CGT 215 Lecture 3

Introduction to Classes and Objects

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Car analogy

o Somebody tell me about the car analogy...

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Car analogy

O Suppose you want to drive a car and make it
go faster by pressing on the gas pedal.

o What must happen before you can do this?

o Before you can drive it, somebody had to
design it.

o Designing a car typically begins with
engineering drawings, or blueprints for ‘how’
to make a car.

9/15/2009

CGT 215
Copyright © 2009 Ronald J. Glotzbach

e ——
Car analogy

o The blueprints include the design for the gas pedal,
as well as the brake pedal.

O The gas pedal “hides” the complex mechanisms that
actually make the car go faster.

o The brake pedal “hides” the mechanisms that make
the car slow down.

O The steering wheel “hides” the mechanisms that
make the car turn left and right.

9/1512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Car analogy

o This enables people with little or no
knowledge of how engines work to be able to
drive a car.

o However, you can’t drive the blueprints — you
have to build a car first.

971512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

——
Method

o Actions

A method has () after the method name

o Performing a task in an application requires a
method. The method describes the mechanisms that
actually perform its tasks.

o The method hides from its user the complex tasks
that it performs — just as a gas pedal would hide the
tasks for making a car go faster.

m]

911512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach




Class

o In C#, we begin by creating an application
unit called a class to house (among other
things) a method — just as a car’s blueprints
house (among other things) the design of the
gas pedal.

o Inaclass, you provide methods to perform the
class’s tasks.

o GoFaster() and SlowDown() might be
methods of a car class.

9/15/2009

cGT 215
Copyright © 2009 Ronald J. Glotzbach

e
Object

o Just as you cannot drive a blueprint of a car,
you cannot “drive” a class.

o Just as you must build a car first, then drive it
— you must build an object of the class before
you can get an application to perform the
tasks that the class describes.

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Objects

o Briefly Defined
= An object groups related methods, attributes, &
properties
= Reusable software components
= A building block for you to use & reuse
= Typically models something in the real world

971512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

——
Attributes

o A car has many attributes as well, such as its
color, make, model, number of doors, amount
of gas in the tank, current speed, and total
miles driven (to name a few)

o These attributes are also a part of the car’s
design plans / blueprint — and always travel
with the car as long as it exists.

o Every car maintains is own attributes

9/1512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

e ——
Attributes

o Every car maintains is own attributes

o For example, each car knows how much gas
is in its own tank, but not how much is in the
tanks of other cars.

o The same is true for each object you create
from a class.

O These attributes are specified as part of the
class.

9/15/2009

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Properties

o Notice that these attributes are not necessarily
accessible directly.

o You don’t climb under a car, un-mount the
gas tank, and look inside it to see if it’s full.
You use the gas gauge on the dashboard.

o Properties are get and set accessors for
reading and setting attributes.

911512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach




Properties

O get accessors

= For reading the values of variables (attributes)
O set accessors

= For storing values into variables (attributes)

o GetCruiseSpeed();
o SetCruiseSpeed();

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Instance Variables

o When you build a car, you are building an
instance of that car. There may be 20,000
Ford Fusion cars on the road, but you only
have an instance of that car.

o When you create an object from a class, it is
called an instance variable

o This process is called: instantiating an
instance of an object

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

e ——
Method Call

o When you drive a car, pressing the gas pedal
sends a message to the car to perform a task —
make the car go faster.

o Similarly, you send messages to an object —
each message is known as a method call and
tells a method of the object to perform a task.

o GoFaster(); //a method call

o SlowDown(); //a method call

9/15/2009

CGT 215
Copyright © 2009 Ronald J. Glotzbach

——
Methods & Attributes

o Generally, () signifies a method
= () distinguishes a method from an attribute
o Conversely:
= An attribute is set with a value
o x=15
o isCorrect = true;
o name = “Deitel”;

= No code is executed other than the assignment of
the value to the attribute

9/1512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

—————————————————
My Dog

Methods Attributes Properties

971512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

o private Dog oMyDog = new Dog();

Methods Attributes Properties

Run() name GetName()
gender

Eat() birthDate SetName()
breed

Sleep() hairLength GetGender()

Jump() hairColor SetGender()

Bark() size GetBirthDate()

RollOver() SetBirthDate()

Lick() GetBreed()

Why isn’t ‘Age” an
Age() attribute of oMyDog? SetBreed()
9/;5‘/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach




Declaration vs. Instantiation

o Declaration
® intx;
= string name;
= bool isCorrect;

o Instantiation
= private Connection oConn = new Connection();
= private Dog oMyDog = new Dog();
= private Car oCar = new Car(Q);
= private Person myDad = new Person();
= private Person myMom = new Person();

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Instantiation vs. Initialization

o Instantiation creates an instance of an object,
as in the previous slide

o Initialization
= Assigning a value to a variable
o name = “Deitel”;
o x=1;
o isCorrect = false;

9/15/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Access Modifiers

o private

o protected

o public

9/15/2009 21

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Access Modifiers: private

o A class’s private variables and methods are not
directly accessible to the class’s clients. They are not
accessible outside the class.

o Another way to say it: Variables, properties, and
methods declared with access modifier private are
accessible only to properties and methods of the
class in which they are declared.

O private int x;

9/1512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Access Modifiers: public

O The primary purpose of a public method is to present
to the class’s clients a view of the services the class
provides (the class’s public interface).

o Clients of the class need not be concerned with how
the class accomplishes its tasks.

o public members are accessible wherever the
application has a reference to an object of that class or
one of its derived classes.

O public string name;

9/15/2009 23

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Access Modifiers (cont.)

o Note that members of a class — for instance,
methods and instance variables — do not need
to be explicitly declared private.

o If a class member is not declared with and
access modifier, it has private access by
default.

o inty; //automatically declared private

911512009 CGT 215
Copyright © 2009 Ronald J. Glotzbach




Software Engineering Observation 4.2

o Precede every field and method declaration
with an access modifier.

o Generally, instance variables should be
declared private and methods and properties
should be declared public.

o If the access modifier is omitted before a
member of a class, the member is implicitly
declared private.

9/15/2009 25

cGT 215
Copyright © 2009 Ronald J. Glotzbach

Access Modifiers: protected

o Using protected access offers an intermediate
level of access between public and private.

o A base class’s protected members can be
accessed by members of that base class and
by members of it’s derived classes.

o We’ll discuss this more when we learn about
inheritance.

O protected string gender;

9/15/2009

cGT 215
Copyright © 2009 Ronald J. Glotzbach

Demo

o Create Dog class
= Methods, attributes, property accessors

Instantiate multiple dogs
Make method calls
Change attributes
Change access modifiers

O o o o

9/15/2009 21

CGT 215
Copyright © 2009 Ronald J. Glotzbach




