
1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 5
Control Statements Part II

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Counter-Controlled Repetition
 Essentials of counter-controlled repetition
 A control variable (or loop counter)

 The initial value of the control variable

 The increment (or decrement) by which the
control variable is modified each time through the
loop (also known as each iteration of the loop)

 The loop-continuation condition that determines
whether to continue looping.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

for
 for Repetition Statement
 The for repetition statement specifies the

elements of counter-controlled-repetition in a
single line of code.

 In general, counter-controlled repetition should
be implemented with a for statementk

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

for header components

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

for statement – activity diagram

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

for – example 1
for (int counter = 1; counter <= 10; counter++)

Console.Write("{0} ", counter);

//Or also written:

for (int counter = 1; counter <= 10; counter++)
{

Console.Write("{0} ", counter);
}

2

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

for – example 2
int total = 0; // initialize total

// total even integers from 2 through 20
for (int number = 2; number <= 20; number += 2)

total += number;

// display results
Console.WriteLine("Sum is {0}", total);

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

do…while repetition statement
 The do…while repetition statement is similar

to the while statement, however:
 In the while statement, the loop-continuation

condition is evaluated before the body of the loop
executes.

 In the do…while statement, the loop-continuation
condition is evaluated after the body of the loop
is executed.

 Thus, the body of a do…while loop always
executes at least one time.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

do…while – activity diagram

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

10

do…while – example
int counter = 1; // initialize counter

do

{

Console.Write("{0} ", counter);

++counter;

} while (counter <= 10); // end do...while

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

switch statement
 Multiple-selection statement

 Performs different actions based on the
possible values of an expression

 Each action is associated with the value of a
constant integral expression or a constant
string expression.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

Constant integral expression
 Any expression involving character and

integer constants that evaluates to an integer
value

 i.e., values of type sbyte, byte, short, ushort,
int, uint, long, ulong, char, or a constant from
an enum type.

3

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

Constant string expression
 Any expression composed of string literals

that always results in the same string

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

switch statement – activity diagram

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

switch statement
 switch… case is an alternative to using if…else

switch(find)
{

case ‘a’:
Console.WriteLine(“Regular Customer”);
break;

case ‘b’:
Console.WriteLine(“Preferred Customer”);
break;

case ‘c’:
Console.WriteLine(“Donor (monetary or organ... unsure which)”);
break;

default:
Console.WriteLine(“We don’t want their business…”);
break;

}

 ***without break statements, every case will execute

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

switch statement – example 1
// determine which grade was entered
switch (grade / 10)
{

case 9: // grade was in the 90s
case 10: // grade was 100

++aCount; // increment aCount
break; // necessary to exit switch

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

case 7: // grade was between 70 and 79
++cCount; // increment cCount
break; // exit switch

case 6: // grade was between 60 and 69
++dCount; // increment dCount
break; // exit switch

default: // grade was less than 60
++fCount; // increment fCount
break; // exit switch

} // end switch

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

switch statement – example 2
test = "foo";

switch (test)
{

case "apple":
tb1.Text = "it's an apple!";
break;

case "orange":
tb1.Text = "it's an orange!";
break;

case "foo":
tb1.Text = "it's a foo!";
break;

default:
tb1.Text = "it's not a $%#& thing!";
break;

}

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

C#’s single-entry / single-exit sequence,
selection, and repetition statements

4

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

C#’s single-entry / single-exit sequence,
selection, and repetition statements

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

CGT 215 Lecture 5
Logic

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

Binary numbers
 Binary numbers are made up of 0 and 1.

 An example of a binary number would look like:
10010111
 This is an example of an 8-bit binary number.

 A 16-bit binary number would look like:
1001001011011001

 The decimal value of 10010111 is not 10,010,111.
 It is actually 151 as a base 10 numeric value.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

How is it calculated?
 Binary numbers count from right to left.

 Each digit to the left is twice the value of its digit to
the right.

 A graphical representation of this would look like this:

 Hence, a 1 in the 128 box gives the binary number a
decimal value of at least 128.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Some examples

 Thus, 0 to 255 offers 256 values within an 8-bit binary number.

255= 11111111

5= 00000101

4= 00000100

3= 00000011

2= 00000010

1= 00000001

0= 00000000

129= 10000001

128= 10000000

Decimal ValueBinary Number

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Logical Operators
 Enables you to form more complex conditions by

combining simple conditions

 The logical operators are:
 && (conditional AND)

 || (conditional OR)

 & (boolean logical AND)

 | (boolean logical inclusive OR)

 ^ (boolean logical exclusive OR)

 ! (logical negation)

5

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

Conditional AND &&
 if((gender == “F”) && (age >= 65))

seniorFemales++;

truetruetrue

falsefalsetrue

falsetruefalse

falsefalsefalse

Expression 1 && Expression 2Expression 2Expression 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

Conditional OR ||
 if((semesterAvg >= 90) || (finalExam >= 90))

Console.WriteLine(“Student got an A”);

truetruetrue

truefalsetrue

truetruefalse

falsefalsefalse

Expression 1 && Expression 2Expression 2Expression 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

Boolean logical AND &
 Works identically to the && operator, with

one exception – the & always evaluates both
of the operands. For example:
 (gender == “F”) & (age >= 65)

 Evaluates (age >= 65) regardless of whether
gender is equal to “F”

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

Boolean logical inclusive OR |
 Works identically to the || operator, with one

exception – the | always evaluates both of the
operands. For example:
 (birthday == true) | (++age >= 65)

 Evaluates (++age >= 65) even if birthday is true,
ensuring that age would be incremented.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Boolean logical exclusive OR ^
 Also called the logical XOR

 is true if and only if one of its operands is true
and the other is false.

falsetruetrue

truefalsetrue

truetruefalse

falsefalsefalse

Expression 1 && Expression 2Expression 2Expression 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Logical negation !
 Enables you to reverse the meaning of a

condition.

 Logical negation is a unary operator (only has
one operand)

 Placed before a condition

 if(!(grade == -1))
Console.WriteLine(“The next value is: ”);

6

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

31

Logical negation
 !true is the same as writing false

 !false is the same as writing true

 if(!(grade >= 60))
Console.WriteLine(“Get a tutor”);

