
10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 6
Methods: A Deeper Look

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Divide and Conquer
 Experience has shown that the best way to

develop and maintain a large application is to
construct it from small, simple pieces.

 This technique is called divide and conquer

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

Methods
 Called functions or procedures in other

programming languages
 Methods allow you to modularize an

application by separating its tasks into self-
contained units.

 You have created many methods already.
 These methods are sometimes referred to as

user-defined methods.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

Motivations for Modularizing an
Application
 One is “divide and conquer”

 Makes applications more manageable by constructing it as
small, simple pieces

 Another is software reusability
 Existing methods can be used as building blocks to create

new applications.

 Another reason is to avoid repeating code
 Dividing an application into meaningful methods makes

the application easier to debug and maintain.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

Software Engineering Observation 7.1
 Don’t try to “reinvent the wheel.” when

possible, reuse Framework Class Library
classes and methods.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

Software Engineering Observation 7.2
 To promote software reusability, every

method should be limited to performing a
single, well-defined task, and the name of the
method should express that task effectively.
Such methods make applications easier to
write, debug, maintain, and modify.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

Software Engineering Observation 7.3
 If you cannot choose a concise name that

expresses a method’s task, your method might
be attempting to perform too many diverse
tasks. It is usually best to break such a method
into several smaller methods.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

Error-Prevention Tip 7.1
 A small method that performs one task is

easier to test and debug than a larger method
that performs many tasks.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

static methods
 Although most methods execute on specific

objects in response to method calls, this is not
always the case.

 Sometimes a method performs a task that
does not depend on the contents of any object.

 Such a method applies to the class in which it
is declared as a whole and is known as a static
method.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

10

static methods
 Math.sqrt()
 sqrt() is a static method of the Math class
 You do not need to create an instance of the Math

class in order to call sqrt()
 Console.WriteLine()
 WriteLine() is a static method of the Console

class
 You do not need to create an instance of the

Console class in order to call WriteLine()

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

const variables
 A constant is declared with the keyword const

– its value cannot be changed after the
constant is declared.
 Pi is a constant – its value never changes

 Most const variables are by default static,
unless declared inside of a method.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

static variables
 Each instance of an object of a class has

separate instance of the variables.
 This is not the case with static variables
 When objects of a class containing static

variables are created, all the objects of that
class share one copy of the class’s static
variables.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

Why is method Main declared static?
 Method Main is sometimes called the

application’s entry point.
 Declaring Main as static allows the execution

environment to invoke Main without creating
an instance of the class.

 public static void Main(string args[])

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

Where do you declare static?
 Before the return type of a method:
 public static void AddListItemMethod()
 public static int GetValue()

 Before the class name of a variable declaration:
 private static string name;
 private static bool isTrue;

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

Math class

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

Math class

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

Declaring a method
 You need:
 Access modifier
 (optional) static
 Return type
 Name
 (optional) Parameters

 public static void Main(string args[])
 public void SetGender(string gender)
 public string GetName()

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

Methods with multiple parameters
 When a method has more than one parameter, the

parameters are specified as a comma-separated list.
 Notice: each parameter has a type – at type is required for

each parameter

public double FindMax(double x, double y, double z)
{

…
}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

Calling methods
 You must provide the correct number of parameters

in each method call
 If a method is declared with 3 parameters, you must

pass 3 parameters in.
 Declaration:

 public double FindMax(double x, double y, double z)

 Calling it:
 FindMax(3.2, 4.5, 1.3);
 FindMax(); //would be an error
 FindMax(2.3, 1.2); //would be an error
 FindMax(2.2, 3.3, 4.4, 5.5); //would be an error

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

String Concatenation (revisited)
 Use the + symbol to concatenate strings

together.
 “hello ” + “there” creates the string “hello

there”
 “Maximum is: “ + result
 Another example of concatenation

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

Common Errors
 It is a syntax error to break a string literal

across multiple lines in an application:
 Wrong:

 “hello
how are you”

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

Common Errors
 Confusing the + operator used for string

concatenation with the + operator used for
addition can lead to strange results.
 Example:

 “y + 2 = ” + y + 2
 Results in the string “y + 2 = 52”, not “y + 2 = 7”

 “y + 2 = ” + (y + 2)
 Results in the string “y + 2 = 7”

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Common Errors
 Declaring a method outside the body of a

class declaration or inside the body of another
method is a syntax error.

 Omitting the return type in a method
declaration is a syntax error.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Common Errors
 Re-declaring a method parameter as a local

variable in the method’s body is a compilation
error.

 Forgetting to return a value from a method
that should return one is a compilation error.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

Conversion Types

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

.NET namespaces

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

.NET namespaces

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

using statements
 To include a namespace from the .NET

Framework Class Library, use the using
statement.
 using System.Windows.Forms;
 using System.Data;
 using System.IO;
 using System.Windows.Media;

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Scope of declarations
 The scope of a parameter declaration is: the

body of the method in which the declaration
appears.

 The scope of a local-variable declaration is:
from the point at which the declaration
appears to the end of the block containing the
declaration.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Scope of declarations
 The scope of a local-variable declaration that

appears in the initialization section of a for
statement’s header is: the body of the for
statement and the other expressions in the
header.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

31

Scope of declarations
 The scope of a method, property, or field of a

class is the entire body of the class.
 This enables non-static methods and

properties of a class to use any of the class’s
fields, methods, and properties, regardless of
the order in which they are declared.

 Similarly, static methods and properties can
use any of the static members of the class.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

32

Method Overloading
 Methods of the same name can be declared in

the same class, as long as they have different
sets of parameters (determined by the number,
types, and order of the parameters)

 This is called method overloading.
 When an overloaded method is called, the C#

compiler selects the appropriate method by
examining the number, types and order of the
arguments in the call.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

33

Overloaded methods
 Method calls cannot be distinquished by

return type. Therefore, the return type is not
included as one of the attributes that define
method overloading.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

34

Examples
 The order of parameter types is important.
 public void Method1(int a, float b, string c)
 public void Method1(float a, int b, string c)
 public void Method1(string a, float b, int c)

 Example of calling each of the above methods:
 Method1(3, 4.5, “hi there”);
 Method1(4.5, 3, “hi there”);
 Method1(“hi there”, 4.5, 3);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

35

Examples
 The number of parameters is important

 public void MyMethod(string a)
 public void MyMethod(string a, string b)
 public void MyMethod(string a, string b, string c)
 public void MyMethod(string a, string b, string c, string d)

 Example of calling each of the above methods:
 MyMethod(“here”, “is”, “some”, “text”);
 MyMethod(“here”, “is”, “some”);
 MyMethod(“here”, “is”);
 MyMethod(“here”);

