CGT 215 Lecture 5

Control Statements Part Il

10/9/2009 CGT 215 1
Copyright © 2009 Ronald J. Glotzbach

—!

Counter-Controlled Repetition

0 Essentials of counter-controlled repetition
A control variable (or loop counter)
The initial value of the control variable

The increment (or decrement) by which the
control variable i1s modified each time through the
loop (also known as each Iiteration of the loop)

The loop-continuation condition that determines
whether to continue looping.

10/9/2009 CGT 215 2
Copyright © 2009 Ronald J. Glotzbach

—!

for

0 for Repetition Statement

The for repetition statement specifies the
elements of counter-controlled-repetition in a
single line of code.

In general, counter-controlled repetition should
be implemented with a for statementk

10/9/2009 CGT 215 3
Copyright © 2009 Ronald J. Glotzbach

for header components

Required Required
for Control semicolon semicolon
keyword variable separator separator

B W'y |

for (int counter = 1; counter <= 10; counter++)

S 1

Initial value of Increment of

control variable Loop-continuation control variable
condition
10/9/2009 CGT 215 4

Copyright © 2009 Ronald J. Glotzbach

for statement — activity diagram

spe e b3 : ; }f\

a e il 2 e ™

Inltlalle iz int counter = 1
control variable it '

[counter <= 10] Increment the
counter value _ control variable ~

st

_.Di's'pjl__ay_ the i

3 I‘_ s L
I
|

[counter > 10]

|
I
I
\ | ~ counter++
| e AR
I
|
|
|

.-_‘Q

1 it i)
Determine whether
looping should 5

10/9/2009 continue . Console.Write(“{0} , counter);

for — example 1

for (Int counter = 1; counter <= 10; counter++)
Console.Write("{0} ", counter);

//Or also written:

for (Int counter = 1; counter <= 10; counter++)

{
Console.Write("{0} ", counter);

¥

10/9/2009 CGT 215 6
Copyright © 2009 Ronald J. Glotzbach

for — example 2

Int total = 0; // initialize total

// total even integers from 2 through 20
for (Int number = 2; number <= 20; number +=2)
total += number;

/] display results
Console.WriteLine("Sum is {0}", total),

10/9/2009 CGT 215 7
Copyright © 2009 Ronald J. Glotzbach

—!

do...while repetition statement

0 The do...while repetition statement is similar
to the while statement, however:

In the while statement, the loop-continuation
condition Is evaluated before the body of the loop
executes.

In the do...while statement, the loop-continuation
condition Is evaluated after the body of the loop
IS executed.

Thus, the body of a do...while loop always
executes at least one time.

10/9/2009 CGT 215 8
Copyright © 2009 Ronald J. Glotzbach

@. ..while —activity diagram

\
O
)
Gonsale Writte@ 0 iidicounte mi g — — — - Display the i
| R ' countervalue B,
e iR H‘ TEX (SN NEL A ey
e G T : -:.?_'
e - Increment the :;
FR control variable o
m;&«a’mk Py fﬂﬁw’
; FERYEE ,"k &
,;_-,Determane whether i e S JQupter v 0]
 looping should Bl

; contlnue s [counter > 10]
10/9/2009 i B 9

do...while — example

Int counter = 1; // initialize counter

do

{
Console.Write("{0} ", counter);

++counter;
} while (counter<=10); //enddo...while

10/9/2009 CGT 215 10
Copyright © 2009 Ronald J. Glotzbach

—!

switch statement

0 Multiple-selection statement

O Performs different actions based on the
nossible values of an expression

O Each action 1s associated with the value of a
constant integral expression or a constant
string expression.

10/9/2009 CGT 215 11
Copyright © 2009 Ronald J. Glotzbach

—!

Constant integral expression

0 Any expression involving character and
Integer constants that evaluates to an integer
value

O 1.e., values of type sbyte, byte, short, ushort,
Int, uint, long, ulong, char, or a constant from
an enum type.

10/9/2009 CGT 215 12
Copyright © 2009 Ronald J. Glotzbach

Constant string expression

0 Any expression composed of string literals
that always results in the same string

io/9/2z009 CGT215

switch statement — activity diagram

[true] i
casea _<___<::>————e;> case a actions(s) —= break —€E*<:>

[false]

b [true] ;
case --- -<>—9 case b actions(s) —= break

[true] 1 \
case z ——— case z actions(s) —= break ——E><::>

default actions(s)

V

break

10/9/2009 14
J

switch statement

O switch... case is an alternative to using if...else

switch(find)
{
case “a’:
Console._WriteLine(**Regular Customer’);
break;
case “b’:
Console._WriteLine(**Preferred Customer™);
break;
case “c’:
Console._WriteLine(*Donor (monetary or organ... unsure which)™);
break;
default:
Console._WriteLine(*“We don’t want their business..”);
break;

. ***without break statements, every case will execute

10/9/2009 CGT 215 15
Copyright © 2009 Ronald J. Glotzbach

switch statement — example 1

// determine which grade was entered
switch (grade / 10)

{

case 9: // grade was in the 90s

case 10: // grade was 100
++aCount; // increment aCount
break; // necessary to exit switch

