
CUTTING EDGE
Explore Rich Client Scripting With jQuery, Part 1
Dino Esposito
 Contents
The jQuery Object
Selectors
Filters
Form Filters
Operations on Wrapped Sets
jQuery Chainability
Know Your HTML
You know how it is. The more functionality you want to squeeze out of the Web browser, the more you have
to write in JavaScript. Introduced around 1995 to add more action to HTML pages, the JavaScript language
was not expressly designed for developers. It was actually designed to manipulate HTML elements, set
styles, and react to user input. It has also been widely used for client-side input validation and other
lightweight operations.
Seeing the somewhat trivial uses JavaScript has been applied to might lead you to believe that it is simple to
write. But as Ray Djajadinata pointed out in "Create Advanced Web Applications with Object-Oriented
Techniques" in the May 2007 issue of MSDN Magazine, writing good JavaScript code is not trivial but if you
understand it well, you can indeed squeeze some rather advanced functionality out of it.
One of the drawbacks of JavaScript, though, is that it's an interpreted (not compiled) language and thus is
subject to the browser's, well, interpretation. Not all browsers process the same JavaScript code in the same
way. But libraries like jQuery can make your JavaScript code more predictable across browsers.
Microsoft now fully supports jQuery and distributes it with the ASP.NET Model-View Controller (MVC)
framework. Furthermore, extensions have been developed to fully integrate jQuery IntelliSense in Visual
Studio 2008 SP1.
In this month's installment, I'll discuss the main characteristics of the jQuery library and focus in particular
on CSS selectors, function chaining, and wrapped sets. In a future installment, I'll look at more specific
topics such as using jQuery to handle events and effects, browser-side caching and AJAX requests.
jQuery at a Glance
jQuery makes JavaScript code easier and quicker to write. The library provides helper functions that
dramatically increase your productivity while decreasing your frustration. The resulting code is easier to read
and more robust because the higher level of abstraction hides a number of checks and error handling
procedures.
The library, written by John Resig, consists of a single .js file you can download from
docs.jquery.com/Downloading_jQuery. The latest version is 1.2.6 which was released in the Spring of 2008.
The download site offers three versions of the library: uncompressed, packed and minimized.
The uncompressed version is close to 100KB and is fully human readable and commented. This version is
definitely the one to pick up for perusal and debugging.
The minimized version is about 50KB. All extra characters that are not strictly required to implement the
functionality have been removed from the source code. The code is impractical if not impossible to read for
humans, but it works just fine for computers.
Finally, the packed version is barely 30KB in size, but it requires more initialization time on the client. The
jQuery official site recommends you consider getting the minimized version instead of the packed version for
production environments. In addition, you should consider that GZip compression over the wire is standard
practice and is handled by all modern Web servers and browsers. GZip compression brings the size down to
about 20 KB. If you use GZip, the packed version is pretty much useless.
In an ASP.NET project, you also need a jquery-1.2.6-vsdoc.js in order to enable IntelliSense and a Visual
Studio 2008 patch (see "KB958502-JScript Editor support for '-vsdoc.js' IntelliSense documentation files") in
order to fully support jQuery IntelliSense.
In ASP.NET, you can either use a plain <script> tag to link the library or you can list it in the Scripts section
of the ScriptManager control, like so:

http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080022#id0080022
http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080045#id0080045
http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080053#id0080053
http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080073#id0080073
http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080078#id0080078
http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080110#id0080110
http://msdn.microsoft.com/en-us/magazine/dd453033.aspx#id0080122#id0080122
http://msdn.microsoft.com/magazine/cc163419
http://msdn.microsoft.com/magazine/cc163419
http://code.msdn.microsoft.com/KB958502

Copy Code
<asp:ScriptManager id="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference path="Scripts/jquery-1.2.6.min.js" />
 </Scripts>
</asp:ScriptManager>
Note that this approach is not recommended with the current version of ASP.NET unless you also want the
Microsoft AJAX library embedded in the page. In ASP.NET 4.0, it will be possible to disable the inclusion of
the Microsoft AJAX client framework files, thus making this approach a good one.
The whole set of jQuery functionality can be divided into four main areas: DOM query and manipulation,
effects and animation, AJAX, and core functions for working with arrays, filtering data, and detecting
browser capabilities.

