
10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 4
Control Statements Part I

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Algorithms
 Any computing problem can be solved by

executing a series of actions in a specific
order.

 A procedure for solving a problem in terms of
(a) the actions to execute and (b) the order in
which these actions execute is called an
algorithm.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

Algorithm
 Rise and shine algorithm

1. Get out of bed
2. Take off PJ’s
3. Take a shower
4. Get dressed
5. Eat breakfast
6. Carpool to work

 Again… actions to perform and the order in which
they are performed.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

Program Control
 Specifying the order in which statements

(actions) execute in an application is called
program control.

 In these notes, we examine program control
using control statements.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

Pseudocode
 Pseudocode is an informal language that

helps programmers develop algorithms
without having to worry about the strict
details of actual language syntax.

 Pseudocode is similar to everyday English – it
is convenient and user-friendly, but it is not an
actual computer programming language.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

Control Structures
 Normally, statements in an application are

executed one after the other in the order in
which they’re written.
 This process is called sequential execution.

 Many statements enable you to specify that
the next statement to execute is not
necessarily the next one in the sequence.
 This is called transfer of control.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

Control Structures (Avoid This)
 Spaghetti code
 The goto statement allows programmers to

specify a transfer of control to one of a wide
range of possible destinations in an application.
Jump to anywhere at any time.

 Avoid using the goto statement.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

Selection Structures
 Also called selection statements
 if

 Referred to as a single-selection statement
 if...else

 Referred to as a double-selection statement
 if…else if…else

 Referred to as a multiple-selection statement
 Switch

 Referred to as a multiple-selection statement

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

if single-selection statement
if(condition)
{

//body of if selection statement
//remember that it is case-sensitive – lowercase if

}

if(userID == “rjglotzbach”)
{

Console.WriteLine(“Welcome Ron!”);
}

if(grade >= 60)
{

lblFinalGrade.Text = “D”;
}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

10

if single-selection statement
 Only a single statement in the body of an if:

 if(grade >= 70)
lblFinalGrade.Text = “C”;

 Multiple statements in the body of an if:
 if(grade >= 80)

{
//you must use curly braces
lblFinalGrade.Text = “B”;
lblResult.Text = “You passed!”;

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

if…else double-selection statement
if(condition)
{

//body of if statement
//remember that it is case-sensitive – lowercase if

}
else
{

//body of if…else statement
//there is no condition after the else
//else is a catch-all – if none of the others are true, this code is executed.

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

if…else double-selection statement
 When there is only one statement after the

if…else:

if(grade >= 60)
Console.WriteLine(“Passed”);

else
Console.WriteLine(“Failed”);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

if…else double-selection statement
 When there are multiple statements after the if…else:

if(grade >= 60)
{

//you must use curly braces
lblFinalGrade.Text = “D”;
lblResult.Text = “Passed”;

}
else
{

//you must use curly braces
lblFinalGrade.Text = “F”;
lblResult.Text = “Failed”;

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

Ternary Conditional Operator
 Yet another alternative is the ternary operator

 The ternary conditional operator can be used
in place of an if…else

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

Ternary Conditional Operator

 Basic form:
 <condition> ? <value if true> : <value if false>

 Example
 lblResult.Text = (grade >= 60 ? “Passed” : “Failed”);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

Nested if statements
 Placing an if…else inside another if…else statement creates a nested if statement:

if(x > 5)
{

if(y > 5)
{

lblFoo.Text = “x and y are both 5”;
}
else
{

lblFoo.Text = “x is 5 but y is less than 5”;
}

}
else
{

lblFoo.Text = “x is less than 5”;
}

 Tip: Always use curly braces if you are creating nested if statements.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

Good Programming Practice
 Your curly braces should always line up vertically:

if(x > 5)
{

if(y > 4)
{

lblFoo.Text = “x and y are both 5”;
}
else
{

lblFoo.Text = “x is 5 but y is less than 5”;
}

}
else
{

lblFoo.Text = “x is less than 5”;
}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

if... else if
if(condition)
{

//body of if statement
//remember that it is case-sensitive – lowercase if

}
else if(different condition)
{

//body of conditional
//else if is two words

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

if…else if… else
if(condition)
{

//body of if statement
//remember that it is case-sensitive – lowercase if

}
else if(different condition)
{

//body of second conditional clause
//else if is two words

}
else if(different condition)
{

//body of third conditional clause
}
else
{

//there is no condition after the else
//else is a catch-all – if none of the others are true, this code is executed.

