
1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

1

CGT 215 Lecture 7
Arrays

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

2

Data Structures
 Data structures are collections of related data

items.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

3

Arrays
 Arrays are data structures consisting of

related data items of the same type.

 Arrays are fixed-length entities – they remain
the same length once they are created,
although an array variable may be reassigned
such that it refers to a new array of a different
length.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

4

Arrays
 An array is a group of variables (called

elements) containing values that all have the
same type.

 The position number of the element within the
array is called the element’s index

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

5

Arrays

Value stored in index 4
of array c

Or

Value stored in c[4]

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

6

Array indices
 The first element in every array has index

zero and is sometimes called the zeroth
element.

2

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

7

Declaring – Single Dimension
 private int[] x;

 private int[] numbers; //declare numbers as an int array of any size

 private string[] words; //declare words as a string array of any size

 private Dog[] myDogs; //declare myDogs as a Dog array of any size

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

8

Creating a new instance
 After you declare the array, you can specify the size:

 numbers = new int[7]; //numbers is a 7-element array

 numbers = new int[15]; //now it's a 15-element array

 words = new string[5]; //words is a 5-element array

 words = new string[20]; //now it’s a 20-element array

 myDogs = new Dog[3]; //myDogs is an array of 3 Dogs

 myDogs = new Dog[30]; //now it’s a 30-element array

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

9

Initializing
 int[] numbers = new int[5] {1, 2, 3, 4, 5};

 string[] words = new string[3] {"Bottle", "Cup", "Art"};

 // Dog is a little more involved

 private Dog doggie1, doggie2;
…

 doggie1 = new Dog();

 doggie2 = new Dog();

 Dog[] myDogs = new Dog[2] {doggie1, doggie2};
10/9/2009 CGT 215

Copyright © 2009 Ronald J. Glotzbach
10

Setting/Retrieving values from array
 numbers[2] //accesses the 3rd element of the array

 words[0] //accesses the 1st element of the array

 myDogs[5] //accesses the 6th element of the array

 numbers[3] = 5;
 //sets the 4th element equal to the number 5

 words[1] = “aardvark”;
 //sets the 2nd element equal to “aardvark”

 myDogs[2] = doggie1;
 //sets the 3rd element equal to the dog object: doggie1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

11

Setting/Retrieving values from array
 private int x;

 private string text;

 private Dog puppy;

 puppy = new Dog();

 x = numbers[4];
 //retrieves the 5th element from numbers and stores the value into x

 text = words[0];
 //retrieves the 1st element from words and stores the value into text

 puppy = myDogs[1];
 //retrieves the 2nd element from myDogs and stores the value into puppy

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

12

Length of an array
 int lengthOfNums, lengthOfWords, lengthOfDogs;

 lengthOfNums = numbers.Length;

 lengthOfWords = words.Length;

 lengthOfDogs = myDogs.Length;

3

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

13

Length of an array
 //you can use a variable for the index number

 for(int i=0; i < words.Length; i++)
{

tb.Text += (words[i].ToString() + “\r\n”);
}

 //this for loop would produce:
 Bottle

 Aardvark

 Art

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

14

Alternately – using foreach
 //Again, using a variable as the array index

 foreach(string word in words)
{

tb.Text += (word.ToString() + “\r\n”);
}

 //this foreach loop would produce:
 Bottle

 Aardvark

 Art

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

15

Common Programming Error 8.4
 The foreach statement can be used only to

access array elements – it cannot be used to
modify elements. Any attempt to change the
value of the iteration variable in the body of a
foreach statement will cause a compilation
error.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

16

Passing array into methods
 double[] hourlyTemp = new double[24];

 ModifyArray(hourlyTemp);

 public void ModifyArray(double[] ht)
{

//set the 1st element to the temperature 76.8 degrees
ht[0] = 76.8;

}

 //hourlyTemp[0] now equals 76.8

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

17

Multidimensional Arrays
 Multidimensional arrays with two

dimensions are often used to represent tables
of values consisting of information in rows
and columns.

 Think of a two-dimensional array like a
spreadsheet, rows and columns.

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

18

Rectangular Arrays
 Rectangular arrays are used to represent

tables of information in the form of rows and
columns, where each row has the same
number of columns.