The jQuery Object
The word "query" in the library's name says it all. It refers to running queries over the DOM of the page,
which is where jQuery gets its power.
The library supplies a powerful interface for selecting DOM elements that goes far beyond the simple search
for elements that match a given ID. For example, you can easily select all elements that share a given CSS
class, have certain attributes, appear in a given position in the tree, or have a relationship to other
elements. More importantly, you can add filter conditions and you can chain all these query features
together, much like you can query data in SQL.
The root of the jQuery library is the jQuery function, defined as follows:
Copy Code
var jQuery = window.jQuery = window.$ = function(selector, context)
{
 return new jQuery.fn.init(selector, context);
};
The $ function is an alias for the jQuery function. When you create a jQuery object, you pass a selector and
a context. The selector indicates the query expression; the context indicates the portion of the DOM on
which to run the query. If no context is specified, the jQuery function looks for DOM elements within the
entire page DOM.
The jQuery function (as well as its $ alias) performs some work on the provided arguments, runs the query,
and then returns a new jQuery object that contains the results. The newly created jQuery object can, in turn,
be further queried, or filtered, in a new statement as well as in a chain of statements.
The root jQuery object supports the following signatures:
Copy Code
jQuery(expression, [context])
jQuery(html, [ownerDocument])
jQuery(elements)
jQuery(callback)
The first takes a CSS selector and returns a wrapped array of HTML elements, the so-called wrapped set.
The second accepts an HTML string, creates the related subtree, and appends it to the specified owner
documents, if any. The third overload picks up the specified DOM element or elements. Finally, the fourth
just takes a callback function and runs it on the entire document, as soon as the page's document is fully
loaded.
In addition, the root jQuery object also features a few helper methods, as listed in Figure 1. Of particular
interest to developers is the each method, which you can use as a shorthand for a manual iteration over the
content of a jQuery object—typically the DOM elements selected via a CSS selector. Here's a code snippet
that shows the each method in action. The loop processes all <input> tags in a form:

Copy Code
$("form input").each(
 function(i) {
 this.title = "Input #" + i;
}
);

javascript:CopyCode('ctl00_mainContentContainer_ctl04');�
javascript:CopyCode('ctl00_mainContentContainer_ctl05');�
javascript:CopyCode('ctl00_mainContentContainer_ctl06');�
javascript:CopyCode('ctl00_mainContentContainer_ctl07');�
javascript:CopyCode('ctl00_mainContentContainer_ctl04');
javascript:CopyCode('ctl00_mainContentContainer_ctl05');
javascript:CopyCode('ctl00_mainContentContainer_ctl06');

Figure 1 Edge Server roles and reverse proxy for OCS 2007

Methods Description

each(callback) Loops over the content of the wrapped set and executes the specified callback function.

length Property that returns the number of elements in the wrapped set.

eq(position) Reduces the wrapped set to the single element at the specified position.

get() Returns the content of the wrapped set as an array of DOM elements.

get(index) Returns the DOM elements at the specified position in the wrapped set.

index(element) Returns the 0-based index in the wrapped set of the specified DOM element, if any.

The difference between each () and a manual JavaScript loop is that each() automatically maps the "this"
object to the element in the collection being processed. The callback function, however, receives an optional
integer parameter that is the (0-based) index of the iteration. Let's learn more about jQuery selectors and
their CSS-based syntax.

Here's the simplest use of the $ function:

Copy Code
var elem = $("#grid");
The $ function in the code snippet retrieves all DOM element(s) whose ID property matches the specified
expression. The # symbol doesn't belong to the ID string, but is just a prefix for the $ function to
disambiguate ID strings, CSS classes and HTML tag names. (The # symbol is part of standard CSS syntax
for ID selection.) The preceding code snippet is functionally equivalent to the following DOM statement:

Copy Code
var elem = document.getElementById("grid");
It is worth noting that in the HTML DOM, unlike in ASP.NET, multiple elements can share the same ID. If an
array of elements match the ID, then method getElementById would only return the first matching element;
getElementsByName, on the other hand, would return the whole collection.
The similarity between classic DOM methods and the $ function ends there; the power of $ goes far beyond.
Through $, you select DOM elements and then apply a function to each.
The selector expression is driven by the CSS 3.0 syntax and can reach a nontrivial level of complexity.
Figure 2 shows the supported selectors. The list doesn't include filters, which I'll talk about in a moment. It
is key to note that in a hierarchy of selectors, the ancestor, the parent, or the previous element can be any
valid selector, not just an HTML element. Figure 3 shows a few sample queries.
Figure 2 Supported jQuery Selectors

Selector Description

#id Returns the first element, if any, in the DOM with a matching ID attribute.

element Returns all elements with a matching tag name.

.class Returns all elements with a matching CSS class.

