
WICKED CODE
3 Important Tips For Silverlight Development
Jeff Prosise
CODE DOWNLOAD AVAILABLE FROM THE MSDN CODE GALLERY
Browse the Code Online

 Contents
On-Demand Assembly Loading
Just-in-Time Rendering
Avoiding Regional Dependencies
Turning a New Page
As I write this, Silverlight 2 is hot off the presses and developers are getting a first look at what many
believe represents the future of Web programming. Whether you're a Silverlight proponent or find more
allure in competing technologies such as Adobe Flex, it's exciting to see alternatives to HTML, JavaScript,
and AJAX emerge and gain mindshare for creating Web applications. And with Microsoft already hard at work
on Silverlight 3, the future has never seemed brighter.
As is true of any platform, the road to becoming a Silverlight developer is not without a few potholes. Did
you know, for example, that many calls to XamlReader.Load that test fine on PCs in the United States will
fail on PCs in other countries? Did you realize that Silverlight's rendering engine is intimately tied to the UI
thread and that this fact can profoundly impact the structure of your code? Did you know that you can
reduce the size of your XAP files by dynamically loading assemblies, but that doing so without losing the
benefit of strong typing requires knowledge of CLR internals? If this intrigues you, read on. I have some tips
and tricks to share that will make life with Silverlight a little less bumpy—and make you a better and more
informed Silverlight programmer, too.
For more on packaging Silverlight content for faster delivery, please see the January 2009 installment of
Cutting Edge.

On-Demand Assembly Loading
One of the hallmarks of a well-designed Silverlight application is a small XAP file, formally known as an
application package. XAP files all too often swell to unmanageable sizes as the result of embedded resources
(especially images) and assembly references. The larger the XAP file, the longer it takes to download, and if
it grows too large, Silverlight might be unable to load it.
Even large applications can be packaged in small XAP files if you're careful to factor the resources and
assemblies that the application uses and keep those that can be delay-loaded or downloaded on demand on
the Web server. You can use WebClient or other classes in Silverlight's networking stack to download
additional resources and assemblies once the application package has been downloaded. It's generally
preferable to get the application's UI up and running quickly and then launch asynchronous network requests
for the additional assets you need than it is to post a 100MB XAP file and force the user to spend five
minutes waiting for a progress indicator to reach 100%.
On-demand resource loading in Silverlight tends to be simple and straightforward. The code snippet in
Figure 1, for example, downloads a JPEG deployed at the site of origin and displays it by assigning the
downloaded bits to a XAML image named MyImage.
 Figure 1 Downloading an Image from the Site of Origin
Copy Code
WebClient wc = new WebClient();
wc.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(wc_OpenReadCompleted);
wc.OpenReadAsync(new Uri("JetCat.jpg", UriKind.Relative));
 ...
void wc_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 if (e.Error == null)
 {

javascript:CopyCode('ctl00_mainContentContainer_ctl08');�
http://code.msdn.microsoft.com/mag200903Wicked
http://msdn.microsoft.com/en-us/magazine/dd483293.aspx#id0080004#id0080004
http://msdn.microsoft.com/en-us/magazine/dd483293.aspx#id0080034#id0080034
http://msdn.microsoft.com/en-us/magazine/dd483293.aspx#id0080045#id0080045
http://msdn.microsoft.com/en-us/magazine/dd483293.aspx#id0080066#id0080066
http://msdn.microsoft.com/magazine/dd315412
http://msdn.microsoft.com/magazine/dd315412
javascript:CopyCode('ctl00_mainContentContainer_ctl08');

 BitmapImage bi = new BitmapImage();
 bi.SetSource(e.Result);
 MyImage.Source = bi;
 }
}
On-demand assembly loading tends to be more difficult, however. At first glance it seems easy: use
WebClient to download the assembly and AssemblyPart.Load to load it into the appdomain. The problem is
that Silverlight's JIT compiler can get in the way, leading many developers to believe that it's impossible to
download assemblies on demand and enjoy the benefits of strong typing, too. In reality, however, you can
do both. But you need to know what you're doing and having a basic understanding of how assembly loading
works in the CLR.
To demonstrate, consider the following code:
Copy Code
private void CreateCalendarButton_Click(object sender, RoutedEventArgs e)
{
 Calendar cal = new Calendar();
 cal.Width = 300.0;
 cal.Height = 200.0;
 cal.SelectedDatesChanged += new
 EventHandler<SelectionChangedEventArgs>(cal_SelectedDatesChanged);
 LayoutRoot.Children.RemoveAt(0);
 LayoutRoot.Children.Add(cal);
}

