
1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 7
Arrays

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Data Structures
 Data structures are collections of related data

items.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

Arrays
 Arrays are data structures consisting of

related data items of the same type.

 Arrays are fixed-length entities – they remain
the same length once they are created,
although an array variable may be reassigned
such that it refers to a new array of a different
length.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

Arrays
 An array is a group of variables (called

elements) containing values that all have the
same type.

 The position number of the element within the
array is called the element’s index

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

Arrays

Value stored in index 4
of array c

Or

Value stored in c[4]

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

Array indices
 The first element in every array has index

zero and is sometimes called the zeroth
element.

2

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

Declaring – Single Dimension
 private int[] x;

 private int[] numbers; //declare numbers as an int array of any size

 private string[] words; //declare words as a string array of any size

 private Dog[] myDogs; //declare myDogs as a Dog array of any size

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

Creating a new instance
 After you declare the array, you can specify the size:

 numbers = new int[7]; //numbers is a 7-element array

 numbers = new int[15]; //now it's a 15-element array

 words = new string[5]; //words is a 5-element array

 words = new string[20]; //now it’s a 20-element array

 myDogs = new Dog[3]; //myDogs is an array of 3 Dogs

 myDogs = new Dog[30]; //now it’s a 30-element array

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

Initializing
 int[] numbers = new int[5] {1, 2, 3, 4, 5};

 string[] words = new string[3] {"Bottle", "Cup", "Art"};

 // Dog is a little more involved

 private Dog doggie1, doggie2;
…

 doggie1 = new Dog();

 doggie2 = new Dog();

 Dog[] myDogs = new Dog[2] {doggie1, doggie2};
10/9/2009 CGT 215

Copyright © 2009 Ronald J. Glotzbach
10

Setting/Retrieving values from array
 numbers[2] //accesses the 3rd element of the array

 words[0] //accesses the 1st element of the array

 myDogs[5] //accesses the 6th element of the array

 numbers[3] = 5;
 //sets the 4th element equal to the number 5

 words[1] = “aardvark”;
 //sets the 2nd element equal to “aardvark”

 myDogs[2] = doggie1;
 //sets the 3rd element equal to the dog object: doggie1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

Setting/Retrieving values from array
 private int x;

 private string text;

 private Dog puppy;

 puppy = new Dog();

 x = numbers[4];
 //retrieves the 5th element from numbers and stores the value into x

 text = words[0];
 //retrieves the 1st element from words and stores the value into text

 puppy = myDogs[1];
 //retrieves the 2nd element from myDogs and stores the value into puppy

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

Length of an array
 int lengthOfNums, lengthOfWords, lengthOfDogs;

 lengthOfNums = numbers.Length;

 lengthOfWords = words.Length;

 lengthOfDogs = myDogs.Length;

3

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

Length of an array
 //you can use a variable for the index number

 for(int i=0; i < words.Length; i++)
{

tb.Text += (words[i].ToString() + “\r\n”);
}

 //this for loop would produce:
 Bottle

 Aardvark

 Art

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

Alternately – using foreach
 //Again, using a variable as the array index

 foreach(string word in words)
{

tb.Text += (word.ToString() + “\r\n”);
}

 //this foreach loop would produce:
 Bottle

 Aardvark

 Art

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

Common Programming Error 8.4
 The foreach statement can be used only to

access array elements – it cannot be used to
modify elements. Any attempt to change the
value of the iteration variable in the body of a
foreach statement will cause a compilation
error.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

Passing array into methods
 double[] hourlyTemp = new double[24];

 ModifyArray(hourlyTemp);

 public void ModifyArray(double[] ht)
{

//set the 1st element to the temperature 76.8 degrees
ht[0] = 76.8;

}

 //hourlyTemp[0] now equals 76.8

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

Multidimensional Arrays
 Multidimensional arrays with two

dimensions are often used to represent tables
of values consisting of information in rows
and columns.

 Think of a two-dimensional array like a
spreadsheet, rows and columns.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

Rectangular Arrays
 Rectangular arrays are used to represent

tables of information in the form of rows and
columns, where each row has the same
number of columns.