* Returns all elements in the page.

selector1, ...,
selectorN

Applies all given basic selectors and returns the combined results.

ancestor
descendant

Given an ancestor selector, returns the collection of all descendant elements that match
the descendant selector. For example, "div p" returns all <p> elements within a <div>.

parent > child Given a selector, returns the collection of all child elements that match the child selector.

prev + next
Given a selector, returns the collection of all sibling elements that match the next selector
and are located next to the prev selector.

prev ~ sibling
Given a selector, returns the collection of all sibling elements that match the sibling
selector and follows the prev selector.

Figure 3 Sample jQuery Selectors in Action

Sample Selector Effect

form input Returns all input fields within any <form> tags in the page.

#Form1 input Returns all input fields within the form labeled Form1.

javascript:CopyCode('ctl00_mainContentContainer_ctl08');�
javascript:CopyCode('ctl00_mainContentContainer_ctl09');�

h2 + p Returns all <p> tags that are next to a <h2> while child of the same parent.

input.textBox Returns all <input> tags whose CSS class is "textBox."

div span.myClass Returns all tags whose CSS class is "myClass" located within a <div>.

Selectors can be further refined by applying filters on attributes, content, position, and visibility. Figure 4
lists some of the most popular filters in jQuery. The full reference is at docs.jquery.com/Selectors.
Filters such as first and last find DOM elements at a given position in the returned collection. You can also
use an index-based syntax to filter elements by using the eq, gt, and lt filters. The filter eq picks up the
element whose index matches the given index, whereas gt and lt pick up elements greater than, or less
than, a given index.
Attribute filters are powerful tools that select HTML elements where a given attribute is in a given
relationship with a value. In Figure 4, I only listed the most commonly used attribute filters. Other filters
exist to select elements where a given attribute begins with, ends with, or contains a given value. Here's the
required syntax:

Copy Code
[attribute^=value] // begins with value
[attribute$=value] // ends with value
[attribute*=value] // contains value
Figure 4 jQuery Filters

Positional Filters Description

:first Returns the first element of the selected collection of elements.

:last Returns the last element of the selected collection of elements.

:not(selector) Filters out all elements matching the specified selector.

:even Returns all even elements in the selected collection.

:odd Returns all odd elements in the selected collection.

Child filters Description

:nth-child(expr)
Returns all child elements of any parent that match the given expression. The expression
can be an index or a math sequence (for example, 3n+1), including standard sequences
such as odd and even.

:first:child Returns all elements that are the first child of their parent.

:last-child Returns all elements that are the last child of their parent.

:only-child Returns all elements that are the only child of their parent.

Content filters Description

:contains(text) Returns all elements which contain the specified text.

:empty Returns all elements with no children. (Text is considered a child node.)

:has(selector) Returns all elements that contain at least one element that matches the given selector.

:parent Returns all elements that have at least one child. (Text is considered a child node.)

Visibility filters Description

:hidden
Returns all elements that are currently hidden from view. Input elements of type "hidden"
are added to the list.

:visible Returns all elements that are currently visible.

Attribute filters Description

[attribute] Returns all elements that have the specified attribute.

[attribute =
value]

Returns all elements that have the specified attribute set to the specified value.

[attribute !=
value]

Returns all elements whose specified attribute (if present) has a value different from the
given one.

Attribute filters can also be chained by simply placing two or more of them side by side, like so:
Copy Code

[align=right][valign=top]

javascript:CopyCode('ctl00_mainContentContainer_ctl10');�
javascript:CopyCode('ctl00_mainContentContainer_ctl11');�

A particularly powerful filter is nth-child. It supports a number of different input expressions, as shown here:
Copy Code

:nth-child(index)
:nth-child(even)
:nth-child(odd)
:nth-child(sequence)
The first format selects the nth child of the HTML elements in the source selector where n refers to the
provided index. All elements placed at any odd or even position (0-based) are returned if you specify the
odd or even filter. Finally, you can pass nth-child as the root expression of a mathematical sequence such as
3n to indicate multiples of 3.
As an example, the following selector picks up all rows in a table (labeled DataGrid1) that are on the
positions determined by the sequence 3n+1, (1, 4, 7 and so forth, remembering that it is a zero-based
index):

Copy Code
#DataGrid1 tr:nth-child(3n+1)
The next one is a much more complex expression, and it demonstrates the incredible power and flexibility of
jQuery selectors:

Copy Code
#DataGrid1 tr:nth-child(3n+1):has(td[align=right]) td:odd
It reads as follows: of all the table rows selected at the previous step (position 1, 4, 7, and so on), now you
only take those which have a cell (a <td> tag) where the attribute align equals the value of "right."
Furthermore, of the remaining rows, you only take the cells on columns with an odd index. Let's consider the
HTML table in Figure 5. In Figure 6, the cell with a yellow background is the result of the query.
 Figure 5 An HTML Table
Copy Code

<table id="DataGrid1" border="1">
 <tr>
 <td>Column1</td>
 <td>Column2</td></tr>
 <tr>
 <td>Val1</td>
 <td align="right">Num1</td></tr>
 <tr>
 <td>Val2</td>
 <td align="right">Num2</td></tr>
 <tr>
 <td>Val3</td>
 <td align="right">Num3</td></tr>
 <tr>
 <td>Val4</td>
 <td>Num4</td></tr>
 <tr>
 <td>Val5</td>
 <td>Num5</td></tr>
 <tr>
 <td>Val6</td>
 <td>Num6</td></tr>
 <tr>
 <td>Val7</td>
 <td>Num7</td></tr>
</table>

javascript:CopyCode('ctl00_mainContentContainer_ctl12');�
javascript:CopyCode('ctl00_mainContentContainer_ctl13');�
javascript:CopyCode('ctl00_mainContentContainer_ctl14');�
javascript:CopyCode('ctl00_mainContentContainer_ctl18');�

Figure 6 Selecting a Certain Cell on a Table

Form Filters
As mentioned, the overall syntax of jQuery selectors is close to the syntax of CSS 3.0 selectors, just
extended with some extra pseudo elements such as those listed in Figure 7.
The :input filter, in particular, refers to all logical input elements you may find on a page and is not limited
to the <input> tags. In fact, it includes <textarea> elements and <select> elements used to display
listboxes and dropdown lists. Selectors in Figure 7 do not match CSS selectors, but provide handy shortcuts
to pick up homogeneous elements such as all input tags of a given type. As an example, the selector :text is
functionally equivalent to the following:

Copy Code
form input[type=text]
Figure 7 Form Filters

Selector Description

:input
Returns all elements that have a role in collecting input data, including textarea and drop-down
lists.

:text Returns all input elements whose type attribute is text.

:password Returns all input elements whose type attribute is password.

:checkbox Returns all input elements whose type attribute is checkbox.

:radio Returns all input elements whose type attribute is radio.

:submit Returns all input elements whose type attribute is submit.

:reset Returns all input elements whose type attribute is reset.

:image Returns all input elements whose type attribute is image.

:button Returns all input elements whose type attribute is button.

:file Returns all input elements whose type attribute is file.

:hidden Returns all input elements whose type attribute is hidden.

:enabled Returns all input elements that are currently enabled.

javascript:CopyCode('ctl00_mainContentContainer_ctl20');�

:disabled Returns all input elements that are currently disabled.

:checked Returns all checkbox or radio elements that are currently checked.

:selected Returns all list elements that are currently selected.

Other nice helpers are available to grab all input elements in a page that are enabled or disabled and all
checkboxes and radio buttons checked as well as list items currently selected.

Operations on Wrapped Sets
HTML elements that match a selector are returned packed in a new instance of the jQuery object. This object
incorporates a JavaScript array with all DOM references. The results are often referred to as a wrapped set.
A wrapped set is never null, even if no matching elements have been found. You check this situation by
looking at the length property of the jQuery object, as shown here:

Copy Code
// All TDs with a child IMG
var w_set = new jQuery("#DataGrid1 td:has(img))");
if (w_set.length == 0)
 alert("No match found.");
else
 alert(w_set.length)
The high level of flexibility shown by jQuery is a great feature to have, but then once you have all the
elements you were looking for, you need to process them. The simplest possible approach entails setting up
a loop and running a function over each item in the collection, like this:

Copy Code
var ws = $("#DataGrid1 tr:nth-child(3n+1)");
for(i = 0; i<ws.length; i++)
{
 processElement(ws[i]);
}
function processElement(elem)
{
 ...
}
In such a manual iteration, you access DOM elements directly, just as in classic JavaScript programming.
The jQuery library offers a couple of alternate routes that are functionally equivalent to manual iteration.
Nicely enough, jQuery iterations result in more compact and even more readable code. The first approach is
based on the each function.
As mentioned, in jQuery the each function executes a user-defined callback on any element associated with
the wrapped set. A fairly large number of operational methods, however, exist to make it even quicker and
easier for you to execute common operations on the wrapped set. For example, you can use the css function
to apply CSS styles to the wrapped set. Following is an example that sets background color and border style
of all input elements in a form:

Copy Code
$("form input").css(
 {'background-color' : 'yellow',
 'border-style' : 'dashed'}
);
Admittedly, this short example is a bit misleading as it may suggest that jQuery should be used for things
that CSS itself does well. The css function is great when it works on dynamically applied styles that depend
on user interaction or some other run time condition.
Likewise, you can add, remove and even toggle a CSS class on the elements in the wrapped set. You do this
via the addClass, removeClass, and toggleClass functions. The attr function allows you set one or multiple
attributes on all elements. For example, here's how to disable all input elements:

Copy Code
$("form input").attr(
 {'disabled' : 'disabled'}
);

javascript:CopyCode('ctl00_mainContentContainer_ctl21');�
javascript:CopyCode('ctl00_mainContentContainer_ctl22');�
javascript:CopyCode('ctl00_mainContentContainer_ctl23');�
javascript:CopyCode('ctl00_mainContentContainer_ctl24');�

The html function sets the HTML content of a tag. It uses the innerHTML property internally. To set the inner
text of a tag, instead, you use the text function passing the text to set as the argument. This is a good way
to understand the benefits of a cross-browser library like jQuery. The property innerHTML can be considered
a de-facto standard property supported by all browsers in the same way.
The same can't be said for the analogous property that only sets the text. This property is innerText in
Internet Explorer and textElement in Firefox. The jQuery text function hides differences and provides the
same functionality across all browsers.

jQuery Chainability
One of the best features of jQuery is its chainability, which is possible because the jQuery object itself, as
well as most of the functions and filters, return a jQuery object. The returned object contains the original
wrapped set as modified by the function itself. For example, if you apply the css function to a wrapped set,
the returned jQuery object contains the same set of elements along with a modified set of CSS styles. If you
apply a filter, you'll get back a smaller set as filtered by the function. It is worth noting that you also have
available a not function to exclude all elements that match the specified query.
Concatenating jQuery functions couldn't be easier. All you need to do is attach a new function call to the
jQuery object returned by the previous call. Here's an example:

Copy Code
$("form input")
.not("[type!=text]")
.css(
 {'background-color' : 'yellow',
 'border-style' : 'dashed'})
.attr("value", "test");
Here the sample expression selects all input fields where the type attribute equals text and sets a few CSS
styles and the value attribute to fixed values. (Note that in the example, I used the not function just to add
a third link to the chain. The result of the not condition could be integrated into the $ query resulting in even
clearer code.)
It goes without saying that method of chaining produces more compact code; but it doesn't necessarily
result in faster code. Chaining is a technique that you, as a developer, may or may not feel comfortable
with. If you experience troubles with one of these compact expressions, you might want to break it into
pieces to simplify debugging.
Finally, note that not all jQuery methods return a modified jQuery object. Methods like html or text, for
instance, just return a string that respectively points to the HTML or text content of the first element of the
source wrapped set. For the exact syntax of jQuery methods see docs.jquery.com/Main_Page.

Know Your HTML
The more you explore the depths of jQuery, the more you understand the importance of knowing in detail
the HTML you're working with. ASP.NET server controls tend to hide the structure of the HTML they output.
On the other hand, server controls were just introduced to let developers focus on declarative attributes
rather than HTML details. Years of experience proved this was not always the right approach.
Today, you do need to keep your HTML under total control for accessibility, styling, and conformance to
XHTML. Incidentally, this fact establishes a subtle link between jQuery and the ASP.NET MVC framework.
And it is no coincidence that the ASP.NET MVC framework includes the latest version of jQuery in the
package.
That said, it is also worth noting that tying logic to markup using jQuery selectors might create an unwanted
coupling between logic and the shape of the DOM, which may result in difficult-to-maintain applications.
Finally, if you're looking for more ideas for using JavaScript in interesting ways, check out the list of
JavaScript articles at on MSDN.
Send your questions and comments for Dino to cutting@microsoft.com.

Dino Esposito is an architect at IDesign and the co-author of Microsoft .NET: Architecting Applications for
the Enterprise (Microsoft Press, 2008). Based in Italy, Dino is a frequent speaker at industry events
worldwide. You can join his blog at weblogs.asp.net/despos.

javascript:CopyCode('ctl00_mainContentContainer_ctl25');�
http://msdn.microsoft.com/magazine/cc159280
mailto:cutting@microsoft.com
http://weblogs.asp.net/despos

