ADOBE’
INTRODUCTION TO SCRIPTING

Al

Adobe

© Copyright 2007 Adobe Systems Incorporated. All rights reserved.
Introduction to Scripting for Windows' and Macintosh’.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Adobe Systems Incorporated. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe’, the Adobe logo, lllustrator InDesign®, and Photoshop® are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Applea, Mac 0S°, and Macintosh’ are trademarks of Apple Computer, Inc,, registered in the United States and other countries. Microsoft’, and
Windows' are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. JavaScript™ and
all Java-related marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a
registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Contents

1 Introduction . cesssseessssssssessssnssssssssssssssssssssnns cesssseesssssnsseas . cessssssscsssnnsssesses 5
Isn’t scripting diffiCUlt tO 1@AIN7 ... veeeeeeeeeeeerreeeeesseeeecesessaesssssessssessasesssaens 5
WRY USE SCHPTING? c.ceiererrirsenrsrsssissssssssssisses reeemerseseaasenaeeaes 5
How do | know when to use scrlptlng7 ceerse st e s sasbasees 5
What aDOUTL @CTIONS OF MACTOSY.....iiieeeereireeeeesseeieeisseessstasseiasstusstissssssessssssasesssessssssssesssessssesssesassssssssasatassssssesasassasesasassssess 5
Okay, so—what exactly is sCripting?ccocccvecreeeneenseinneesesssssisesnnns . 6

AAPPIESCIIP coverereeeererreessesssesesessssesssesssassssssssasssassssssssesssasssasssssssssssssssssasssessssssssasssasssasssseses 6
JavaScript ettt ettt R AR R RS e R R R AR R e Rt ee 6
VBSCHIPT ettt ssssssssssssssssssssssssesssssssssssssssns eevesresaersaesaenanes 7
How do | begin? . ceerre st saes . ceerserssaessassasrens 7

2 Scripting basics... . S
The building blocks of SCHPLING.....ccoeeercrrcrrrscersrs st ssssessens 9
Understanding objects, properties, methods, and commands..................... 9
USING ODJECES .uvurereieirrreinsissesisseissssssissessssssssssssssssssssssssasssassssssssssassssssssssssssssons 9

DOM CONCEPTES c.errerirererrsirsesisisssssssissssassssssssssssstssasssssssssssssssssssssssssssssassassessssassessssssssssesssssssesssssssessessssssesssssssessassass 9
Variables ...ttt sseesseesseens cereeseeiseeasesiaseeas 10
Object references make [If@ DEULEN ottt s s sss s sessssssassssssans 11
Variables provide a nice shortcut . 12
Naming variables.. . 13
Object collections or elements as object referencesoeerreernseneeenn. 13
How elements and collections number subSEqUENT ItEMS.......ccveerrnrinrnninsissssrssissesssssssssessseens 14
Referring to the current or active 0bjeCt ..., . 15
USING PIOPEITIES ..ceeereeieerenrecisensissiessessissssssisssess 16
Understanding read-only and read-Writ@ Properties ... eeecmeressesssesssnsessssesssnesssnse 19
Using alert boxes to show a property’s value 19
Constant values and @NUMEIATIONSoccueeeerecueesecsseeseesseemssessesssesasesssessasesssessssssaseens 20
Using variables for property values ceerere st e s e baees 22
Using Methods OF COMMANTSceenrrnernsinsnnsssissens 23
Command or method parameters.................. 23
ReQUIrEd ParamELErsS......vriereeneeererensissessnes 23
MUILIPIE PATAMELELSeeveeeereerrsseesressssesssssssssssssssssssesssssssssssssssssssssssssssanss 24

Tell statements (AS only)cveeveennee. . . ettt s st s s esaas 25
Notes about variables.........nneevnecnneenees . cereeusetassisesaens 26
Changing a variable’s value ettt s R R b n e b es ceeresa st st e s e ans 26
Using variables to refer to existing objects ceereeernsresseeseaens 27
Making SCript files readable... e eeereceiseerereecnisesseenessessssesssessssesssaseseas 27
COMMENTING ThE SCHPT.ceureeurrirrerrneriseerseesaerseesssessssessssessssessssesssssessssessssssssssssssessas . 27
Continuing long lines in AppleScript and VBSCIPT. .. eieeississssssssssssssssssssssssssssssses 29
Using Arraysceeeeeesennne . seeeteeuse st a st st s R R st E e R E s s e R st se e et e antas 29
Creating ObJECES. ... sssissessssissssssssssssens veerserssaesssnasrens 30
More information about scripting . 30

