in IIS, the
other cases require knowledge of the nature of the policy requests and responses.

Cross Domain Policies for Web Services Hosted Outside IIS
For effective state management, there may be cases where one may want to host services in an OS process
outside IIS. For cross-domain access of such WCF services, the process will have to host policies at the root
of the HTTP endpoint. When a cross-domain Web service is invoked, Silverlight makes an HTTP Get request
to clientaccesspolicy.xml. If the service is hosted inside IIS, the clientaccesspolicy.xml file can be copied to
the root of the Web site and IIS will do the rest in serving the file. In case of custom hosting on the local
machine, http://localhost:<port>/clientaccesspolicy.xml should be a valid URL.
Since the call center demo does not use any custom hosted Web services, I will use a simple TimeService in
a console application to demonstrate the concepts. The console will expose a representational state transfer
(REST) endpoint using the new REST capabilities of the Microsoft .NET Framework 3.5. UriTemplate property
has to be precisely set to the literal shown in Figure 7.
 Figure 7 Implementation for Custom-Hosted WCF Services
Copy Code

[ServiceContract]
public interface IPolicyService
{
 [OperationContract]
 [WebInvoke(Method = "GET", UriTemplate = "/clientaccesspolicy.xml")]

javascript:CopyCode('ctl00_mainContentContainer_ctl34');�

 Stream GetClientAccessPolicy();
}
public class PolicyService : IPolicyService
{
 public Stream GetClientAccessPolicy()
 {
 FileStream fs = new FileStream("PolicyFile.xml", FileMode.Open);
 return fs;
 }
}
The interface name or the method name has no bearing on the outcome; you can choose anything you like.
WebInvoke has other properties such as RequestFormat and ResponseFormat, which are by default set to
XML; we don't need to specify them explicitly. We are also relying on the default value of the BodyStyle
property to be BodyStyle.Bare, which means that the response won't be wrapped.
The service implementation is very simple; it merely streams the clientaccesspolicy.xml in response to the
Silverlight client request. The policy file name can be of your own choosing, and you can call it anything you
like. The implementation of the policy service is shown in Figure 7.
Now we have to configure the IPolicyService for REST-style serving of HTTP requests. The App.Config of the
console application (ConsoleWebServices) is shown in Figure 8. There are a few things to note about the
special configuration need: the binding of the ConsoleWebServices.IPolicyServer endpoint has to be set to
webHttpBinding. Also, the IPolicyService endpoint behavior should be configured with WebHttpBehavior as
shown in the configuration file. The base address of the PolicyService should be set to the root URL (as in
http://localhost:3045/) and the endpoint address should be left empty (such as <endpoint address=" " …
contract="ConsoleWebServices.IPolicyService" />.
 Figure 8 WCF Settings for Custom Hosting Environment
Copy Code

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <!-- IPolicyService end point should be configured with
 webHttpBinding-->
 <service name="ConsoleWebServices.PolicyService">
 <endpoint address=""
 behaviorConfiguration="ConsoleWebServices.WebHttp"
 binding="webHttpBinding"
 contract="ConsoleWebServices.IPolicyService" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:3045/" />
 </baseAddresses>
 </host>
 </service>
 <service behaviorConfiguration="ConsoleWebServices.TimeServiceBehavior"
 name="ConsoleWebServices.TimeService">
 <endpoint address="TimeService" binding="basicHttpBinding"
 contract="ConsoleWebServices.ITimeService">
 </endpoint>
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:3045/TimeService.svc" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>

javascript:CopyCode('ctl00_mainContentContainer_ctl38');�

 <endpointBehaviors>
 <!--end point behavior is used by REST endpoints like
 IPolicyService described above-->
 <behavior name="ConsoleWebServices.WebHttp">
 <webHttp />
 </behavior>
 </endpointBehaviors>
 ...
 </behaviors>
 </system.serviceModel>
</configuration>
Lastly, the console-hosted services, such as the TimeService shown in the code samples as well as the
configuration, should be configured to have a URL that looks similar to their IIS counterparts. For example,
the URL of an IIS-hosted TimeService endpoint on default HTTP may look like the following:
http://localhost/TimeService.svc. In this case, the metadata can be obtained from
http://localhost/TimeService.svc?WSDL.
However, in the case of console hosting, the metadata can be obtained by appending "?WSDL" to the base
address of the service host. In the configuration shown in Figure 8, you can see that the base address of
the TimeService is set to http://localhost:3045/TimeService.svc, hence the metadata can be obtained from
http://localhost:3045/TimeService.svc?WSDL.
This URL is similar to what we use in IIS hosting. If you set the host base address to
http://localhost:3045/TimeService.svc/, then the metadata URL will be
http://localhost:3045/TimeService.svc/?WSDL, which looks a little bit odd. So watch out for this behavior as
it can save you time in figuring out the metadata URL.

