
1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 5
Control Statements Part II

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Counter-Controlled Repetition
 Essentials of counter-controlled repetition
 A control variable (or loop counter)

 The initial value of the control variable

 The increment (or decrement) by which the
control variable is modified each time through the
loop (also known as each iteration of the loop)

 The loop-continuation condition that determines
whether to continue looping.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

for
 for Repetition Statement
 The for repetition statement specifies the

elements of counter-controlled-repetition in a
single line of code.

 In general, counter-controlled repetition should
be implemented with a for statementk

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

for header components

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

for statement – activity diagram

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

for – example 1
for (int counter = 1; counter <= 10; counter++)

Console.Write("{0} ", counter);

//Or also written:

for (int counter = 1; counter <= 10; counter++)
{

Console.Write("{0} ", counter);
}

2

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

for – example 2
int total = 0; // initialize total

// total even integers from 2 through 20
for (int number = 2; number <= 20; number += 2)

total += number;

// display results
Console.WriteLine("Sum is {0}", total);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

do…while repetition statement
 The do…while repetition statement is similar

to the while statement, however:
 In the while statement, the loop-continuation

condition is evaluated before the body of the loop
executes.

 In the do…while statement, the loop-continuation
condition is evaluated after the body of the loop
is executed.

 Thus, the body of a do…while loop always
executes at least one time.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

do…while – activity diagram

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

10

do…while – example
int counter = 1; // initialize counter

do

{

Console.Write("{0} ", counter);

++counter;

} while (counter <= 10); // end do...while

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

switch statement
 Multiple-selection statement

 Performs different actions based on the
possible values of an expression

 Each action is associated with the value of a
constant integral expression or a constant
string expression.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

Constant integral expression
 Any expression involving character and

integer constants that evaluates to an integer
value

 i.e., values of type sbyte, byte, short, ushort,
int, uint, long, ulong, char, or a constant from
an enum type.

3

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

Constant string expression
 Any expression composed of string literals

that always results in the same string

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

switch statement – activity diagram

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

switch statement
 switch… case is an alternative to using if…else

switch(find)
{

case ‘a’:
Console.WriteLine(“Regular Customer”);
break;

case ‘b’:
Console.WriteLine(“Preferred Customer”);
break;

case ‘c’:
Console.WriteLine(“Donor (monetary or organ... unsure which)”);
break;

default:
Console.WriteLine(“We don’t want their business…”);
break;

}

 ***without break statements, every case will execute

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

switch statement – example 1
// determine which grade was entered
switch (grade / 10)
{

case 9: // grade was in the 90s
case 10: // grade was 100

++aCount; // increment aCount
break; // necessary to exit switch

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

case 7: // grade was between 70 and 79
++cCount; // increment cCount
break; // exit switch

case 6: // grade was between 60 and 69
++dCount; // increment dCount
break; // exit switch

default: // grade was less than 60
++fCount; // increment fCount
break; // exit switch

} // end switch

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

switch statement – example 2
test = "foo";

switch (test)
{

case "apple":
tb1.Text = "it's an apple!";
break;

case "orange":
tb1.Text = "it's an orange!";
break;

case "foo":
tb1.Text = "it's a foo!";
break;

default:
tb1.Text = "it's not a $%#& thing!";
break;

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

C#’s single-entry / single-exit sequence,
selection, and repetition statements

4

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

C#’s single-entry / single-exit sequence,
selection, and repetition statements

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

CGT 215 Lecture 5
Logic

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

Binary numbers
 Binary numbers are made up of 0 and 1.

 An example of a binary number would look like:
10010111
 This is an example of an 8-bit binary number.

 A 16-bit binary number would look like:
1001001011011001

 The decimal value of 10010111 is not 10,010,111.
 It is actually 151 as a base 10 numeric value.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

How is it calculated?
 Binary numbers count from right to left.

 Each digit to the left is twice the value of its digit to
the right.

 A graphical representation of this would look like this:

 Hence, a 1 in the 128 box gives the binary number a
decimal value of at least 128.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Some examples

 Thus, 0 to 255 offers 256 values within an 8-bit binary number.

255= 11111111

5= 00000101

4= 00000100

3= 00000011

2= 00000010

1= 00000001

0= 00000000

129= 10000001

128= 10000000

Decimal ValueBinary Number

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Logical Operators
 Enables you to form more complex conditions by

combining simple conditions

 The logical operators are:
 && (conditional AND)

 || (conditional OR)

 & (boolean logical AND)

 | (boolean logical inclusive OR)

 ^ (boolean logical exclusive OR)

 ! (logical negation)

5

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

Conditional AND &&
 if((gender == “F”) && (age >= 65))

seniorFemales++;

truetruetrue

falsefalsetrue

falsetruefalse

falsefalsefalse

Expression 1 && Expression 2Expression 2Expression 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

Conditional OR ||
 if((semesterAvg >= 90) || (finalExam >= 90))

Console.WriteLine(“Student got an A”);

truetruetrue

truefalsetrue

truetruefalse

falsefalsefalse

Expression 1 && Expression 2Expression 2Expression 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

Boolean logical AND &
 Works identically to the && operator, with

one exception – the & always evaluates both
of the operands. For example:
 (gender == “F”) & (age >= 65)

 Evaluates (age >= 65) regardless of whether
gender is equal to “F”

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

Boolean logical inclusive OR |
 Works identically to the || operator, with one

exception – the | always evaluates both of the
operands. For example:
 (birthday == true) | (++age >= 65)

 Evaluates (++age >= 65) even if birthday is true,
ensuring that age would be incremented.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Boolean logical exclusive OR ^
 Also called the logical XOR

 is true if and only if one of its operands is true
and the other is false.

falsetruetrue

truefalsetrue

truetruefalse

falsefalsefalse

Expression 1 && Expression 2Expression 2Expression 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Logical negation !
 Enables you to reverse the meaning of a

condition.

 Logical negation is a unary operator (only has
one operand)

 Placed before a condition

 if(!(grade == -1))
Console.WriteLine(“The next value is: ”);

6

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

31

Logical negation
 !true is the same as writing false

 !false is the same as writing true

 if(!(grade >= 60))
Console.WriteLine(“Get a tutor”);