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

if…else if… else
multiple-selection statement
 When there is only one statement in the body of the if

statement:

if(grade >= 90)
Console.WriteLine(“A”);

else if(grade >= 80)
Console.WriteLine(“B”);

else if(grade >= 70)
Console.WriteLine(“C”);

else if(grade >= 60)
Console.WriteLine(“D”);

else
Console.WriteLine(“F”);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

if…else if… else
multiple-selection statement

 if(grade >= 90)
{

//you must use curly braces
lblFinalGrade.Text = “A”;
lblResult.Text = “Passed”;

}
else if(grade >= 80)
{

lblFinalGrade.Text = “B”;
lblResult.Text = “Passed”;

}
else if(grade >= 70)
{

lblFinalGrade.Text = “C”;
lblResult.Text = “Passed”;

}
else if(grade >= 60)
{

lblFinalGrade.Text = “D”;
lblResult.Text = “Passed”;

}
else
{

lblFinalGrade.Text = “F”;
lblResult.Text = “Failed”;

}

 When there are
multiple statements
in the body of the if
statement:

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

Dangling else problem
 If you write:

if(x > 5)
if(y > 5)

Console.WriteLine(“x and y are both 5”);
else

Console.WriteLine(“x is less than 5”);

 Which if does the else belong to??
 Beware: the else actually belongs to the second if in this case

 Again: Always use curly braces if you are creating nested if
statements.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Errors
 Logic error

 A logic error has its effect at execution (also called
runtime)

 Fatal logic error
 A fatal logic error causes an application to fail and

terminate prematurely.

 Nonfatal logic error
 A nonfatal logic error allows an application to continue

executing, but causes it to produce incorrect results.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Repetition Control Structures
 Also referred to as repetition statements
 Enable applications to perform statements

repeatedly, depending on the value of a loop-
continuation condition.

 while
 do...while
 for
 foreach

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

while repetition
 Executes repeatedly until a condition is met

int product = 3;

while(product <= 100)
product = 3 * product;

 The result would be:
 9, 27, 81, 243
 The loop body executes 4 times
 The loop terminates when the product equals 243

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

counter-controlled repetition
 Use a counter to control when to exit the loop

numStudents = 25;
counter = 1;

while(counter <= numStudents)
{

tbProgress.Text += “You are on student number ” + counter.ToString() + “\r\n”;
counter++; //if you forget this, infinite loop

}

 Outputs:
 You are on student number 1

You are on student number 2
…
You are on student number 25

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

sentinel-controlled repetition
 Loop until the user enters a specific value

while(grade != -1)
{

Console.Write(“Enter grade: ”);
grade = Convert.ToInt32(Console.ReadLine());

}

 When the user types -1 the loop will stop,
otherwise it will loop infinitely.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

nested control repetition
 numStudents = 25;

counter = 1;

while(counter <= numStudents)
{

if(grade >= 90)
{

lblFinalGrade.Text = “A”;
lblResult.Text = “Passed”;

}
else if(grade >= 80)
{

lblFinalGrade.Text = “B”;
lblResult.Text = “Passed”;

}
else if(grade >= 70)
{

lblFinalGrade.Text = “C”;
lblResult.Text = “Passed”;

}
else if(grade >= 60)
{

lblFinalGrade.Text = “D”;
lblResult.Text = “Passed”;

}
else
{

lblFinalGrade.Text = “F”;
lblResult.Text = “Failed”;

}

tbProgress.Text += “You are on student number ” + counter.ToString() + “\r\n”;
counter++; //if you forget this, infinite loop

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Compound Assignment Operators

2 to ff = f / 3f /= 3/=

g %= 9

e *= 5

d -= 4

c += 7

Sample
Expression

3 to gg = g % 9%=

20 to ee = e * 5*=

1 to dd = d - 4-=

10 to cc = c + 7+=

Assume: int c=3, d=5, e=4, f=6, g=12;

Assigns…ExplanationAssignment
Operator

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Conversions
 Explicit conversion

 Using a cast operator
 string num = “3”;

x = (int)num;
//this is called casting a string to an int

 Implicit conversion (or promotion)
 C# performs promotion is selected cases
 If you have a double and an int in an equation, C# will implicitly

promote the int to a double so that the operation can be performed.
int x = 3;
double y = 4.2;
double avg;
avg = (x + y) / 2;