Cross-Domain Policies for Services Hosted inside IIS
As discussed previously, deploying cross-domain policies for IIS-hosted services is straightforward: you just
copy the clientaccesspolicy.xml file to the root of the site on which the Web services are hosted. As you saw
in Figure 1, the Silverlight app is hosted on advcallclientweb (localhost:1041) and accesses business
services from AdvBusinessServices (localhost:1043). The Silverlight runtime requires clientaccesspolicy.xml
to be deployed at the root of the AdvBusinessServices Web site with the code shown in Figure 9.
 Figure 9 Clientaccesspolicy.xml for IIS-Hosted Web Services
Copy Code

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <!--allows the access of Silverlight application with localhost:1041
 as the domain of origin-->
 <domain uri="http://localhost:1041"/>
 <!--allows the access of call simulator Silverlight application
 with localhost:1042 as the domain of origin-->
 <domain uri="http://localhost:1042"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>
If you recall the cross-domain policy format for the socket server (advpolicyserver) from the first installment
of this series, the format of <allow-from> is similar. The difference is in the <grant-to> section where the
socket server requires a <socket-resource> setting with port range and protocol attributes, as shown here:

Copy Code
<grant-to>

javascript:CopyCode('ctl00_mainContentContainer_ctl42');�
javascript:CopyCode('ctl00_mainContentContainer_ctl43');�

 <socket-resource port="4530" protocol="tcp" />
</grant-to>
If you create the WCF service-hosting site using the ASP.NET Web site template and add WCF endpoints
later, the test Web server will map the virtual directory to the name of the project (such as
"/AdvBusinessServices"). This should be changed to "/" in the property pages of the project so that the
clientaccesspolicy.xml can be served from the root. If you don't change this, the clientaccesspolicy.xml will
not be at the root, and Silverlight applications will get server errors when the service is accessed. Note that
this will not be a problem for the Web sites created using the WCF Web service project template.

 Figure 10 Login Control Using PasswordBox
Copy Code

<UserControl x:Class="AdvCallCenterClient.Login">
 <Border x:Name="LayoutRoot" ... >
 <Grid x:Name="gridLayoutRoot">
 <Border x:Name="borderLoginViw" ...>
 <TextBlock Text="Pleae login.." Style="{StaticResource headerStyle}"/>
 <TextBlock Text="Rep ID" Style="{StaticResource labelStyle}"/>
 <TextBox x:Name="txRepID" Style="{StaticResource valueStyle}"/>
 <TextBlock Text="Password" Style="{StaticResource labelStyle}"/>
 <PasswordBox x:Name="pbPassword" PasswordChar="*"/>
 <HyperlinkButton x:Name="hlLogin" Content="Click to login"
 ToolTipService.ToolTip="Clik to login" Click="hlLogin_Click" />
 </Border>
 <TextBlock x:Name="tbLoginStatus" Foreground="Red" ... />
 ...
</UserControl>

public partial class Login : UserControl
{
 public Login()
 {
 InitializeComponent();
 }
 public event EventHandler<EventArgs> OnSuccessfulLogin;
 private void hlLogin_Click(object sender, RoutedEventArgs e)
 {
 //validate the login
 AuthenticationProxy.AuthenticationServiceClient authService
 = new AuthenticationProxy.AuthenticationServiceClient();
 authService.LoginCompleted += new
 EventHandler< AuthenticationProxy.LoginCompletedEventArgs>
 (authService_LoginCompleted);
 authService.LoginAsync(this.txRepID.Text, this.pbPassword.Password,
 null, false);
 }

 void authService_LoginCompleted(object sender,
 AuthenticationProxy.LoginCompletedEventArgs e)
 {
 if (e.Result == true)
 {
 if (OnSuccessfulLogin != null)
 OnSuccessfulLogin(this, null);
 }
 else
 {