 An array with m rows and n columns is called
an m-by-n array

4

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

Rectangular Arrays

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

Declaring – Two Dimensional
 private int[,] x;

 private int[,] counters;
 //declare counters as a 2-dimensional int array of any size

 private string[,] names;
 //declare names as a 2-dimensional string array of any size

 private cat[,] kittens;
 //declare kittens as a 2-dimensional cat array of any size

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

Creating a new instance
 After you declare the array, you can specify the size:

 counters = new int[7,7]; //counters has 7 rows and 7 cols

 counters = new int[3,7]; //now it has 3 rows and 7 cols

 names = new string[5,4]; //names has 5 rows and 4 cols

 names = new string[2,2]; //now it has 2 rows and 2 cols

 kittens = new cat[3,3]; //kittens has 3 rows and 3 cols

 kittens = new cat[9,9]; //now it has 9 rows and 9 cols

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

Initializing (3 ways to do the same thing)
 int[,] counters = new int[2,3] {{1, 2, 3},

{4, 5, 6}
};

 OR
 int[,] counters = new int[,] {{1, 2, 3},

{4, 5, 6}
};

 OR
 int[,] counters = {{1, 2, 3},

{4, 5, 6}
};

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Initializing (3 ways to do the same thing)
 string[,] names = new string[3,2]{{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

 OR
 string[,] names = new string[,] {{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

 OR
 string[,] names = {{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

}; 10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Initializing (3 ways to do the same thing)
 //cat is a little more involved

 private cat kitten1, kitten2, kitten3, kitten4;
…

 kitten1 = new cat();
 kitten2 = new cat();
 kitten3 = new cat();
 kitten4 = new cat();

 //continued on next slide…

5

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

Initializing (3 ways to do the same thing)
 //continued from previous slide…

 cat[,] litter = new cat[2,2] {{kitten1, kitten2},
{kitten3, kitten4}

};

 OR
 cat[,] litter = new cat[,] {{kitten1, kitten2},

{kitten3, kitten4}
};

 OR
 cat[,] litter = {{kitten1, kitten2},

{kitten3, kitten4}
};

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

Declare & Initialize a 9x9 int array
private int[,] solution1 = { {7,9,2,3,5,1,8,4,6},

{4,6,8,9,2,7,5,1,3},
{1,3,5,6,8,4,7,9,2},
{6,2,1,5,7,9,4,3,8},
{5,8,3,2,4,6,1,7,9},
{9,7,4,8,1,3,2,6,5},
{8,1,6,4,9,2,3,5,7},
{3,5,7,1,6,8,9,2,4},
{2,4,9,7,3,5,6,8,1}

};

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

Declare a 3x8 array of integers
 //Declare array and variables

private int[,] colors;
private int r=0, g=1, b=2; //rows

//create new instance – 3 rows (r,g,b), 8 columns
colors = new int[3,8];

//set a value
colors[r,3] = 1; //set row 0, column 4 equal to 1
colors[r,4] = 0; //set row 0, column 5 equal to 0
colors[r,5] = 1; //set row 0, column 6 equal to 1

colors[g,0] = 0; //set row 1, column 1 equal to 0
colors[g,1] = 0; //set row 1, column 2 equal to 0
colors[g,2] = 1; //set row 1, column 3 equal to 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

Declare a 3x8 array of integers
 //Alternately:

private int[,] colors = {{0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0}

};

//then
colors[b,5] = 1; //set row 2, column 6 equal to 1
colors[b,6] = 0; //set row 2, column 7 equal to 0
colors[b,7] = 1; //set row 2, column 8 equal to 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Retrieving values from array
 counters[0,2]

 //accesses the integer in the 1st row, 3rd column of the array

 names[1,0]
 //accesses the string in the 2nd row, 1st column of the array

 cat[5,4]
 //accesses the cat object in the 6th row, 5th column of the array

 counters[3,1] = 5;
 //sets the integer in the 4th row, 2nd column of the array equal to the number 5

 names[1,3] = “Harry”;
 //sets the string in the 2nd row, 4th column of the array equal to “Harry”

 cat[0,1] = kitten1;
 //sets the cat object in the 1st row, 2nd column equal to the cat object: kitten1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Length of a 2-dimensional array
 int[,] solution = { {1,2,3,4},

{5,6,7,8},
{9,10,11,12}

};

 tb.Text += solution.Length.ToString();

 //writes out: 12

 //there are 12 values in the array

6

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

31

for loop for a 2-dimensional array
//rows

for (int i = 0; i < 3; i++)

{

//cols

for (int k = 0; k < 4; k++)

{

//check for last array item-don't put comma after last one

if(((i+1) * (k+1)) == solution.Length)

tb.Text += (solution[i,k].ToString() + “\r\n”);

else

tb.Text += (solution[i,k].ToString() + “\r\n”);

} //end inner for loop

} //end outer for loop

//writes out: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

32

More Advanced…
 3-dimensional array:
 int[,,] items = new int[3,4,5];

 Jagged array:
 int[][] numbers = {new int[]{1,2,3},

new int[]{4,5,6,7,8,9},
new int[]{3} };

 There are others…

