CGT 215 Lecture 6

Methods: A Deeper Look

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Divide and Conquer

o Experience has shown that the best way to
develop and maintain a large application is to
construct it from small, simple pieces.

o This technique is called divide and conquer

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

e ——
Methods

o Called functions or procedures in other
programming languages

o Methods allow you to modularize an
application by separating its tasks into self-
contained units.

o You have created many methods already.

o These methods are sometimes referred to as
user-defined methods.

10/9/2009

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Motivations for Modularizing an
Application

o One is “divide and conquer”
= Makes applications more manageable by constructing it as
small, simple pieces
o Another is software reusability

= Existing methods can be used as building blocks to create
new applications.

o Another reason is to avoid repeating code

= Dividing an application into meaningful methods makes
the application easier to debug and maintain.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Software Engineering Observation 7.1

o Don’t try to “reinvent the wheel.” when
possible, reuse Framework Class Library
classes and methods.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

————————————
Software Engineering Observation 7.2

o To promote software reusability, every
method should be limited to performing a
single, well-defined task, and the name of the
method should express that task effectively.
Such methods make applications easier to
write, debug, maintain, and modify.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Software Engineering Observation 7.3

o If you cannot choose a concise name that
expresses a method’s task, your method might
be attempting to perform too many diverse
tasks. It is usually best to break such a method
into several smaller methods.

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Error-Prevention Tip 7.1

o A small method that performs one task is
easier to test and debug than a larger method
that performs many tasks.

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

static methods

o Although most methods execute on specific
objects in response to method calls, this is not
always the case.

o Sometimes a method performs a task that
does not depend on the contents of any object.

o Such a method applies to the class in which it
is declared as a whole and is known as a static
method.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

static methods

o Math.sqrt()
= sqgrt() is a static method of the Math class
= You do not need to create an instance of the Math
class in order to call sqrt()
o Console.WriteLine()

= WriteLine() is a static method of the Console
class

= You do not need to create an instance of the
Console class in order to call WriteLine()

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

const variables

o A constant is declared with the keyword const
— its value cannot be changed after the
constant is declared.
= Piis a constant — its value never changes

o Most const variables are by default static,
unless declared inside of a method.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

static variables

o Each instance of an object of a class has
separate instance of the variables.

o This is not the case with static variables

o When objects of a class containing static
variables are created, all the objects of that

class share one copy of the class’s static
variables.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Why is method Main declared static?

o Method Main is sometimes called the
application’s entry point.

o Declaring Main as static allows the execution
environment to invoke Main without creating
an instance of the class.

= public static void Main(string args[])

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Where do you declare static?

o Before the return type of a method:
= public static void AddListltemMethod()
= public static int GetValue()

o Before the class name of a variable declaration:
= private static string name;
= private static bool isTrue;

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Math cs

Method

Abs(x) absolute value of x Abs(23.7) is23.7
Abs(0.0) is0.0
Abs(-23.7) is23.7

Ceilingl x 3 rounds x 1o the smallest integer not Ceiling(9.2 }is10.0
less than x Cefling(-9.8) is -9.0
Cos{ x) wrigonametric cosine of x (x in radians) Cos(0.0) is1.0
Expl x) exponential method & Exp(1.0) is2.71828
Exp(2.0) is 7.35006
Floor¢ x 3 rounds x w the largest integer not greater Floar(5.2 3 is9.0
than x Fleor(-9.8) is -10.0
Leg(x) naural logarithm of x (base &) Log{ Math.E) is 1.0
Log(Math.E * Math.E) ix2.0
Maxt ¥, y) largervalue of x and y Max{ 2.3, 12,7) is12.7
Max(-2.3, -12.7) -2.%
10 Mint x, y3 smaller value of xand y Minl 2.3, 12.7 22,3 15

Min{ -2.3, -13.7) s -12.7

Math class

Method Description

Pow{ x, ¥) xraised to the power y (e, %) Pow(2.0, 7.0 }is128.0
Pow(9.0, 0.5) is3.0

Sint x) rigonadmetric sine of ¥ (x in radians) Sing 0.0) is0.0

sqref x } square root of x Sqrel $00.0) is 30.0

Tan(x) trignnometric angent of x (¥ in radians) Tan{ 0.0) 0.0

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Declaring a method

O You need:

= Access modifier

= (optional) static

= Return type

= Name
(optional) Parameters
o public static void Main(string args[])
o public void SetGender(string gender)
o public string GetName()

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Methods with multiple parameters

o When a method has more than one parameter, the
parameters are specified as a comma-separated list.

= Notice: each parameter has a type — at type is required for
each parameter

public double FindMax(double x, double y, double z))
{

}

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

e
Calling methods

O You must provide the correct number of parameters
in each method call

o If amethod is declared with 3 parameters, you must
pass 3 parameters in.
o Declaration:
= public double FindMax(double x, double y, double z)
o Calling it:
= FindMax(3.2,45,1.3);
FindMax(); //would be an error

L}
= FindMax(2.3, 1.2); //would be an error
= FindMax(2.2, 3.3,4.4,5.5); //would be an error

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

String Concatenation (revisited)

o Use the + symbol to concatenate strings
together.

o “hello ” + “there” creates the string “hello
there”

o “Maximum is: “ + result
= Another example of concatenation

10/9/2009 cGT 215
Copyright © 2009 Ronald J. Glotzbach

Common Errors

o Itis asyntax error to break a string literal
across multiple lines in an application:
= Wrong:

o “hello
how are you”

10/9/2009 21

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Common Errors

o Confusing the + operator used for string
concatenation with the + operator used for
addition can lead to strange results.
= Example:

o “y+2="+y+2

= Results in the string “y + 2 =52", not “y +2=7"
o y+2="+(y+2)

= Results in the string “y +2=7"

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Common Errors

o Declaring a method outside the body of a
class declaration or inside the body of another
method is a syntax error.

o Omitting the return type in a method
declaration is a syntax error.