javascript:CopyCode('ctl00_mainContentContainer_ctl47');�

 this.tbLoginStatus.Text = "Invalid user id or password";
 }

 }
}
Application Security
One of the critical requirements of an LOB application is authentication; before the call center agent can
start the shift, he will authenticate by giving a user ID and password. In ASP.NET Web applications, this can
easily be done by taking advantage of the membership provider and the server-side ASP.NET login controls.
In Silverlight, there are two ways to enforce authentication: authentication outside and authentication inside.
Authentication outside is very straightforward and is similar to the authentication implementation of ASP.NET
applications. With this approach, authentication happens in an ASP.NET-based Web page before the
Silverlight application is displayed. The authentication context can be transferred into the Silverlight
application through InitParams parameter before a Silverlight application is loaded or through a custom Web
service call (to extract the authentication state information) after the application is loaded.
This approach has its place when the Silverlight application is part of a larger ASP.NET/HTML-based system.
However, in cases where Silverlight is the main driver of the application, it is natural to perform
authentication inside Silverlight. I will use the Silverlight 2 PasswordBox control to capture the password and
authenticate using the ASP.NET AuthenticationService WCF endpoint for validating the user's credentials.
AuthenticationService, ProfileService, and RoleService are part of the new namespace—
System.Web.ApplicationServices—which was new with the .NET Framework 3.5. Figure 10 shows the XAML
for the Login control created for this purpose. The Login control calls ASP.NET
AuthenticationService.LoginAsync() with the user ID and password that was entered.

Figure 11 Login Custom Silverlight Control
The login screen of the call center, shown in Figure 11, is not sophisticated but serves the purpose of the
demo. I implemented a handler for dealing with the LoginCompleted event inside the control so that it is
self-contained for displaying invalid login messages and password-resetting dialogues for sophisticated
implementations. Upon a successful login, the event OnSuccessfulLogin will be triggered to tell the parent

control (Application.RootVisual in this case) to display the first application screen populated with the user
information.
The LoginCompleted (ctrlLoginView_OnSuccessfulLogin) handler located inside the main Silverlight Page will
invoke the profile service hosted on the business services Web site, as shown in Figure 12.
AuthenticationService by default is not mapped to any .svc endpoint; therefore, I will map .svc file to the
physical implementation, as shown here:

Copy Code
<!-- AuthenticationService.svc -->
<%@ ServiceHost Language="C#" Service="System.Web.ApplicationServices.
 AuthenticationService" %>
 Figure 12 Usage of Login.xaml inside the Page.xaml
Copy Code

<!-- Page.xaml of the main UserControl attached to RootVisual-->
<UserControl x:Class="AdvCallCenterClient.Page" ...>
 <page:Login x:Name="ctrlLoginView" Visibility="Visible"
 OnSuccessfulLogin="ctrlLoginView_OnSuccessfulLogin"/>
 ...
</UserControl>
<!-- Page.xaml.cs of the main UserControl attached to RootVisual-->
public partial class Page : UserControl
{
 ...

 private void ctrlLoginView_OnSuccessfulLogin(object sender, EventArgs e)
 {
 Login login = sender as Login;
 login.Visibility = Visibility.Collapsed;
 CallBusinessProxy.UserProfileClient userProfile
 = new CallBusinessProxy.UserProfileClient();
 userProfile.GetUserCompleted += new
 EventHandler<GetUserCompletedEventArgs>(userProfile_GetUserCompleted);
 userProfile.GetUserAsync(login.txRepID.Text);
 }
 ...
 void userProfile_GetUserCompleted(object sender,
 GetUserCompletedEventArgs e)
 {
 CallBusinessProxy.User user = e.Result;
 UserToBindableUser utobu = new UserToBindableUser(user);
 ClientGlobals.currentUser = utobu.Translate() as ClientEntities.User;
 //all the time the service calls will be complete on a worker thread
 //so the following check is redunant but done to be safe
 if (!this.Dispatcher.CheckAccess())
 {
 this.Dispatcher.BeginInvoke(delegate()
 {
 this.registrationView.DataContext = ClientGlobals.currentUser;
 this.ctrlLoginView.Visibility = Visibility.Collapsed;
 this.registrationView.Visibility = Visibility.Visible;
 });
 }
 }
}
Silverlight can only call Web services that are configured to be called by scripting environments such as
AJAX. Like all AJAX callable services, the AuthenticationService service needs access to the ASP.NET runtime
environment. I provide this access by setting <serviceHostingEnvironment

javascript:CopyCode('ctl00_mainContentContainer_ctl49');�
javascript:CopyCode('ctl00_mainContentContainer_ctl53');�

aspNetCompatibilityEnabled="true"/> directly under the <system.servicemodel> node. In order for the
authentication service to be callable by the Silverlight login process (or to be called by AJAX), the web.config
must be set according to the directions in "How to: Enable the WCF Authentication Service." The services will
be automatically configured for Silverlight if they are created using the Silverlight-enabled WCF Service
template located in the Silverlight category.
Figure 13 shows the edited configuration with important elements necessary for the Authentication service.
In addition to the service configuration, I also replaced the SQL Server configuration setting for aspnetdb
that stores authentication information. Machine.config defines a LocalSqlServer setting that expects asp-
netdb.mdf to be embedded into the App_Data directory of the Web site. This configuration setting removes
the default setting and points it to the aspnetdb attached to the SQL Server instance. This can easily be
changed to point to a database instance running on a separate machine.
 Figure 13 Settings for ASP.NET Authentication Service
Copy Code

