
DATA POINTS
Using Silverlight 2 With ADO.NET Data Services
John Papa
CODE DOWNLOAD AVAILABLE FROM THE MSDN CODE GALLERY
Browse the Code Online
 Contents
Cross-Domain Communications
Being Smart About Sensitive Data
Getting Started Quickly with EDM
Referencing ADO.NET Data Services from Silverlight
Retrieving Data Using LINQ
Deferred Loading
Saving Data
Retrieving Data in Advance
To Be Continued
ADO.NET Data Services makes it tremendously easy to expose data and allow updates over HTTP using its
RESTful (Representational State Transfer) abilities. Your Silverlight applications can take advantage of
ADO.NET Data Services to send and receive data using the unique URIs that map to entities. You can also
use LINQ queries in the Silverlight client to interact with the entities on the server by using the ADO.NET
Data Services Silverlight client library.
ADO.NET Data Services and Silverlight make a powerful combination, but to make them work well together
you need a good understanding of a few aspects that may not be immediately obvious. So, here I'll address
some steps you can take to ensure a more successful experience when building applications with ADO.NET
Data Services and Silverlight.

Cross-Domain Communications
ADO.NET Data Services does not currently support cross-domain communications. Cross-domain
communications are supported with standard REST and SOAP services, but not with ADO.NET Data Services.
(As a note: the data services team is exploring the space and will post their progress to the Astoria team
blog as they go.) This means that a Silverlight 2 client cannot talk to services exposed through ADO.NET
Data Services if those services are hosted on a different domain than the domain that hosts the Silverlight
client application. For more information on cross-domain policies, please refer to my September 2008 "Data
Points" column. In that column, I discuss the file formats and how the policies work.

Being Smart About Sensitive Data
When you are using HTTP communications, all values sent via URIs are clearly visible through a variety of
network sniffing tools. One way to combat this is to use SSL to encrypt all HTTP communications. Also, send
no sensitive data, such as social security numbers, or any other private data, in the URI. It is a good idea
never to use sensitive data as identifiers. Before choosing any RESTful communication, be sure to use a
meaningless identifier such as a GUID, a number, or an IDENTITY value. For example, the following sample
URI could retrieve employee data using the employee ID of 11:
http://[YourDomainHere]/MyService.svc/Employee(11)
The number 11 is transparent in the URI, which is why it is important not to use sensitive information.
Fortunately, in this case the number 11 represents a fabricated identifier, so no personal data is exposed.

Getting Started Quickly with EDM
Perhaps the simplest way to get up and running with ADO.NET Data Services is to expose data from a
relational database as a logical entity model using the ADO.NET Entity Framework. The Entity Framework's
Entity Data Model (EDM) is fully aware of how to allow read and update access to its entities. This built-in
ability of the EDM allows it to work in concert with ADO.NET Data Services with very little setup.
The first step in exposing an EDM created with the Entity Framework is to create the ADO.NET Data Services
service from the Visual Studio templates dialog. This creates a template that can easily be modified to
expose an EDM from the Entity Framework. The class constructor inherits from the DataService<T> base

http://code.msdn.microsoft.com/mag200904DataPoints
http://msdn.microsoft.com/en-us/magazine/dd578316.aspx
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080003#id0080003
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080005#id0080005
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080009#id0080009
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080022#id0080022
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080026#id0080026
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080035#id0080035
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080044#id0080044
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080054#id0080054
http://msdn.microsoft.com/en-us/magazine/dd569758.aspx#id0080068#id0080068
http://blogs.msdn.com/astoriateam
http://blogs.msdn.com/astoriateam
http://msdn.microsoft.com/magazine/cc794260
http://msdn.microsoft.com/magazine/cc794260