10/9/2009 23

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Common Errors

o Re-declaring a method parameter as a local
variable in the method’s body is a compilation
error.

o Forgetting to return a value from a method
that should return one is a compilation error.

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Conversion Types

Type Conversion types
ool o possible implicit conversions to other simple types
byte wshart, shart, uint, int, ulong, Tong, decimal, float or double
char wshart, fnt, uint, long, ulong, decimal, Float or double
decisal no posible implicit conversions o ather simple ypss
double o possiblle implicit conversions to other simple types
float dowble
int Tong, decfwal, float or double
Tong decimal, Float or double
shyte shore, int, Tong, decimal, fleat or double
short int, long, decimal. Float or double
wint wlong, long, decimal, Float or double
ulong decisal, float or double
ushort wint, int, long, long, decimal, float or double
100912009 coT 215 2

Copyright © 2009 Ronald J. Glotzbach

NET namespaces
e s

System_ Windomy . Forms

“ontal |w<|nr|nn|_lr| to create and manipulare GUIs.

Systen. Windows. Centrals
System. Windows. Taget
Syt i o Madia
Systam, Wi ndoms. Shazes

Spatem.Lisg e Ineegrared Query
mespace in
eneric Collections,
e boulk)

Syntem. Data

o manspealating dara in darsbuses (i,
ofdar), nchsling suppar oe LING)
0 SQL. {¥ou'l lesm moee about these nameipces i
Chapeer 21, Diatsbaies snd LING o S01.)

SysTem. Data, Ling

Syyten. 10 Cantaing the classes chat enable programa 10 (npus snd our-
Pt dara. (Yo e v st e in %

101912009 Chapeer 1%, Fles and Seresens)

.NET namespaces

N!mupue Description
System. Wb Containa the classes used for creating and mainuining weh
applications, which are accessible aver the Interner. (You'll
learn more abour chis namespace in Chaprer 22, ASENET
3.5 and ASENET AJAX.)

Systes.Xal.Ling Canains the classes that support Language Integrated Query
(LING) for XML documents. (You'll kearn more abouit this
namespace in Chaper 20, XML and LING ro XML, and
several other chapters throughout the book.)

Systen. a) Conains the clases for creating and manipulating XML
data, Dhata can be read from or written to XML fles, (Youll
learn more about this namespace in Chapter 20.)

System.Collections Cantain the classes thar define data structures for maingain-
Sysuem.Collections.Ceneric ing collections of data, (You'll leamn more about these
namespaces in Chapeer 28, Collections.)

System, Taxt Contains the classes that enable programs 1o manipulate

characeers and strings. (You'll kearn more about this
namespace in Chapaer 18, Strings, Characters and Regular
Expressions.)

10/9/2009 21

using statements

o To include a namespace from the .NET
Framework Class Library, use the using
statement.
= using System.Windows.Forms;
= using System.Data;
= using System.IO;
= using System.Windows.Media;

10/9/2009 cGT 215 28
Copyright © 2009 Ronald J. Glotzbach

Scope of declarations

o The scope of a parameter declaration is: the
body of the method in which the declaration
appears.

o The scope of a local-variable declaration is:
from the point at which the declaration
appears to the end of the block containing the
declaration.

101912009 CGT 215 29
Copyright © 2009 Ronald J. Glotzbach

Scope of declarations

o The scope of a local-variable declaration that
appears in the initialization section of a for
statement’s header is: the body of the for
statement and the other expressions in the
header.

101912009 CGT 215 30
Copyright © 2009 Ronald J. Glotzbach

Scope of declarations

o The scope of a method, property, or field of a
class is the entire body of the class.

o This enables non-static methods and
properties of a class to use any of the class’s
fields, methods, and properties, regardless of
the order in which they are declared.

o Similarly, static methods and properties can
use any of the static members of the class.

10/9/2009 31

cGT 215
Copyright © 2009 Ronald J. Glotzbach

e
Method Overloading

o Methods of the same name can be declared in
the same class, as long as they have different
sets of parameters (determined by the number,
types, and order of the parameters)

o This is called method overloading.
o When an overloaded method is called, the C#
compiler selects the appropriate method by

examining the number, types and order of the
arguments in the call.

10/9/2009

cGT 215
Copyright © 2009 Ronald J. Glotzbach

Overloaded methods

o Method calls cannot be distinquished by
return type. Therefore, the return type is not
included as one of the attributes that define
method overloading.

10/9/2009 33

CGT 215
Copyright © 2009 Ronald J. Glotzbach

Examples

o The order of parameter types is important.
= public void Method1(int a, float b, string c)
= public void Method1(float a, int b, string c)
= public void Method1(string a, float b, int c)

o Example of calling each of the above methods:
= Methodl(3, 4.5, “hi there”);
= Methodl1(4.5, 3, “hi there”);
= Method1(“hi there”, 4.5, 3);

101912009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

Examples

o The number of parameters is important
= public void MyMethod(string a)
= public void MyMethod(string a, string b)
= public void MyMethod(string a, string b, string ¢)
= public void MyMethod(string a, string b, string c, string d)

o Example of calling each of the above methods:
= MyMethod(“here”, “is”, “some”, “text”);
= MyMethod(“here”, “is”, “some”);
= MyMethod(“here”, “is”);
= MyMethod(“here”);

10/9/2009 ES

CGT 215
Copyright © 2009 Ronald J. Glotzbach