//web.config
<Configuration>
 <connectionStrings>
 <!-- removal and addition of LocalSqlServer setting will override the
 default asp.net security database used by the ASP.NET Configuration tool
 located in the Visul Studio Project menu-->
 <remove name="LocalSqlServer"/>
 <add name="LocalSqlServer" connectionString="Data
 Source=localhost\SqlExpress;Initial Catalog=aspnetdb; ... />
</connectionStrings>
<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL="false"/>
 </webServices>
 </scripting>
</system.web.extensions>
...
<authentication mode="Forms"/>
...
<system.serviceModel>
 <services>
 <service name="System.Web.ApplicationServices.AuthenticationService"
 behaviorConfiguration="CommonServiceBehavior">
 <endpoint
 contract="System.Web.ApplicationServices.AuthenticationService"
 binding="basicHttpBinding" bindingConfiguration="useHttp"
 bindingNamespace="http://asp.net/ApplicationServices/v200"/>
 </service>
 </services>
 <bindings>
 <basicHttpBinding>
 <binding name="useHttp">
 <!--for production use mode="Transport" -->
 <security mode="None"/>
 </binding>
 </basicHttpBinding>
 </bindings>
 ...
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
</system.serviceModel>
</configuration>

javascript:CopyCode('ctl00_mainContentContainer_ctl57');�
http://msdn.microsoft.com/library/bb398990

To preserve encapsulation of the Login control and to maintain design-time loose coupling with the parent
control, success of the login process is communicated by triggering the OnSuccessfulLogin event. The
Application.RootVisual (which is a Page class) will execute the necessary business process to display the first
screen upon successful login. The first screen displayed after a successful login is the registrationView, as
shown in the userProfile_GetUserCompleted method of Figure 12. Before this view is displayed, I will
retrieve user information by calling CallBusinessProxy.UserProfileClient.GetUserAsync(). Please take note of
the asynchronous service call, which is similar to the business service integration I'll discuss later.
Be aware that the previous configuration does not use secure sockets layer (SSL); you must modify it to use
SSL when building for production systems.

Figure 14 OrderDetails.xaml Control with Order Details Populated
Application Partitioning
One of the factors contributing to the Silverlight application startup time is the size of the initial package.
The guidelines for the size of the XAP package are no different than the page weight for Web applications.
Bandwidth is a limited resource. The stringent response times of Web applications require that you pay close
attention to the Silverlight application startup time.
In addition to the processing time spent before the first UserControl is displayed, the size of the application
package has direct influence on this important quality of the application. In order to improve startup speed,
you must avoid monolithic XAP files that can grow to tens of megabytes in size for complex applications.
The Silverlight application can be broken down into a collection of XAP files; individual DLLs; or individual
XML files, images, and any other types with recognized MIME types. In the call center scenario, to
demonstrate granular application partitioning, I will deploy the OrderDetail Silverlight control as a separate
DLL (AdvOrderClientControls.dll) along with AdvCallCenterClient.xap into the ClientBin directory of the
AdvCallClientWeb project (refer back to Figure 1).
The DLL will be downloaded preemptively on the worker thread when the agent accepts the incoming call.
The call you saw in Figure 4—ThreadPool.QueueUserWorkItem(ExecuteControlDownload)—is responsible for
this. Once the caller answers security questions, I will use reflection to create an instance of the OrderDetail

control and add it to the control tree before displaying it on the screen. Figure 14 shows OrderDetail.xaml
control loaded into the control tree with order details populated.
The DLL containing the OrderDetail control is deployed to the same Web site as the call center client, which
is typical of the DLLs belonging to the same application, so I won't run into any cross-domain issues in this
case. However, this may not be the case with services, because Silverlight applications may access services
deployed on multiple domains, including local ones and in the cloud, as shown in the architecture diagram
(again, refer back to Figure 1).
The ExecuteControlDownload method (see Figure 4) runs on a background worker thread and uses the
WebClient class for downloading the DLL. WebClient, by default, assumes that the download happens from
the domain of origin and hence only uses relative URIs.
The OrderDetailControlDownloadCallback handler receives the DLL stream and creates the assembly using
ResourceUtility.GetAssembly() shown in Figure 15. Because creation of the assembly must happen on the
UI thread, I will dispatch the GetAssembly() and the (thread-safe) assignment of the assembly to the global
variable to the UI thread:

Copy Code
void OrderDetailControlDownloadCallback(object sender,
 OpenReadCompletedEventArgs e)
 {
 this.Dispatcher.BeginInvoke(delegate() {
 Assembly asm = ResourceUtility.GetAssembly(e.Result);
 Interlocked.Exchange<Assembly>(ref
 ClientGlobals.advOrderControls_dll, asm); });
 }
 Figure 15 Utility Functions to Extract Resources
Copy Code

public class ResourceUtility
{
 //helper function to retrieve assembly from a package stream
 public static Assembly GetAssembly(string assemblyName, Stream
 packageStream)
 {
 StreamResourceInfo srInfo =
 Application.GetResourceStream(
 new StreamResourceInfo(packageStream, "application/binary"),
 new Uri(assemblyName, UriKind.Relative));
 return GetAssembly(srInfo.Stream);
 }
 //helper function to retrieve assembly from a assembly stream
 public static Assembly GetAssembly(Stream assemblyStream)
 {
 AssemblyPart assemblyPart = new AssemblyPart();
 return assemblyPart.Load(assemblyStream);
 }
 //helper function to create an XML document from the stream
 public static XElement GetXmlDocument(Stream xmlStream)
 {
 XmlReader reader = XmlReader.Create(xmlStream);
 XElement element = XElement.Load(reader);
 return element;
 }
 //helper function to create an XML document from the default package
 public static XElement GetXmlDocumentFromXap(string fileName)
 {
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.XmlResolver = new XmlXapResolver();
 XmlReader reader = XmlReader.Create(fileName);

javascript:CopyCode('ctl00_mainContentContainer_ctl59');�
javascript:CopyCode('ctl00_mainContentContainer_ctl63');�

 XElement element = XElement.Load(reader);
 return element;
 }
 //gets the UIElement from the default package
 public static UIElement GetUIElementFromXaml(string xamlFileName)
 {
 StreamResourceInfo streamInfo = Application.GetResourceStream(new
 Uri(xamlFileName, UriKind.Relative));
 string xaml = new StreamReader(streamInfo.Stream).ReadToEnd();
 UIElement uiElement = null;
 try
 {
 uiElement = (UIElement)XamlReader.Load(xaml);
 }
 catch
 {
 throw new SLApplicationException(string.Format("Can't create
 UIElement from {0}", xamlFileName));
 }
 return uiElement;
 }
}
Since the dispatched delegate runs on a different thread than the callback handler, you have to be conscious
of the state of the objects that are accessed from the anonymous delegate. In the previous code, the state
of the downloaded DLL stream is really important. You may not write code that reclaims the resources of the
stream inside the OrderDetailControlDownloadCallback function. Such code will prematurely dispose of the
downloaded stream before the UI thread has a chance to create the assembly. I will use reflection to create
an instance of the OrderDetail user control and add it to the Panel as shown here:

Copy Code
_orderDetailContol = ClientGlobals.advOrderControls_dll.CreateInstance
 ("AdvOrderClientControls.OrderDetail") as UserControl;
spCallProgressPanel.Children.Add(_orderDetailContol);
ResourceUtility in Figure 15 also shows various utility functions to extract UIElement from the XAML and
the XML document from the downloaded streams and default packages.

Productivity and Beyond
I have looked at Silverlight from a traditional enterprise application perspective, touching several
architectural aspects of the application. Implementation of push notifications with Silverlight sockets is an
enabler of LOB scenarios such as call centers. With the upcoming release of Internet Explorer 8.0—which is
slated to include six concurrent HTTP connections per host—push notification implementation over the
Internet will be more compelling when using duplex WCF binding. Integration with LOB data and processes is
as easy as it is in traditional desktop applications.
This will be a huge productivity boost when compared with AJAX and other rich Internet application (RIA)
platforms. Silverlight applications can be secured using the WCF authentication and authorization endpoints
provided by ASP.NET in its latest release. I hope this little exploration of LOB application development with
Silverlight will motivate you to take Silverlight beyond media and advertising scenarios.

Hanu Kommalapati is a Platform Strategy Advisor at Microsoft, and in this role he advises enterprise
customers in building scalable line-of-business applications on Silverlight and Azure Services platforms.

javascript:CopyCode('ctl00_mainContentContainer_ctl64');�

