
9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 3
Introduction to Classes and Objects

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Car analogy

 Somebody tell me about the car analogy…

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

Car analogy
 Suppose you want to drive a car and make it

go faster by pressing on the gas pedal.
 What must happen before you can do this?
 Before you can drive it, somebody had to

design it.
 Designing a car typically begins with

engineering drawings, or blueprints for ‘how’
to make a car.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

Car analogy
 The blueprints include the design for the gas pedal,

as well as the brake pedal.
 The gas pedal “hides” the complex mechanisms that

actually make the car go faster.
 The brake pedal “hides” the mechanisms that make

the car slow down.
 The steering wheel “hides” the mechanisms that

make the car turn left and right.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

Car analogy
 This enables people with little or no

knowledge of how engines work to be able to
drive a car.

 However, you can’t drive the blueprints – you
have to build a car first.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

Method
 Actions
 A method has () after the method name
 Performing a task in an application requires a

method. The method describes the mechanisms that
actually perform its tasks.

 The method hides from its user the complex tasks
that it performs – just as a gas pedal would hide the
tasks for making a car go faster.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

Class
 In C#, we begin by creating an application

unit called a class to house (among other
things) a method – just as a car’s blueprints
house (among other things) the design of the
gas pedal.

 In a class, you provide methods to perform the
class’s tasks.

 GoFaster() and SlowDown() might be
methods of a car class.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

Object
 Just as you cannot drive a blueprint of a car,

you cannot “drive” a class.
 Just as you must build a car first, then drive it

– you must build an object of the class before
you can get an application to perform the
tasks that the class describes.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

Objects
 Briefly Defined
 An object groups related methods, attributes, &

properties
 Reusable software components
 A building block for you to use & reuse
 Typically models something in the real world

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

10

Attributes
 A car has many attributes as well, such as its

color, make, model, number of doors, amount
of gas in the tank, current speed, and total
miles driven (to name a few)

 These attributes are also a part of the car’s
design plans / blueprint – and always travel
with the car as long as it exists.

 Every car maintains is own attributes

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

Attributes
 Every car maintains is own attributes
 For example, each car knows how much gas

is in its own tank, but not how much is in the
tanks of other cars.

 The same is true for each object you create
from a class.

 These attributes are specified as part of the
class.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

Properties
 Notice that these attributes are not necessarily

accessible directly.
 You don’t climb under a car, un-mount the

gas tank, and look inside it to see if it’s full.
You use the gas gauge on the dashboard.

 Properties are get and set accessors for
reading and setting attributes.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

Properties
 get accessors
 For reading the values of variables (attributes)

 set accessors
 For storing values into variables (attributes)

 GetCruiseSpeed();
 SetCruiseSpeed();

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

Instance Variables
 When you build a car, you are building an

instance of that car. There may be 20,000
Ford Fusion cars on the road, but you only
have an instance of that car.

 When you create an object from a class, it is
called an instance variable

 This process is called: instantiating an
instance of an object

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

Method Call
 When you drive a car, pressing the gas pedal

sends a message to the car to perform a task –
make the car go faster.

 Similarly, you send messages to an object –
each message is known as a method call and
tells a method of the object to perform a task.

 GoFaster(); //a method call
 SlowDown(); //a method call

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

Methods & Attributes
 Generally, () signifies a method
 () distinguishes a method from an attribute

 Conversely:
 An attribute is set with a value

 x = 15;
 isCorrect = true;
 name = “Deitel”;

 No code is executed other than the assignment of
the value to the attribute

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

My Dog

Methods Attributes Properties

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

My Dog
 private Dog oMyDog = new Dog();

Methods

Run()

Eat()

Sleep()

Jump()

Bark()

RollOver()

Lick()

Age()

…

Properties

GetName()

SetName()

GetGender()

SetGender()

GetBirthDate()

SetBirthDate()

GetBreed()

SetBreed()

…

Attributes
name
gender
birthDate
breed
hairLength
hairColor
size
…

Why isn’t ‘Age’ an
attribute of oMyDog?

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

Declaration vs. Instantiation
 Declaration
 int x;
 string name;
 bool isCorrect;

 Instantiation
 private Connection oConn = new Connection();
 private Dog oMyDog = new Dog();
 private Car oCar = new Car();
 private Person myDad = new Person();
 private Person myMom = new Person();

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

Instantiation vs. Initialization

 Instantiation creates an instance of an object,
as in the previous slide

 Initialization
 Assigning a value to a variable

 name = “Deitel”;
 x = 1;
 isCorrect = false;

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

Access Modifiers
 private

 protected

 public

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

Access Modifiers: private
 A class’s private variables and methods are not

directly accessible to the class’s clients. They are not
accessible outside the class.

 Another way to say it: Variables, properties, and
methods declared with access modifier private are
accessible only to properties and methods of the
class in which they are declared.

 private int x;

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Access Modifiers: public
 The primary purpose of a public method is to present

to the class’s clients a view of the services the class
provides (the class’s public interface).

 Clients of the class need not be concerned with how
the class accomplishes its tasks.

 public members are accessible wherever the
application has a reference to an object of that class or
one of its derived classes.

 public string name;

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Access Modifiers (cont.)
 Note that members of a class – for instance,

methods and instance variables – do not need
to be explicitly declared private.

 If a class member is not declared with and
access modifier, it has private access by
default.

 int y; //automatically declared private

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

Software Engineering Observation 4.2
 Precede every field and method declaration

with an access modifier.
 Generally, instance variables should be

declared private and methods and properties
should be declared public.

 If the access modifier is omitted before a
member of a class, the member is implicitly
declared private.

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

Access Modifiers: protected
 Using protected access offers an intermediate

level of access between public and private.
 A base class’s protected members can be

accessed by members of that base class and
by members of it’s derived classes.

 We’ll discuss this more when we learn about
inheritance.

 protected string gender;

9/15/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

Demo
 Create Dog class
 Methods, attributes, property accessors

 Instantiate multiple dogs
 Make method calls
 Change attributes
 Change access modifiers