3 Finding an object’s properties and methods cessstessssssstsssssnssssesssssssssssssssssssssssssssssssssssns 31
Using scripting environment browsers................ 31

AppleScript data dictionaries.................. eettertes ittt et R e et bbb e A s e AR s bbb e as e A s estentens 31

Displaying the AppleScript diCtiONAIIEScevvererenrinrirsrssissesssssssssssssssssssssssssssssssssssssses 31

Using the AppleScript dictionaries cereeeernsressaeseaens 31

JavaScript object model VIEWETercreerrnrieriseresissesssasssnees . . 33
VBScript type libraries ceeensersenssaenaes 33

Displaying the VBSCript tYPe lIDrari@s ... crereceersneeseenseeseessesrsesssessseesssesssessssssssesssecsans 34

Using the VBScript type libraries..... . 34

Using Adobe scripting reference documents.... . 39
Working with an object’s elements table (AS only).......cccceeceneunnee. 39
Working with an object’s properties table 40
Working with an object’s methods table...........cccoueenveeenecnnne. 41
Advanced scripting techniques.......cccccecveeccccnnneccccsennnenes Y X |
CoNditioNal STATEMENTS......c.eceueeereceeeereesetereseiseeiseisessssessesssessssssssesssessssssasesssessans cereeusetassiasesaens 43

I STATEIMENTS covvvveeeeeeciiesiseeieseesssesssse i st i bssessssssssssesess st b s e s s b a bR st s bbb s b s ees 43

if else statements.. . ceee ettt 44

Loops eeseeete et RSB Es R R S SRR eSS RERSEe R R E R E st e R R E st Rt 45

More information about scripting 46
Troubleshooting....... . . R
Reserved words........ OO TP O P OT U OT PP T TP OT T E P OP PP OT OO T O PR OPRUTEUPEOPRSPREURIOPRE 47
AppleScript Script EAitOr €rTOr MESSAGESucvrierneiesrirssersssssessssssssessassssssssssssssssssssssssssssssanns 47
ESTK €rTOr MESSAGESecveneeieeiremernencemeessesssssassesessessssssesssessssssessses e 48
VBScript error messageseeeeecerennees S, 49
Bibliography . . . cessees 50
(117 =) QRO . ——Y

Introduction

Scripting is a powerful tool that can be used to control and automate many features of many Adobe®
applications—saving you so much time and effort that it can completely change the way you approach
your work.

Scripting isnt programming. You don’t need a degree in computer science or mathematics to write basic
scripts that automate a wide variety of common tasks.

Each scripting item corresponds to a tool or a palette or menu item in an Adobe application. In other
words, each scripting element is something you already know through your Adobe expertise. If you know
what you'd like your Adobe applications to do, you can easily learn to write scripts.

Your work is characterized by creativity, but many of the actual hands-on tasks are anything but creative.
Most likely, you spend a lot of time doing the same or similar procedures over and over again.

Wouldn't it be great to have an assistant—one that happily does the mind-numbing tasks, follows your
instructions with perfect and predictable consistency, is available any time you need help, works at
lightning speed, and never even sends an invoice?

Scripting can be that assistant. With a small investment of time, you can learn to script the simple but
repetitive tasks that eat up your time. However, while it's easy to get started, modern scripting languages
provide the necessary depth to handle very sophisticated jobs. As your scripting skills grow, you may move
on to more complex scripts that work all night while you're sleeping.

Think about your work—is there a repetitive task that’s driving you crazy? If so, you've identified a
candidate for a script. Next, you simply figure out:

e What are the steps involved in performing the task?
e What are the conditions in which you need to do the task?

Once you understand the process you go through to perform the task manually, you are ready to turn it
into a script.

If you have used Actions or written macros, you have some idea of the efficiency of using scripts. But
scripting goes beyond the capability of Actions or macros by allowing you to manipulate multiple
documents and multiple applications in a single script. For example, you can write a script that
manipulates an image in Photoshop and then tells InDesign to incorporate the image.