class. The T represents the data source class, which in this case is the Entity Framework data source class
named Entities. The data source class, also known as the object context class in the Entity Framework, is
what allows access to the EDM to retrieve and save data. Since the data source class is created
automatically with the Entity Framework, creating an ADO.NET Data Service that exposes the EDM is quite
simple. In Figure 1, the code shows the service class NWDataService inheriting from the
DataService<Entities>.
 Figure 1 Creating the DataService
Copy Code
public class NWDataService : DataService<Entities>
//public class NWDataService: DataService< /* TODO: put your data source
//class name here */ >
 {
 // This method is called only once to initialize service-wide
 //policies.
 public static void InitializeService(IDataServiceConfiguration
 config)
 {
 //set rules to indicate which entity sets and service operations
 //are visible, updatable, etc.
 config.SetEntitySetAccessRule("ProductSet", EntitySetRights.All);
 config.SetEntitySetAccessRule("CategorySet",
 EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("SupplierSet",
 EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("OrderSet",
 EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("OrderDetailSet",
 EntitySetRights.All);
 config.SetEntitySetAccessRule("CustomerSet",
 EntitySetRights.AllRead);
 /// The rest of the entity sets are not accessible.
 /// Therefore, no proxy classes are created for them either.
 }
}
The next step is to allow or deny read and write access to each of the entity sets in the EDM as shown in
Figure 1. This can be done on all entity sets using the * or on an individual entity set level by specifying
each entity set name. The SetEntitySetAccessRule method accepts the name of the entity set that the rule
will be applied to and one or more EntitySetRights enum values. Notice in Figure 2 that each of the entity
sets for ProductSet, OrderSet, OrderDetailSet, CustomerSet, SupplierSet, and CategorySet allow all access.
This means that those six entity sets allow reading, inserting, updating, and deleting. These are service-wide
access settings and apply to all requests coming into the system. Any entity set not listed, such as
EmployeeSet or RegionSet, is not accessible.
Figure 2 System.Data.Services EntitySetRights Enums

Enum Description

All All reads and writes are permitted on the specified entity

AllRead All reads are permitted

AllWrite All write operations are permitted

None No access permitted to the specified entity

ReadMultiple Reading multiple rows is permitted

ReadSingle Reading a single row is permitted

WriteAppend Creating new data is permitted

WriteDelete Deleting data is permitted

WriteMerge Merge-based updates are permitted

javascript:CopyCode('ctl00_mainContentContainer_ctl08');�
javascript:CopyCode('ctl00_mainContentContainer_ctl08');

WriteReplace Replacing is permitted

The EntitySetRights enum values indicate the type of access allowed for the entity set. Figure 2 shows all of
the valid enum values and their descriptions. Permission can be given on a global scale for all entity sets,
too. For example, the following line of code would allow all read access to all entity sets, but would not allow
write access:
Copy Code
config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);
Rights can be combined to allow more than one right for an entity set, as well. The following code makes the
ProductSet entity set accessible for reading and updating only:

Copy Code
config.SetEntitySetAccessRule("ProductSet",
EntitySetRights.AllRead |
EntitySetRights.WriteMerge |
EntitySetRights.WriteReplace);
Following these steps will expose the six entity sets (shown in Figure 1) and make them available via an
ADO.NET Data Service. Other entity sets and permissions can be customized too.
Entity models built with other object-relational mappings (ORM)s, such as LINQ to SQL and NHibernate, can
also be used with ADO.NET Data Services. The context objects must implement IQueryable for each entity
set that will be queried. For create, update, and delete operations, the context object must implement the
IUpdatable interface. ADO.NET Data Services has built-in knowledge of the ADO.NET Entity Framework that
allows it to support querying and updating via ADO.NET Data Services. It is likely that future versions of
other ORMs will also have support for ADO.NET Data Services or at least have helper classes to help jump-
start it. But for now, if you want to use an ORM other than Entity Framework with ADO.NET Data Services,
you will need to implement the interfaces described above. In fact, ADO.NET Data Services is not specific to
relational data. Any data source can be configured via the techniques noted in this paragraph.

Figure 3 Generated Classes from the Service Reference

javascript:CopyCode('ctl00_mainContentContainer_ctl09');�
javascript:CopyCode('ctl00_mainContentContainer_ctl10');�
javascript:CopyCode('ctl00_mainContentContainer_ctl09');

Referencing ADO.NET Data Services from Silverlight
Once the ADO.NET Data Service has been created and built, a Silverlight application can reference the
service and interact with it. An ADO.NET Data Service can be referenced from the Silverlight application by
right-clicking the Service References node in the Solution Explorer to open the Add Service Reference dialog
window. You can either enter the URI of the service in the Address box or you can click the Discover button,
and then click the Go button to locate the service. Once the metadata for the service is retrieved, the service
and the entity sets that it exposes will appear in a list. Finally, name the service reference and click the OK
button.
This creates a proxy class in the Silverlight client that allows you to interact with the ADO.NET Data Service.
If you click the Show All Files button in the Solution Explorer window and expand the NWServiceReference
node completely, you will see a Reference.cs file. This file contains the generated proxy class that allows you
to interact with the ADO.NET Data Service and the generated classes for the entities that are exposed
through the service. The list of classes can also be seen by looking in the Class View window, as shown in
Figure 3.
Notice that all of the entities in the Entity Framework's model in the Web project are not listed in the Class
View. Only entity sets that are accessible via the data service will have proxy classes generated for them
when a service reference is added to the ADO.NET Data Service from a Silverlight client. The six entity sets
shown in the Class View were exposed by using the SetEntitySetAccessRule methods in the ADO.NET Data
Service, therefore these are the only entity sets available to the Silverlight client. The seventh class in the
Class View window, the Entities class, is a proxy class that represents the data service as a whole and
facilitates the calls to NWDataService.svc.

