
1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 4
Control Statements Part I

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Algorithms
 Any computing problem can be solved by

executing a series of actions in a specific
order.

 A procedure for solving a problem in terms of
(a) the actions to execute and (b) the order in
which these actions execute is called an
algorithm.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

Algorithm
 Rise and shine algorithm

1. Get out of bed

2. Take off PJ’s

3. Take a shower

4. Get dressed

5. Eat breakfast

6. Carpool to work

 Again… actions to perform and the order in which
they are performed.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

Program Control
 Specifying the order in which statements

(actions) execute in an application is called
program control.

 In these notes, we examine program control
using control statements.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

Pseudocode
 Pseudocode is an informal language that

helps programmers develop algorithms
without having to worry about the strict
details of actual language syntax.

 Pseudocode is similar to everyday English – it
is convenient and user-friendly, but it is not an
actual computer programming language.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

Control Structures
 Normally, statements in an application are

executed one after the other in the order in
which they’re written.
 This process is called sequential execution.

 Many statements enable you to specify that
the next statement to execute is not
necessarily the next one in the sequence.
 This is called transfer of control.

2

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

Control Structures (Avoid This)
 Spaghetti code
 The goto statement allows programmers to

specify a transfer of control to one of a wide
range of possible destinations in an application.
Jump to anywhere at any time.

 Avoid using the goto statement.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

Selection Structures
 Also called selection statements
 if

 Referred to as a single-selection statement

 if...else
 Referred to as a double-selection statement

 if…else if…else
 Referred to as a multiple-selection statement

 Switch
 Referred to as a multiple-selection statement

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

if single-selection statement
if(condition)
{

//body of if selection statement
//remember that it is case-sensitive – lowercase if

}

if(userID == “rjglotzbach”)
{

Console.WriteLine(“Welcome Ron!”);
}

if(grade >= 60)
{

lblFinalGrade.Text = “D”;
}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

10

if single-selection statement
 Only a single statement in the body of an if:

 if(grade >= 70)
lblFinalGrade.Text = “C”;

 Multiple statements in the body of an if:
 if(grade >= 80)

{
//you must use curly braces
lblFinalGrade.Text = “B”;
lblResult.Text = “You passed!”;

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

if…else double-selection statement

if(condition)
{

//body of if statement
//remember that it is case-sensitive – lowercase if

}
else
{

//body of if…else statement
//there is no condition after the else
//else is a catch-all – if none of the others are true, this code is executed.

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

if…else double-selection statement

 When there is only one statement after the
if…else:

if(grade >= 60)
Console.WriteLine(“Passed”);

else
Console.WriteLine(“Failed”);

3

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

if…else double-selection statement
 When there are multiple statements after the if…else:

if(grade >= 60)
{

//you must use curly braces
lblFinalGrade.Text = “D”;
lblResult.Text = “Passed”;

}
else
{

//you must use curly braces
lblFinalGrade.Text = “F”;
lblResult.Text = “Failed”;

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

Ternary Conditional Operator
 Yet another alternative is the ternary operator

 The ternary conditional operator can be used
in place of an if…else

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

Ternary Conditional Operator

 Basic form:
 <condition> ? <value if true> : <value if false>

 Example
 lblResult.Text = (grade >= 60 ? “Passed” : “Failed”);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

Nested if statements
 Placing an if…else inside another if…else statement creates a nested if statement:

if(x > 5)
{

if(y > 5)
{

lblFoo.Text = “x and y are both 5”;
}
else
{

lblFoo.Text = “x is 5 but y is less than 5”;
}

}
else
{

lblFoo.Text = “x is less than 5”;
}

 Tip: Always use curly braces if you are creating nested if statements.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

Good Programming Practice
 Your curly braces should always line up vertically:

if(x > 5)
{

if(y > 4)
{

lblFoo.Text = “x and y are both 5”;
}
else
{

lblFoo.Text = “x is 5 but y is less than 5”;
}

}
else
{

lblFoo.Text = “x is less than 5”;
}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

if... else if
if(condition)

{

//body of if statement

//remember that it is case-sensitive – lowercase if

}

else if(different condition)

{

//body of conditional

//else if is two words

}

4

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

if…else if… else
if(condition)
{

//body of if statement
//remember that it is case-sensitive – lowercase if

}
else if(different condition)
{

//body of second conditional clause
//else if is two words

}
else if(different condition)
{

//body of third conditional clause
}
else
{

//there is no condition after the else
//else is a catch-all – if none of the others are true, this code is executed.