Figure 2 Keeping an Assembly out of the XAP
It's a button click handler that dynamically creates a Calendar control and adds it to the XAML scene. (It also
deletes the button that fired the event, which is assumed to be the 0th item in LayoutRoot's Children
collection.) Because Calendar is implemented in the System.Windows.Controls.dll, which isn't embedded in
the Silverlight plug-in but is instead part of the extended BCL, this code works just fine as long as you add a

javascript:CopyCode('ctl00_mainContentContainer_ctl09');�
javascript:CopyCode('ctl00_mainContentContainer_ctl09');

reference to System.Windows.Controls.dll to your project. The reference causes
System.Windows.Controls.dll to be included in the XAP file and automatically loaded into the appdomain.
Now suppose you want to be clever and only load System.Windows.Controls.dll if it's needed—that is, if the
user clicks the button. So you add a reference to System.Windows.Controls.dll to the project to satisfy the
compiler (otherwise, the compiler won't compile a reference to Calendar because the compiler has no idea
what the Calendar type is) and, in the Visual Studio Properties window, you set
System.Windows.Controls.dll's Copy Local property to false to prevent it from being embedded in the XAP
file (as I did in Figure 2).
Next, you deploy a copy of System.Windows.Controls.dll alongside the XAP file in the application's ClientBin
folder on the server. Finally, you restructure your code as shown in Figure 3. The button click handler now
downloads System.Windows.Controls.dll from the Web server, loads it into the appdomain with Assembly-
Part.Load, and instantiates a Calendar control.
 Figure 3 On-Demand Assembly Loading that Doesn't Work
Copy Code
private void CreateCalendarButton_Click(object sender, RoutedEventArgs e)
{
 WebClient wc = new WebClient();
 wc.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(wc_OpenReadCompleted);
 wc.OpenReadAsync(new Uri("System.Windows.Controls.dll",
 UriKind.Relative));
}

void wc_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 // Load the downloaded assembly
 AssemblyPart part = new AssemblyPart();
 part.Load(e.Result);

 // Create a Calendar control
 Calendar cal = new Calendar();
 cal.Width = 300.0;
 cal.Height = 200.0;
 cal.SelectedDatesChanged += new
 EventHandler<SelectionChangedEventArgs>(cal_SelectedDatesChanged);
 LayoutRoot.Children.RemoveAt(0);
 LayoutRoot.Children.Add(cal);
 }
}
It looks reasonable and the code compiles just fine, but at run time, the click handler generates an exception
like the one in Figure 4. Code that compiles is good. Code that throws exceptions is not. So what gives? The
error message seems to indicate that the CLR is trying to load System.Windows.Controls.dll, but it shouldn't
need to since you're loading it programmatically.
This is a great example of a case where knowledge of CLR internals can make you a better Silverlight
programmer. The problem here is that when the JIT compiler compiles your wc_OpenReadCompleted
method, it scans the method, sees that it references a type named Calendar, and attempts to load
System.Windows.Controls.dll so that the reference can be resolved.

javascript:CopyCode('ctl00_mainContentContainer_ctl14');�
javascript:CopyCode('ctl00_mainContentContainer_ctl14');

Figure 4 Oops!
Unfortunately, this happens before the method is even executed, thus you don't get the chance to call
AssemblyPart.Load. It's a classic chicken-and-egg problem. You need to call AssemblyPart.Load to load the
assembly, but before you can call it, the JIT compiler intervenes and attempts to load it for you. The attempt
fails because System.Windows.Controls.dll isn't in the application package.
This is the point at which many programmers throw up their hands and either conclude that on-demand
assembly loading doesn't work in Silverlight or resort to reflection to instantiate the Calendar type:
Copy Code
AssemblyPart part = new AssemblyPart();
Assembly a = part.Load(e.Result);
Object cal = (Object)a.CreateInstance("Calendar");
This approach works, but it's clumsy. You can't cast the reference returned by Assembly.CreateInstance to a
Calendar because doing so would cause the JIT compiler to attempt to load the assembly before the method
executed. And if you can't cast to Calendar, then the control's methods, properties, and events have to be
accessed through reflection, too. The code quickly grows so unwieldy that it's tempting to just give in and
embed System.Windows.Controls.dll in the application package and live with the increased XAP size.
The good news is that you can combine dynamic assembly loading and strong typing. Simply restructure
your code along the lines of Figure 5. Observe that wc_OpenReadCompleted no longer references the
Calendar type; all references have been moved to a separate method named CreateCalendar. Furthermore,
CreateCalendar is attributed in such a way that the JIT compiler will not attempt to inline the method. (If
inlining were to occur, you'd be right back where you started because wc_OpenReadCompleted would
contain an implicit reference to the Calendar type.) Now the JIT compiler won't check to see if
System.Windows.Controls.dll has been loaded until CreateCalendar is called, and by that time, you've
already loaded it into the appdomain.
 Figure 5 On-Demand Assembly Loading that Works
Copy Code
private void CreateCalendarButton_Click(object sender, RoutedEventArgs e)
{
 WebClient wc = new WebClient();
 wc.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(wc_OpenReadCompleted);
 wc.OpenReadAsync(new Uri("System.Windows.Controls.dll",
 UriKind.Relative));
}

