CGT 215 Lecture 5

Control Statements Part Il
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Counter-Controlled Repetition

0 Essentials of counter-controlled repetition
A control variable (or loop counter)
The initial value of the control variable

The increment (or decrement) by which the
control variable i1s modified each time through the
loop (also known as each Iiteration of the loop)

The loop-continuation condition that determines
whether to continue looping.
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for

0 for Repetition Statement

The for repetition statement specifies the
elements of counter-controlled-repetition in a
single line of code.

In general, counter-controlled repetition should
be implemented with a for statementk
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for statement — activity diagram
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for — example 1

for ( Int counter = 1; counter <= 10; counter++)
Console.Write( "{0} ", counter );

//Or also written:

for ( Int counter = 1; counter <= 10; counter++)

{
Console.Write( "{0} ", counter );

¥
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for — example 2

Int total = 0; // initialize total

// total even integers from 2 through 20
for ( Int number = 2; number <= 20; number +=2)
total += number;

/] display results
Console.WriteLine( "Sum is {0}", total ),
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do...while repetition statement

0 The do...while repetition statement is similar
to the while statement, however:

In the while statement, the loop-continuation
condition Is evaluated before the body of the loop
executes.

In the do...while statement, the loop-continuation
condition Is evaluated after the body of the loop
IS executed.

Thus, the body of a do...while loop always
executes at least one time.
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@. ..while —activity diagram
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do...while — example

Int counter = 1; // initialize counter

do

{
Console.Write( "{0} ", counter );

++counter;
} while (counter<=10); //enddo...while
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switch statement

0 Multiple-selection statement

O Performs different actions based on the
nossible values of an expression

O Each action 1s associated with the value of a
constant integral expression or a constant
string expression.
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Constant integral expression

0 Any expression involving character and
Integer constants that evaluates to an integer
value

O 1.e., values of type sbyte, byte, short, ushort,
Int, uint, long, ulong, char, or a constant from
an enum type.
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Constant string expression

0 Any expression composed of string literals
that always results in the same string
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switch statement — activity diagram
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switch statement

O  switch... case is an alternative to using if...else

switch(find)
{
case “a’:
Console._WriteLine(**Regular Customer’);
break;
case “b’:
Console._WriteLine(**Preferred Customer™);
break;
case “c’:
Console._WriteLine(*Donor (monetary or organ... unsure which)™);
break;
default:
Console._WriteLine(*“We don’t want their business..”);
break;

. ***without break statements, every case will execute
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switch statement — example 1

// determine which grade was entered
switch ( grade / 10 )

{

case 9: // grade was in the 90s

case 10: // grade was 100
++aCount; // increment aCount
break; // necessary to exit switch

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

case 7: // grade was between 70 and 79
++cCount; // increment cCount
break; // exit switch

case 6: // grade was between 60 and 69
++dCount; // increment dCount
break; // exit switch

default: // grade was less than 60
++fCount; // increment fCount
break; // exit switch

} // end switch
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switch statement — example 2

test = "foo";

switch (test)
{
case "apple™:
tbl.Text = "it's an apple!";
break;
case "orange":
tbl.Text = "it's an orange!";
break;
case "foo":
tbl.Text = "it's a foo!";
break;
default:
tb1l.Text = "it's not a $%#& thing!";
break;

}
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C#’s single-entry / single-exit sequence,
selection, and repetition statements
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C#’s single-entry / single-exit sequence,
selection, and repetition statements

Repetition

whi1e statement do...while statement for statement
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Binary numbers

O Binary numbers are made up of 0 and 1.

O An example of a binary number would look like:
10010111

This Is an example of an 8-bit binary number.

O A 16-bit binary number would look like:
1001001011011001

0 The decimal value of 10010111 is not 10,010,111.
It is actually 151 as a base 10 numeric value.
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How Is It calculated?

O Binary numbers count from right to left.

O Each digit to the left is twice the value of its digit to
the right.

O A graphical representation of this would look like this:

123 g4 32 16 8 4 2 1

O Hence, alinthe 128 box gives the binary number a
decimal value of at least 128.
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Some examples

Binary Number Decimal Value
10000000 = 128
10000001 = 129
00000000 = O
00000001 = 1
00000010 = 2
00000011 = 3
00000100 = 4
00000101 = 5
11111111 = 255

O Thus, 0 to 255 offers 256 values within an 8-bit binary number.
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Logical Operators

0 Enables you to form more complex conditions by
combining simple conditions

O The logical operators are:
&& (conditional AND)
11 (conditional OR)
& (boolean logical AND)
I
N\

(boolean logical iInclusive OR)
(boolean logical exclusive OR)
! (logical negation)
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Conditional AND &&

0 if( (gender == “F”’) && (age >=65) )

seniorFemales++:
false false false
false true false
true false false
true true true
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Conditional OR ||

0O if( (semesterAvg >= 90) || (finalExam >= 90) )
Console.WriteLine(*Student got an A”);

false false false
false true true
true false true
true true true
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Boolean logical AND &

0 Works identically to the && operator, with
one exception — the & always evaluates both
of the operands. For example:

(gender == “F”) & (age >= 65)

Evaluates (age >= 65) regardless of whether
gender Is equal to “F”
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Boolean logical inclusive OR |

0 Works identically to the || operator, with one
exception — the | always evaluates both of the
operands. For example:

(birthday == true) | (++age >= 65)

Evaluates (++age >= 65) even If birthday Is true,
ensuring that age would be incremented.
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Boolean logical exclusive OR #

0 Also called the logical XOR

0 1s true If and only if one of its operands Is true
and the other is false.

false false false
false true true
true false true
true true false
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Logical negation !
0 Enables you to reverse the meaning of a

condition.

0 Logical negation is a unary operator (only has
one operand)

O Placed before a condition

o If( !(grade ==-1) )
Console.WriteLine(*The next value Is: ”);
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Logical negation

O Itrue Is the same as writing false
O Ifalse Is the same as writing true

0o 1f( !(grade >=60) )
Console.WriteLine(*Get a tutor”);
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