 An array with m rows and n columns is called
an m-by-n array

4

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

19

Rectangular Arrays

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

20

Declaring – Two Dimensional
 private int[,] x;

 private int[,] counters;
 //declare counters as a 2-dimensional int array of any size

 private string[,] names;
 //declare names as a 2-dimensional string array of any size

 private cat[,] kittens;
 //declare kittens as a 2-dimensional cat array of any size

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

21

Creating a new instance
 After you declare the array, you can specify the size:

 counters = new int[7,7]; //counters has 7 rows and 7 cols

 counters = new int[3,7]; //now it has 3 rows and 7 cols

 names = new string[5,4]; //names has 5 rows and 4 cols

 names = new string[2,2]; //now it has 2 rows and 2 cols

 kittens = new cat[3,3]; //kittens has 3 rows and 3 cols

 kittens = new cat[9,9]; //now it has 9 rows and 9 cols

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

22

Initializing (3 ways to do the same thing)
 int[,] counters = new int[2,3] {{1, 2, 3},

{4, 5, 6}
};

 OR
 int[,] counters = new int[,] {{1, 2, 3},

{4, 5, 6}
};

 OR
 int[,] counters = {{1, 2, 3},

{4, 5, 6}
};

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

23

Initializing (3 ways to do the same thing)
 string[,] names = new string[3,2]{{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

 OR
 string[,] names = new string[,] {{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

};

 OR
 string[,] names = {{“Sam”, “Tom”},

{“Pat”, “Jim”},
{“Scott”, “Craig”}

}; 10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

24

Initializing (3 ways to do the same thing)
 //cat is a little more involved

 private cat kitten1, kitten2, kitten3, kitten4;
…

 kitten1 = new cat();
 kitten2 = new cat();
 kitten3 = new cat();
 kitten4 = new cat();

 //continued on next slide…

5

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

25

Initializing (3 ways to do the same thing)
 //continued from previous slide…

 cat[,] litter = new cat[2,2] {{kitten1, kitten2},
{kitten3, kitten4}

};

 OR
 cat[,] litter = new cat[,] {{kitten1, kitten2},

{kitten3, kitten4}
};

 OR
 cat[,] litter = {{kitten1, kitten2},

{kitten3, kitten4}
};

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

26

Declare & Initialize a 9x9 int array
private int[,] solution1 = { {7,9,2,3,5,1,8,4,6},

{4,6,8,9,2,7,5,1,3},
{1,3,5,6,8,4,7,9,2},
{6,2,1,5,7,9,4,3,8},
{5,8,3,2,4,6,1,7,9},
{9,7,4,8,1,3,2,6,5},
{8,1,6,4,9,2,3,5,7},
{3,5,7,1,6,8,9,2,4},
{2,4,9,7,3,5,6,8,1}

};

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

27

Declare a 3x8 array of integers
 //Declare array and variables

private int[,] colors;
private int r=0, g=1, b=2; //rows

//create new instance – 3 rows (r,g,b), 8 columns
colors = new int[3,8];

//set a value
colors[r,3] = 1; //set row 0, column 4 equal to 1
colors[r,4] = 0; //set row 0, column 5 equal to 0
colors[r,5] = 1; //set row 0, column 6 equal to 1

colors[g,0] = 0; //set row 1, column 1 equal to 0
colors[g,1] = 0; //set row 1, column 2 equal to 0
colors[g,2] = 1; //set row 1, column 3 equal to 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

28

Declare a 3x8 array of integers
 //Alternately:

private int[,] colors = {{0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0}

};

//then
colors[b,5] = 1; //set row 2, column 6 equal to 1
colors[b,6] = 0; //set row 2, column 7 equal to 0
colors[b,7] = 1; //set row 2, column 8 equal to 1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

29

Retrieving values from array
 counters[0,2]

 //accesses the integer in the 1st row, 3rd column of the array

 names[1,0]
 //accesses the string in the 2nd row, 1st column of the array

 cat[5,4]
 //accesses the cat object in the 6th row, 5th column of the array

 counters[3,1] = 5;
 //sets the integer in the 4th row, 2nd column of the array equal to the number 5

 names[1,3] = “Harry”;
 //sets the string in the 2nd row, 4th column of the array equal to “Harry”

 cat[0,1] = kitten1;
 //sets the cat object in the 1st row, 2nd column equal to the cat object: kitten1

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

30

Length of a 2-dimensional array
 int[,] solution = { {1,2,3,4},

{5,6,7,8},
{9,10,11,12}

};

 tb.Text += solution.Length.ToString();

 //writes out: 12

 //there are 12 values in the array

6

10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

31

for loop for a 2-dimensional array
//rows

for (int i = 0; i < 3; i++)

{

//cols

for (int k = 0; k < 4; k++)

{

//check for last array item-don't put comma after last one

if(((i+1) * (k+1)) == solution.Length)

tb.Text += (solution[i,k].ToString() + “\r\n”);

else

tb.Text += (solution[i,k].ToString() + “\r\n”);

} //end inner for loop

} //end outer for loop

//writes out: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 10/9/2009 CGT 215
Copyright © 2009 Ronald J. Glotzbach

32

More Advanced…
 3-dimensional array:
 int[,,] items = new int[3,4,5];

 Jagged array:
 int[][] numbers = {new int[]{1,2,3},

new int[]{4,5,6,7,8,9},
new int[]{3} };

 There are others…