void wc_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)

javascript:CopyCode('ctl00_mainContentContainer_ctl16');�
javascript:CopyCode('ctl00_mainContentContainer_ctl20');�
javascript:CopyCode('ctl00_mainContentContainer_ctl16');
javascript:CopyCode('ctl00_mainContentContainer_ctl20');

{
 if (e.Error == null)
 {
 // Load the downloaded assembly
 AssemblyPart part = new AssemblyPart();
 part.Load(e.Result);

 // Create a Calendar control
 CreateCalendar();
 }
}

[MethodImpl(MethodImplOptions.NoInlining)]
private void CreateCalendar()
{
 Calendar cal = new Calendar();
 cal.Width = 300.0;
 cal.Height = 200.0;
 cal.SelectedDatesChanged += new
 EventHandler<SelectionChangedEventArgs>(cal_SelectedDatesChanged);
 LayoutRoot.Children.RemoveAt(0);
 LayoutRoot.Children.Add(cal);
}

Insights: Rendering and the UI Thread
Notice that Jeff said that one aspect of Silverlight that doesn't get a lot of attention is the fact that all
rendering in Silverlight is done on the application's UI thread, and if you hog the UI thread, you prevent any
rendering from happening. Since WPF provides a rendering thread, it is probably surprising that Silverlight
does not. You may be interested to know why.
The decision came down to a tradeoff between system overhead and decoupling framerates. With Silverlight,
we went with a lighter weight on-thread approach and did not isolate your application code from the
rendering system. That means you can do more in your animation (like have layout-based animation or
custom code running) and there is minimal latency and overhead getting to the rendering system. The down
side is if you do too much, you can interfere with operations such as video playback.
That said, the Silverlight rendering system will take advantage of multi-core processing and use many
threads to speed up rendering for it. So, rendering is rarely "on thread," but it is synchronized with your app
to avoid synchronization plus copies of data.
—Ashraf Michail, Principal Architect, Silverlight
Incidentally, if this were Windows Presentation Foundation (WPF) rather than Silverlight, you could resolve
the problem in a more elegant manner by registering a handler for AppDomain.AssemblyResolve events and
loading System.Windows.Controls.dll there. AppDomain.AssemblyResolve exists in Silverlight, but it's
attributed SecurityCritical, which means user code can't register handlers for it.
Figure 5 assumes that you included in your project a reference to System.Windows.Controls.dll, but that
you set Copy Local to false (see Figure 2) and deployed the assembly in the ClientBin folder. To prove that
it works, download the OnDemandAssemblyDemo application that accompanies this column and click the
button labeled Create Calendar Control. A Calendar control appears in place of the button. Significantly,
OnDemandAssemblyDemo.xap does not contain a copy of System.Windows.Controls.dll, which you can
easily verify by opening the XAP file with WinZip. Magic! This will be a great ice-breaker for your next
Silverlight party.

Just-in-Time Rendering
One aspect of Silverlight that doesn't get a lot of press is the fact that all rendering in Silverlight is done on
the application's UI thread, and if you hog the UI thread, you prevent any rendering from being done. That
means you want to avoid long-running loops on the UI thread if you're modifying a XAML scene in that loop
or if any animations are taking place at the same time.

It sounds simple—avoiding long-running loops on the UI thread—but in practice, it can have a profound
impact on the code that you write. Consider the app called OpenFileDialogDemo, pictured in Figure 6. It
demonstrates how to use Silverlight's OpenFileDialog class to allow the user to browse his or her hard disk
for image files and then load the images into XAML image objects. Run the app, click the Open button at the
top of the page, select several image files (the bigger the better), and click the OpenFileDialog's Open
button.