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

if…else if… else
multiple-selection statement
 When there is only one statement in the body of the if

statement:

if(grade >= 90)
Console.WriteLine(“A”);

else if(grade >= 80)
Console.WriteLine(“B”);

else if(grade >= 70)
Console.WriteLine(“C”);

else if(grade >= 60)
Console.WriteLine(“D”);

else
Console.WriteLine(“F”);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

if…else if… else
multiple-selection statement

 if(grade >= 90)
{

//you must use curly braces
lblFinalGrade.Text = “A”;
lblResult.Text = “Passed”;

}
else if(grade >= 80)
{

lblFinalGrade.Text = “B”;
lblResult.Text = “Passed”;

}
else if(grade >= 70)
{

lblFinalGrade.Text = “C”;
lblResult.Text = “Passed”;

}
else if(grade >= 60)
{

lblFinalGrade.Text = “D”;
lblResult.Text = “Passed”;

}
else
{

lblFinalGrade.Text = “F”;
lblResult.Text = “Failed”;

}

 When there are
multiple statements
in the body of the if
statement:

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

Dangling else problem
 If you write:

if(x > 5)
if(y > 5)

Console.WriteLine(“x and y are both 5”);
else

Console.WriteLine(“x is less than 5”);

 Which if does the else belong to??
 Beware: the else actually belongs to the second if in this case

 Again: Always use curly braces if you are creating nested if
statements.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Errors
 Logic error

 A logic error has its effect at execution (also called
runtime)

 Fatal logic error
 A fatal logic error causes an application to fail and

terminate prematurely.

 Nonfatal logic error
 A nonfatal logic error allows an application to continue

executing, but causes it to produce incorrect results.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Repetition Control Structures
 Also referred to as repetition statements
 Enable applications to perform statements

repeatedly, depending on the value of a loop-
continuation condition.

 while

 do...while

 for

 foreach

5

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

while repetition
 Executes repeatedly until a condition is met

int product = 3;

while(product <= 100)
product = 3 * product;

 The result would be:
 9, 27, 81, 243
 The loop body executes 4 times
 The loop terminates when the product equals 243

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

counter-controlled repetition
 Use a counter to control when to exit the loop

numStudents = 25;
counter = 1;

while(counter <= numStudents)
{

tbProgress.Text += “You are on student number ” + counter.ToString() + “\r\n”;
counter++; //if you forget this, infinite loop

}

 Outputs:
 You are on student number 1

You are on student number 2
…
You are on student number 25

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

sentinel-controlled repetition
 Loop until the user enters a specific value

while(grade != -1)
{

Console.Write(“Enter grade: ”);
grade = Convert.ToInt32(Console.ReadLine());

}

 When the user types -1 the loop will stop,
otherwise it will loop infinitely.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

nested control repetition
 numStudents = 25;

counter = 1;

while(counter <= numStudents)
{

if(grade >= 90)
{

lblFinalGrade.Text = “A”;
lblResult.Text = “Passed”;

}
else if(grade >= 80)
{

lblFinalGrade.Text = “B”;
lblResult.Text = “Passed”;

}
else if(grade >= 70)
{

lblFinalGrade.Text = “C”;
lblResult.Text = “Passed”;

}
else if(grade >= 60)
{

lblFinalGrade.Text = “D”;
lblResult.Text = “Passed”;

}
else
{

lblFinalGrade.Text = “F”;
lblResult.Text = “Failed”;

}

tbProgress.Text += “You are on student number ” + counter.ToString() + “\r\n”;
counter++; //if you forget this, infinite loop

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Compound Assignment Operators

2 to ff = f / 3f /= 3/=

g %= 9

e *= 5

d -= 4

c += 7

Sample
Expression

3 to gg = g % 9%=

20 to ee = e * 5*=

1 to dd = d - 4-=

10 to cc = c + 7+=

Assume: int c=3, d=5, e=4, f=6, g=12;

Assigns…ExplanationAssignment
Operator

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Conversions
 Explicit conversion

 Using a cast operator
 string num = “3”;

x = (int)num;
//this is called casting a string to an int

 Implicit conversion (or promotion)
 C# performs promotion is selected cases
 If you have a double and an int in an equation, C# will implicitly

promote the int to a double so that the operation can be performed.
int x = 3;
double y = 4.2;
double avg;
avg = (x + y) / 2;

