CGT 141/CPT 141 Lecture 10 Wk 6

Forms and Data Submission

Understanding Forms

· Purpose:

· Predominantly used for the collection of data from the end user

· Was designed as primary mechanism for extending HTML and giving it a utilitarian purpose

· Limiting when uses apart from other technologies

· Results:

· Data send from a form is composed of a raw series of name and value pairs.

· The name aspect is the name of the form element from which the data is coming; defined in the HTML

· The value is either the default value for the form element (defined in the HTML page) or the value the user entered or selected

· Can also send “attachments” via file upload. However, must be some mechanism on the server (add-on server-side element) to support this.

· The data, in its simplest form, is a continuous string of name and value pairs separated by semi-colons:

· fname=ronald;lname=glotzbach;radchoice1=1

· Data sent from a form can be sent in two ways:

· GET – URL-encodes the data and attaches it to the end of the URL

· URL-encoding encodes the data by replacing hexadecimal character representations for non-valid URL characters.

· Spaces are converted to %20

· Slashes are converted to %2F

· Everything from the ? on, is called a QueryString:

· GET is not a secure method (as the data is shown in the URL bar)

· POST – sends the data inside the server’s response header to the user’s browser

· Ultimately: which method used is based on where the data is being sent and what data is being sent.

· Parts of the “form process”

· Creation of the HTML form page

· Validation

· Cannot depend on user’s doing anything logical or of them following instructions

· Validation allows you to make sure the user:

· Entered something

· Entered something valid

· Typically done with client-side scripting, such as JavaScript or VBScript

· Client-Side JavaScript, JScript, and VBScript can be seen by the user on the client machine – just view the source code.

· Allows you to look at their code and grab things you deem useful.

· Be careful of copyrighted material. Attribute the work to the author.

· More advanced sites use server-side scripting as there are advantages for doing so.

· Best examples: ASP, PHP, JSP, ASP.NET

· Use one of the above to grab the form data, store it, manipulate it, send it elsewhere, … all unannounced to the user.

· Source to send the data to

· Simplest: send data to an email

· More complex (and server dependent): server-side script

· Connect to databases

Form Tags and Attributes

· <form>…</form>

· Three (important) attributes:

· Name & ID

· Allows you to access the form and its elements via client-side scripting

· Should be used anytime form data is being sent somewhere.

· Action

· Tells where to send the data.

· Could be an email or various types of CGI

· More often, it is another page that gathers and stores the data.

· Method

· How to send the data (GET or POST)

· Enctype

· Encoding Type

· Defines what type of data is being sent and how it is encoded

· If none included, assumed to be standard URL-encoding

· Not necessary for the form to work – but must be included on forms that upload a file to the server.

· Labels and Controls

· <label>…</label>

· Precedes the form elements and link control text to control

· <input>

· type – defines the control type

· text – single line entry

· radio – radio buttons

· Usually for “one of many” selections

· To get a set of radio buttons to work together, name them all the same

· checkbox – checkboxes

· Usually for “multiple option” selections

· submit – to submit data to defined source (action in <form>)

· reset – reset fields to default values

· file – for file attachments

· Requires additional technology

· hidden – for transferring data you don’t want the user to readily see

· Still viewable (in View Source), so do not user for security data

· Usually used in combination with database-driven sites

· image – used for image-based buttons

· password – used for passwords (automatically does asterisks for entry)

· button – to create generic buttons

· <select>…</select>

· For creating drop-down menus

· Can do single or multiple selections

· Can show one or more entries at a time

· <option>…</option> tag used for the menu selections

· <textarea>…</textarea>

· Used for multiline text entry

· Other tags

· <fieldset>…</fieldset> – used for grouping fields for better non-visual rendering

· <legend>…</legend> – provides caption for <fieldset>

· <optgroup>…</optgroup> – provides logical group for sets of <option> tags
Note: page 271 of the book is particularly useful when developing forms.
Mixing <form> tags with <table> tags

· Nearly all form elements are usually placed inside of a table for positioning.

· Always place the <form> tag outside the <table> tag.

· Always place the </form> tag outside the </table> tag.

· Notice the location of the form elements in the example below:

· A common mistake that people make is putting the <form> tag inside of the <table> tag.

· This may cause the form not to send when the submit button is pressed. The form elements would be recognized, but because the <form> tag is improperly nested, the method and action are undefined.

· Incorrect Example:

<table width=”500” cellpadding=”4” cellspacing=”1” border=”0”>

<form name=”form0” method=”post” action=”mailto:rjglotzbach@tech.purdue.edu”>
<html>

<head>

	<title></title>

</head>

<body>

<form name=”form0” method=”post” action=”mailto:rjglotzbach@tech.purdue.edu”>

	<table width=”500” cellpadding=”4” cellspacing=”1” border=”0”>

		<tr>

			<td> <input type=”text” name=”FName” size=”25” /> </td>

		</tr>

		<tr>

			<td> <input type=”text” name=”LName” size=”35” /> </td>

		</tr>

		<tr>

			<td> <input type=”submit” value=”Submit”/> </td>

		</tr>

</table>

</form>

</body>

</html>

resizeStore.html?src=atest/Images/BellTower/t_bellTower08.jpg&width=200&height=400