Figure 6 OpenFileDialogDemo in Action
You'll see that one by one, the images you selected pop into the scene using objects created dynamically
with XamlReader.Load and assume random positions on the page. Once the images are displayed, you can
click them to make them come to the front and even use the mouse to drag them around the page.
Despite its apparent simplicity, OpenFileDialogDemo offers a practical lesson in being judicious with the UI
thread. When I originally wrote the code to display the OpenFileDialog and load the image files, I structured
it something like the snippet in Figure 7. Once the user has dismissed the dialog, a simple foreach loop
iterates through the selected files and loads them one by one.
 Figure 7 Simple Approach to Loading Image Files
Copy Code
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = "JPEG Files (*.jpg;*.jpeg)|*.jpg;*.jpeg|" +

javascript:CopyCode('ctl00_mainContentContainer_ctl25');�
javascript:CopyCode('ctl00_mainContentContainer_ctl25');

 "PNG Files (*.png)|*.png|All Files (*.*)|*.*";
ofd.FilterIndex = 1;
ofd.Multiselect = true;

if ((bool)ofd.ShowDialog())
{
 foreach (FileInfo fi in ofd.Files)
 {
 using (Stream stream = fi.OpenRead())
 {
 BitmapImage bi = new BitmapImage();
 bi.SetSource(stream);
 GetNextImage().Source = bi;
 }
 }
}
Unfortunately, none of the images appeared on the screen until all of them were loaded. The delay wasn't a
big deal if the user selected one or two image files, but it was intolerable if 40 or 50 files were selected. In
short, the app didn't meet the minimum requirements I set for it, because I wanted the images to "pop"
onto the screen as they were loaded. Get it? Pop! Pop! Pop!
The problem, of course, was that the foreach loop runs on the UI thread, and while the loop was running,
Silverlight couldn't render the images as they were added to the scene—which meant it was time to step
back, take a breath, and restructure the code to make it able to render the images in a timely manner.
Figure 8 shows one solution to the problem. The modified foreach loop does nothing more than add FileInfo
objects to a System.Collections.Generic.Queue. This enables the loop to run quickly and hand control back to
Silverlight so it can get down to the business of rendering. Perhaps the most interesting aspect of the
restructured code is how it dequeues and processes the FileInfo objects in response to
CompositionTarget.Rendering events.
 Figure 8 A Better Way to Load Image Files
Copy Code
private Queue<FileInfo> _files = new Queue<FileInfo>();
 ...
public Page()
{
 InitializeComponent();

 // Register a handler for Rendering events
 CompositionTarget.Rendering +=
 new EventHandler(CompositionTarget_Rendering);
}
 ...
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = "JPEG Files (*.jpg;*.jpeg)|*.jpg;*.jpeg|" +
 "PNG Files (*.png)|*.png|All Files (*.*)|*.*";
ofd.FilterIndex = 1;
ofd.Multiselect = true;

if ((bool)ofd.ShowDialog())
{
 // Reset the queue
 _files.Clear();

 // Place each FileInfo in a queue
 foreach (FileInfo fi in ofd.Files)
 {
 _files.Enqueue(fi);

javascript:CopyCode('ctl00_mainContentContainer_ctl29');�
javascript:CopyCode('ctl00_mainContentContainer_ctl29');

 }
}
 ...
private void CompositionTarget_Rendering(Object sender, EventArgs e)
{
 if (_files.Count != 0)
 {
 FileInfo fi = _files.Dequeue();
 using (Stream stream = fi.OpenRead())
 {
 BitmapImage bi = new BitmapImage();
 bi.SetSource(stream);
 GetNextImage().Source = bi;
 }
 }
}
CompositionTarget.Rendering is a per-frame rendering callback traditionally used to implement game loops.
It was borrowed from WPF and showed up late in the Silverlight 2 development cycle. The event is fired each
time Silverlight is ready to re-render the scene.
OpenFileDialogDemo registers a handler for CompositionTarget.Rendering events
(CompositionTarget_Rendering) and dequeues one FileInfo object, converting it into a XAML image, each
time the handler is called. The result? The images pop onto the screen as they're loaded because Silverlight
now has the opportunity to update the scene following the addition of each new image. This is how the
foreach loop in the final version of OpenFileDialogDemo is structured, and it's why when you ran it, you saw
images appear on the screen one by one instead of all at once.
You want to be careful not to overuse CompositionTarget.Rendering. If OpenFileDialogDemo had animations
running as it added images to the scene, the animations would likely stutter because each frame would be
delayed by the amount of time required to load the image bits and assign them to an image object. But
when you need it, you need it badly, and OpenFileDialogDemo is a good example of an acceptable use of
CompositionTarget.Rendering—indeed, here the goal would be difficult to accomplish otherwise.