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

case 7: // grade was between 70 and 79
++cCount; // increment cCount
break; // exit switch

case 6: // grade was between 60 and 69
++dCount; // increment dCount
break; // exit switch

default: // grade was less than 60
++fCount; // increment fCount
break; // exit switch

} // end switch

10/9/2009 CGT 215 16
Copyright © 2009 Ronald J. Glotzbach

switch statement — example 2

test = "foo";

switch (test)
{
case "apple™:
tbl.Text = "it's an apple!";
break;
case "orange":
tbl.Text = "it's an orange!";
break;
case "foo":
tbl.Text = "it's a foo!";
break;
default:
tb1l.Text = "it's not a $%#& thing!";
break;

}

10/9/2009 CGT 215 17
Copyright © 2009 Ronald J. Glotzbach

C#’s single-entry / single-exit sequence,
selection, and repetition statements

Sequence Selection
if statement switch statement with breaks
(single selection) (multiple selection)
| [t] L R
\l/ - = i break
[fl (]

v <I>% > break -=>>

M| [

if...else statement

(double selection) A !
é B >m 3>
0 \ < — || break
s U
‘ I\ ‘ default processing
/\.J\

v

10/9/2009 & 18

C#’s single-entry / single-exit sequence,
selection, and repetition statements

Repetition

whi1e statement do...while statement for statement

%ﬂa initialization
[t]
[t]
(f]

[f]

— increment

CGT 215 Lecture 5

Logic

CCCCCC
Copyright © 2009 Ronald J. Glotzbach

—!

Binary numbers

O Binary numbers are made up of 0 and 1.

O An example of a binary number would look like:
10010111

This Is an example of an 8-bit binary number.

O A 16-bit binary number would look like:
1001001011011001

0 The decimal value of 10010111 is not 10,010,111.
It is actually 151 as a base 10 numeric value.

10/9/2009 CGT 215 21
Copyright © 2009 Ronald J. Glotzbach

—!

How Is It calculated?

O Binary numbers count from right to left.

O Each digit to the left is twice the value of its digit to
the right.

O A graphical representation of this would look like this:

123 g4 32 16 8 4 2 1

O Hence, alinthe 128 box gives the binary number a
decimal value of at least 128.

10/9/2009 CGT 215 22
Copyright © 2009 Ronald J. Glotzbach

Some examples

Binary Number Decimal Value
10000000 = 128
10000001 = 129
00000000 = O
00000001 = 1
00000010 = 2
00000011 = 3
00000100 = 4
00000101 = 5
11111111 = 255

O Thus, 0 to 255 offers 256 values within an 8-bit binary number.

10/9/2009 CGT 215 23
Copyright © 2009 Ronald J. Glotzbach

—!

Logical Operators

0 Enables you to form more complex conditions by
combining simple conditions

O The logical operators are:
&& (conditional AND)
11 (conditional OR)
& (boolean logical AND)
I
N\

(boolean logical iInclusive OR)
(boolean logical exclusive OR)
! (logical negation)

10/9/2009 CGT 215 24
Copyright © 2009 Ronald J. Glotzbach

————————
Conditional AND &&

0 if((gender == “F”’) && (age >=65))

seniorFemales++:
false false false
false true false
true false false
true true true
10/9/2009 CGT 215 25

Copyright © 2009 Ronald J. Glotzbach

e
Conditional OR ||

0O if((semesterAvg >= 90) || (finalExam >= 90))
Console.WriteLine(*Student got an A”);

false false false
false true true
true false true
true true true
10/9/2009 CGT 215 26

Copyright © 2009 Ronald J. Glotzbach

—!

Boolean logical AND &

0 Works identically to the && operator, with
one exception — the & always evaluates both
of the operands. For example:

(gender == “F”) & (age >= 65)

Evaluates (age >= 65) regardless of whether
gender Is equal to “F”

10/9/2009 CGT 215 27
Copyright © 2009 Ronald J. Glotzbach

—!

Boolean logical inclusive OR |

0 Works identically to the || operator, with one
exception — the | always evaluates both of the
operands. For example:

(birthday == true) | (++age >= 65)

Evaluates (++age >= 65) even If birthday Is true,
ensuring that age would be incremented.

10/9/2009 CGT 215 28
Copyright © 2009 Ronald J. Glotzbach

Boolean logical exclusive OR #

0 Also called the logical XOR

0 1s true If and only if one of its operands Is true
and the other is false.

false false false
false true true
true false true
true true false

10/9/2009 CGT 215 29
Copyright © 2009 Ronald J. Glotzbach

—!

Logical negation !
0 Enables you to reverse the meaning of a

condition.

0 Logical negation is a unary operator (only has
one operand)

O Placed before a condition

o If(!(grade ==-1))
Console.WriteLine(*The next value Is: ”);

10/9/2009 CGT 215 30
Copyright © 2009 Ronald J. Glotzbach

Logical negation

O Itrue Is the same as writing false
O Ifalse Is the same as writing true

0o 1f(!(grade >=60))
Console.WriteLine(*Get a tutor”);

10/9/2009 CGT 215 31
Copyright © 2009 Ronald J. Glotzbach