Retrieving Data Using LINQ
The next step is to reference the System.Data.Services.Client assembly in the Silverlight project (See
Figure 4). This assembly makes it easy to interact with the ADO.NET Data Service using LINQ. For example,
the following code creates a LINQ query that selects all of the products using ADO.NET Data Services:

Copy Code
 _products.Clear();
 DataServiceQuery<Product> dq = (from p in _ctx.ProductSet select p)
 as
 DataServiceQuery<Product>;
 dq.BeginExecute(new AsyncCallback(FindProduct_Completed), dq);

javascript:CopyCode('ctl00_mainContentContainer_ctl12');�

Figure 4 Referencing the ADO.NET Data Services Client Library from Silverlight
The LINQ query in this code is translated into a URI that ADO.NET Data Services can read. The query is cast
to a DataServiceQuery<T>, which is part of the System.Data.Services.Client namespace. The query
executes asynchronously, so a valid callback method must be specified to receive the results from the query.
When the query in the preceding code sample executes and the data is returned, the FindProduct_Completed
method will be invoked.
The FindProduct_Completed method (shown in Figure 5) accepts an IAsyncResult parameter containing the
results from the query. The results are read by calling the EndExecute method, which yields a set of Product
objects. Each product is then examined and an event handler is assigned to its PropertyChanged event. (In
the sample code, I extended the Product class using a partial class to add the INotifyPropertyChanged
implementation.) This step ensures that when changes are made to any Product instance in Silverlight, that
the Product will notify the DataServiceContext (Entities, in Figure 5) by calling the UpdateObject method.
Without this code, DatServiceContext would be unaware of any changes made by the user to a Product
instance. Assuming that the _products variable is of type ObservableCollection<Product> and that it is
bound to the DataContext of a DataGrid control, the products will appear in the DataGrid control (see Figure
6).
 Figure 5 FindProduct_Completed Method
Copy Code

private void FindProduct_Completed(IAsyncResult result)
{
 DataServiceQuery<Product> query = (DataServiceQuery<Product>)result.
 AsyncState;
 try
 {
 var entities = query.EndExecute(result);
 foreach (Product item in entities)
 {
 item.PropertyChanged += ((sender, e) =>
 {

javascript:CopyCode('ctl00_mainContentContainer_ctl17');�

 Product entity = (Product)
 sender;
 _ctx.UpdateObject(entity);
 });
 _products.Add(item);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Failed to retrieve data: " + ex.ToString());
 }
}

Figure 6 Loading Products and Order Details

Deferred Loading
The ADO.NET Data Services client library in Silverlight offers the ability to load objects associated with an
object already in the DataServiceContext. For example, when a product is selected in the upper DataGrid in
the Silverlight control shown in Figure 6, before the order details for that product can be bound to the lower
DataGrid, they must be retrieved. The first step in this process is to assign an event handler to the
SelectionChanged event of the productDataGrid. Then when a product is selected, the event handler (shown
in Figure 7) uses the BeginLoadProperty method to ask ADO.NET Data Services to get the OrderDetails
objects for the selected product.
 Figure 7 Asking for Order Details
Copy Code

void productDataGrid_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 Product product = productDataGrid.SelectedItem as Product;
 if (product == null) return;

 _orderDetails.Clear();

javascript:CopyCode('ctl00_mainContentContainer_ctl22');�

 if (product.OrderDetails == null || product.OrderDetails.Count == 0)
 {
 _ctx.BeginLoadProperty(product, "OrderDetails", FindOrderDetail_Completed,
null);
 }
 else
 {
 LoadOrderDetails();
 }
}
The BeginLoadProperty method makes a network request to go get the OrderDetails records, and when it
returns it will invoke the callback method, FindOrderDetail_Completed. If any additional state needs to be
passed from this code to the callback method, it can be passed in the fourth parameter of the
BeginLoadProperty method. For example, the same event handler may be used to receive the results from
several asynchronous queries. A value could be passed in the state parameter to help the callback method
determine whose asynchronous call query results it is receiving.
When the callback is invoked, the results are read into the DataServiceContext object using its
EndLoadProperty method, as shown here:

Copy Code
_ctx.EndLoadProperty(result);
Deployment.Current.Dispatcher.BeginInvoke(() => LoadOrderDetails());
The order details are then loaded by the method LoadOrderDetails. Since the code runs as the result of an
asynchronous operation completing, there is no guarantee that this code will be running on the UI thread.
If the code is not running on the UI thread, then the new set of order details will not appear in element
DataGrid. Basically, any UI operation must run on the UI thread. One way to make sure an operation runs
on the UI thread is to use the Dispatcher object's BeginInvoke method. The preceding code uses the
Dispatcher to make sure the order details are loaded on the UI thread by calling LoadOrderDetails (shown in
Figure 8).
 Figure 8 Loading Order Details
Copy Code

private void LoadOrderDetails()
{
 Product product = productDataGrid.SelectedItem as Product;
 if (product == null) return;

 var query = (from od in product.OrderDetails
 orderby od.OrderID ascending
 select od);
 foreach (OrderDetail item in query)
 {
 item.PropertyChanged += ((sender, e) =>
 {
 OrderDetail entity = (OrderDetail)sender;
 _ctx.UpdateObject(entity);
 });
 _orderDetails.Add(item);
 }
}
LoadOrderDetails grabs the currently selected Product instance and creates a LINQ query that will select all
of the OrderDetails objects from the selected Product. This is possible since the order details were loaded
into DataServiceContext using EndLoadProperty. Once the order details are retrieved using the LINQ query
in Figure 8, each OrderDetail object instance has its PropertyChanged event handler assigned a lambda
expression that tells DataServiceContext if any property values are changed. Assuming the _orderDetails
object is an ObservableCollection<OrderDetail> element that is bound to orderDetailsDataGrid, the order
details will appear (as you saw in Figure 6).

javascript:CopyCode('ctl00_mainContentContainer_ctl23');�
javascript:CopyCode('ctl00_mainContentContainer_ctl27');�

Saving Data
The sample shown also allows the user to save changes to both the products and the order details. There are
two basic steps to allow for saving changes: notifying DataServiceContext when changes occur and issuing
the save operation asynchronously.
These hierarchical sets of data each have a partial class in Silverlight that extends the Product and
OrderDetail entities. The partial class for Product (shown in Figure 9) implements the
INotifyPropertyChanged interface, which requires that the PropertyChanged event be implemented. The
partial Product class that is generated by creating the service reference to the ADO.NET Data Service creates
partial methods for each of the public properties on the class. Each property gets a method that fires when a
property is about the change and one when the property has already changed. For example, the Product
class's ProductName property has an OnProductNameChanging partial method and an
OnProductNameChanged partial method. Figure 9 shows that the OnProductNameChanged partial method
in the custom code (not the generated class) fires the PropertyChanged event. This is the key for tracking all
changes to all entities' property values. DataServiceContext needs to know when the property values change
and what they change to; otherwise it cannot save the changes.
 Figure 9 Implementing Change Notification
Copy Code

public partial class Product :INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private void FirePropertyChanged(string propertyName)
 {
 var handler = PropertyChanged;
 if (handler != null)
 handler(this, new PropertyChangedEventArgs(propertyName));
 }

 partial void OnProductIDChanged() { FirePropertyChanged("ProductID"); }
 partial void OnProductNameChanged() { FirePropertyChanged("ProductName"); }
 partial void OnDiscontinuedChanged() { FirePropertyChanged("Discontinued"); }
 partial void OnDiscontinuedDateChanged() {
FirePropertyChanged("DiscontinuedDate"); }
 partial void OnQuantityPerUnitChanged() {
FirePropertyChanged("QuantityPerUnit"); }
 partial void OnReorderLevelChanged() { FirePropertyChanged("ReorderLevel"); }
 partial void OnRowVersionStampChanged() {
FirePropertyChanged("RowVersionStamp"); }
 partial void OnUnitPriceChanged() { FirePropertyChanged("UnitPrice"); }
 partial void OnUnitsInStockChanged() { FirePropertyChanged("UnitsInStock"); }
 partial void OnUnitsOnOrderChanged() { FirePropertyChanged("UnitsOnOrder"); }
}
Once the property changed event handlers are set for each property, DataServiceContext will be made
aware of any changes and the rest of the work to save the data is relatively simple. When a user clicks the
Save button the BeginSaveChanges method is invoked on DataServiceContext, as shown here:

Copy Code
private void SaveButton_Clicked(object sender, RoutedEventArgs e)
{
 _ctx.BeginSaveChanges(SaveChangesOptions.Batch,
 new AsyncCallback(Save_Complete), null);
}
This method makes a POST operation through ADO.NET Data Services, sending all changes that
DataServiceContext is aware of. The POST is issued asynchronously, so a callback method is required to
process the results. The SaveChangesOption.Batch parameter indicates that all changes should be saved
within a transaction in batch mode. If any save operations fail, they will all fail and the transaction will be

javascript:CopyCode('ctl00_mainContentContainer_ctl31');�
javascript:CopyCode('ctl00_mainContentContainer_ctl32');�

rolled back. This technique works whether you are saving a single record from one entity or multiple records
from multiple associated entities.

Retrieving Data in Advance
Earlier I discussed how to perform deferred loading using the BeginLoadProperty method of
DataServiceContext to grab records for an existing entity and attach them to DataServiceContext. This
technique is great for getting additional data on demand, especially when the data is not always needed.
Deferred loading saves the cost of retrieving data that the user may not want to see, unless the user asks
for the data (which happens when the user selects the Product in the productDataGrid control).
Another technique for retrieving hierarchical data is to ask for it all in advance. For example, when retrieving
Product records it might be beneficial to also get each Product's Category and Supplier. Otherwise, the
Category and Supplier properties of a Product instance will be null. The BeginLoadProperty technique could
be used, but that would require making many network requests. A better technique to get all of the data at
once is to use the Expand method in the LINQ query, since it would require only a single HTTP request. The
following query shows the Expand method asking for all categories and suppliers for the selected products in
the LINQ query.

Copy Code
 DataServiceQuery<Product> dq = (
 from p in _ctx.ProductSet.Expand("Categories").Expand("Suppliers")
 select p)
 as DataServiceQuery<Product>;
The Expand method comes at a cost as it retrieves additional data. This should be used only when it's
necessary to grab all data up front. The Expand method shown in the preceding code grabs child records for
each Product entity. In other words, the Category and Supplier are both direct children of a Product. Notice
that the name of the property, not the name of the entity set, is passed to the Expand method.
If multiple levels of a hierarchy are required, the syntax of the Expand method can be adapted to get those
records too. For example, if you want to grab the OrderDetail element for each Product as well as each of
those OrderDetail's Orders, the syntax could look like this:

Copy Code
DataServiceQuery<Product> dq = (
 from p in _ctx.ProductSet.Expand("OrderDetails/Orders")
 select p)
 as DataServiceQuery<Product>;
This code indicates that the query should get the entities for the OrderDetails property of each Product as
well as each entity for the Orders. (The Product class has an OrderDetails property and the OrderDetail class
has an Orders property.) The OrderDetail records are implied since they are required when getting the
Orders property for each Product. This query will return over 8MB of XML data to the Silverlight client
application. This is a lot of data and could negatively affect performance on slower connections. I
recommend using the Expand method only when the data is needed and even in those cases, use it with the
most restrictive filter possible to avoid retrieving data you don't need.

To Be Continued
There is quite a bit of functionality exposed by the combination of ADO.NET Data Services and Silverlight
that make for a robust data-driven application. In a future installment of Data Points, I hope to revisit the
topic and offer more tips. For now, check out my blog: johnpapa.net, the Silverlight.net Web site, and
previous installments of Data Points for more on Silverlight data-centric applications.

Send your questions and comments for John to mmdata@microsoft.com.

John Papa (johnpapa.net) is a Senior Consultant with ASPSOFT and a baseball fan who spends summer
nights rooting for the Yankees with his family. John, a C# MVP, Silverlight Insider, and INETA speaker, has
authored several books, including his latest titled Data-Driven Services with Silverlight 2 (O'Reilly, 2009).
He often speaks at conferences such as Mix, DevConnections, and VSLive

javascript:CopyCode('ctl00_mainContentContainer_ctl33');�
javascript:CopyCode('ctl00_mainContentContainer_ctl34');�
http://johnpapa.net/
http://msdn.microsoft.com/magazine/cc501043
mailto:mmdata@microsoft.com
http://johnpapa.net/