Avoiding Regional Dependencies
A final tip regards using XamlReader.Load to create XAML objects dynamically. Can you spot what's wrong
with this code?
Copy Code
Rectangle rect = (Rectangle)XamlReader.Load(
 String.Format(
 "<Rectangle xmlns=\"http://schemas.microsoft.com/client/2007\" " +
 "Width=\"{0}\" Height=\"{1}\" Stroke=\"Black\" Fill=\"Yellow\" />",
 100.5, 100.0
)
);
If you recognized that this code will work on most PCs in the United States but will fail on most PCs in
Europe and in other parts of the world, give your self a pat on the back. To demonstrate, first configure your
operating system to display numbers, currencies, dates, and times in U.S. format if it isn't configured that
way already. (In Vista, go to the Format tab of the Regional and Language Options dialog accessible through
the Control Panel.) Execute the call to XamlReader.Load and verify that the call executes successfully. Now
change the regional format to French and execute the call again. This time XamlReader.Load throws an
exception:"Invalid attribute value 100,5 for property Width" (Figure 9). The problem is that decimal
numbers such as 100.5 are written 100,5 (notice the comma in place of the decimal point) in many
countries. And since String.Format honors regional settings on the host PC, the decimal 100.5 becomes
"100,5". Unfortunately, XamlReader.Load doesn't know what to make of "100,5", so it throws an exception.

javascript:CopyCode('ctl00_mainContentContainer_ctl30');�
javascript:CopyCode('ctl00_mainContentContainer_ctl30');

Figure 9 Exception Thrown by XamlReader.Load
The following code shows the correct way to call XamlReader.Load so that it works on any PC that runs
Silverlight:

Copy Code
Rectangle rect = (Rectangle)XamlReader.Load(
 String.Format(
 CultureInfo.InvariantCulture,
 "<Rectangle xmlns=\"http://schemas.microsoft.com/client/2007\" " +
 "Width=\"{0}\" Height=\"{1}\" Stroke=\"Black\" Fill=\"Yellow\" />",
 100.5, 100.0
)
);
The first parameter passed to String.Format is a CultureInfo object referencing the invariant culture.
XamlReader.Load expects culture-invariant strings, so using CultureInfo.InvariantCulture ensures that
String.Format generates properly formatted decimal values (as well as properly formatted dates and times if
you're using those). Not coincidentally, the OpenFileDialogDemo application in the previous section uses this
technique to make sure that its own calls to XamlReader.Load work regardless of regional settings.
If the strings you pass to XamlReader.Load include decimal values generated by String.Format, always use
CultureInfo.InvariantCulture to get proper formatting. Once your application is running in the wild, it's liable
to execute under a variety of regional settings.

Turning a New Page
If you're beginning to use Silverlight and you're an experienced .NET developer, you already know 90% of
what you need to know. But Silverlight brings nuances to .NET that you should understand.
Speaking of pages, many readers have asked when I intend to update the Silverlight 1.0 page-turn
framework presented in May 2008 for Silverlight 2. Well, porting is complete. You can view a sample app
that uses the updated framework at wintellect.com/silverlight/pageturndemo/, and you can download the
source code from wintellect.com/Downloads/PageTurnDemo2.zip.
The page-turn framework lives in PageTurn.cs, and the code in Page.xaml.cs illustrates how it all works. The
API is similar to the Silverlight 1.0 version (in C# rather than JavaScript), and I made changes to make page
turning better. I included a PageTurned event that's fired by the framework each time a page turn is
complete so you can update the UI—say, to show the current page number.
Send your questions and comments for Jeff to wicked@microsoft.com.

Jeff Prosise is a contributing editor to MSDN Magazine and the author of several books, including
Programming Microsoft .NET (2002, Microsoft Press). He's also cofounder of Wintellect (wintellect.com), a

javascript:CopyCode('ctl00_mainContentContainer_ctl32');�
http://msdn.microsoft.com/magazine/cc507644
http://msdn.microsoft.com/magazine/cc507644
http://wintellect.com/silverlight/pageturndemo/
http://wintellect.com/Downloads/PageTurnDemo2.zip
mailto:wicked@microsoft.com
http://wintellect.com/

software consulting and education firm that specializes in Microsoft .NET. Contact Jeff at
wicked@microsoft.com.

mailto:wicked@microsoft.com