Additionally, your script can very cleverly get and respond to information. For example, you may have a
document that contains photos of varying sizes. You can write a script that figures out the size of each
photo and creates a different colored border based on the size, so that icons have blue borders, small
illustrations have green borders, and half-page pictures have silver borders.

Introduction to Scripting Introduction 6

If you like using Actions, keep in mind that your script can execute Actions within the application.

A script is a series of statements that tells an application to perform a set of tasks.

The trick is writing the statements in a language that the applications understand. Scriptable Adobe
applications support several scripting languages.

If you work in Mac OS’, your choices are:

e AppleScript

e JavaScript

If you work in Windows", your choices are:

e VBScript (Visual Basic and VBA will also work)
e JavaScript

The brief descriptions below can help you decide which language will work best for you.

AppleScript is a "plain language" scripting language developed by Apple. It is considered one of the
simplest scripting languages to use.

To write AppleScript scripts, you can use Apple’s Script Editor application, which, in a default Mac OS
installation, is located at:

system drive:Applications:AppleScript:Script Editor

For information about using Script Editor, please refer to Script Editor Help.

JavaScript is a very common scripting language developed originally to make Web pages interactive. Like
AppleScript, JavaScript is easy to learn.

Note: Adobe has developed an extended version of JavaScript, called ExtendScript, that allows you to
take advantage of certain Adobe tools and scripting features. As a beginner, the difference between
these two languages will not affect you. However, you should get in the habit of giving your
JavaScript scripts a .jsx extension, rather than the usual .js extension.

JavaScript has a few small advantages over AppleScript and Visual Basic:

e Your scripts can be used in either Windows or Mac OS. If there's a chance you'll want to share or use
your scripts on both platforms, you should learn to use JavaScript.

e Inlllustrator and InDesign, you can access scripts in any of the supported languages from within the
application. However, in Photoshop, you can access only .jsx files from within the application. You must
run AppleScript or Visual Basic scripts from outside the application. This is not a major drawback, but it
does require a few extra mouse clicks to run your scripts.

e You can set up .jsx scripts to run automatically when you open the application by placing the scripts in
the application’s Startup Scripts folder. For information on startup script folders, refer to the scripting
guide for your application.

To write scripts in JavaScript, you can use any text editor, or you can use the ESTK (ExtendScript Tool Kit)
provided with your Adobe applications. The ESTK has many features that make it easier to use than a text
editor, including a built-in syntax checker that identifies where the problems are in your script and tries to

Introduction to Scripting Introduction 7

explain how to fix them, and the ability to run your scripts right from the ESTK without saving the file. This
second feature can save you a lot of time, especially in the beginning when you may have to test and edit a
script more than a few times to get it to work.

In a default Adobe installation, the ESTK is in the following location:
e InMacOS:
system drive:Applications:Utilities:Adobe Utilities:ExtendScript Toolkit 2
e InWindows:
system drive:/Program Files/Adobe/Adobe Utilities/ExtendScript Toolkit 2

For details, see the JavaScript Tools Guide.

VBScript is a scaled-down version of the Visual Basic programming language developed by Microsoft.
VBScript talks to host applications using ActiveX Scripting. While VBScript is the Visual Basic language
version officially supported by CS3, you can also write scripts in VBA and Visual Basic itself.

You can find several good VBScript editors on the Internet. If you have any Microsoft Office applications,
you can also use the built in Visual Basic editor by selecting Tools > Macro > Visual Basic Editor.

It's time to write your first script.

Note: If you have problems running your script, see Chapter 5, “Troubleshooting” on page 47.

1. Open the Script Editor and type the following (substituting any Adobe application name in the quotes):

tell application "Adobe Photoshop CS3"
make document
end tell

2. Press Run.

1. Open the ESTK and select an application from the drop-down list in the upper left corner of a
document window.
2. Inthe JavaScript Console palette, type the following:

app.documents.add ()

3. Do any of the following:
e Click the Runicon in the toolbar at the top of the Document window.
e PressF5.

e Choose Debug -> Run.

Introduction to Scripting Introduction 8

1. In atext editor, type the following (substituting any Adobe application in the quotes in the second
line):

Set appRef = CreateObject ("Photoshop.Application")
appRef .Documents.Add ()

2. Save the file as a text file with a .vbs extension (for example, create_doc.vbs).

3. Double-click the file in Windows Explorer.

Scripting basics

This chapter covers the basic concepts of scripting in both Windows and Mac OS. For product-specific
directions, see the scripting guide for your Adobe application.

Your first script, which created a new document, was constructed like an English sentence, with a noun
(document) and a verb (make in AS, add () in JS, and Add in VBS). In scripting, a noun is called an object,
and a verb is called a command (in AS) or a method (in JS and VBS).

Just as you can modify a noun using adjectives, you can modify a script object using properties. To modify
a command or method, you use parameters.

When you use an Adobe application, you open a file or document, and then, within the document, you
create or manipulate layers, text, frames, channels, graphic lines, colors, and other design elements. These
things are objects.

To create a script statement, you create an object or refer to an existing object, and then you do one of the
following:

o Define values for the object’s properties. For example, you can specify a document’s name, height, or
width. You can specify a layer’s name, color, or opacity.

e Specify commands or methods that tell the script to do what to your objects. For example, you can
open, close, save, and print a document. You can merge, move, or rasterize a layer.

The thing to remember when writing a script is that you can use only the properties or
methods/commands that are allowed for the object. How do you know which properties and methods go
with which object? For the most part, it's logical. Generally, if you can specify something in your Adobe
application, you can specify it in a script.

However, Adobe also spells it out for you in great detail in scripting resources that contain the information
you need to create, define, and manipulate scripting objects. For information on locating and using these
resources, see Chapter 3, “Finding an object’s properties and methods” on page 31.

The main concept to understand when using objects in scripts is how to refer to an object. How do you let
the application know which object you want your script to change? In the application’s user interface, you
can simply select the object by clicking it. In a script, there’s a little bit more to it.

Scripting languages use something called a Document Object Model (DOM) to organize objects in a way
that makes the objects easy to identify. The principle behind a DOM is the containment hierarchy. In other
words, top level objects contain next level objects, which contain the subsequent level of objects, and so
on.

Introduction to Scripting Scripting basics 10

For example, the top level object in any Adobe application DOM is the application object. Next is the
document object, which contains all other objects, such as layers, channels, pages, text frames, and so on.
These objects can contain objects that the document cannot contain directly. For example, in InDesign or
Illustrator, a text frame can contain words. A document cannot contain words unless it has a text frame.
Similarly, in Photoshop, a document can contain a layer, and a layer can contain a text frame, but a
document cannot contain a text frame unless the document contains a layer.

Note: An object’s containing object is also called its parent object.

In your first script, you first named the application object (or selected it in the ESTK), and then you created
the document within that application. If, as your next step, you wanted to create a layer, your script would
need to identify the document in which you want to create the layer. If your script does not tell the
application exactly where to create an object, your script fails.

Note: To view a chart of the DOM for a specific application, please refer to the application’s scripting
guide.

So, using your DOM principle, how would you add a layer in a document? (To modify this script for
Photoshop, please note that a layer is called art layerin AS; and layers are called artLayers in JS or
ArtLayers in VBS).

tell application "Adobe Illustrator CS3"
make document
make layer in document

end tell

app.documents.layers.add()

Set appRef = CreateObject ("Illustrator.Application")
docRef .Documents.Add
appRef .Documents.Layers.Add

If you try to run these scripts, you get an error because the application does not know which document
you mean. Sure, you have only one document open, but that won't always be the case. Therefore, scripting
languages have strict requirements that all objects be explicitly identified in every script statement.

This guide introduces three ways to refer to objects:
e \Variables
e Collection or element numbers

e The "current” object or "active" object property

A variable is a thing that you create to hold data in your script. The data, called the variable’s value, can be
an object in your script, or it can be a property that describes an object. You could almost think of a
variable as a nickname that you give to an object or other data.

Using a variable to contain an object makes an object easy to refer to. Most scripters create a variable for
each object in their script.

Introduction to Scripting Scripting basics

11

The following scripts create a document, just as you did in your first script. However, this version of the
script creates a variable named myDoc to contain the document. Take a look at these scripts, and then
compare them to your first script. (See “How do | begin?” on page 7.)

To create a variable in AS, you use the command set, followed by the variable name. To assign a data
value to the variable, you use to followed by the value.
tell application "Adobe Illustrator CS3"
set myDoc to make document
end tell

To create a variable in JS, you use var, followed by the variable name. To assign a data value, you use an
equal sign (=) followed by the value. Spaces do not matter on either side of the equal sign.
var myDoc = app.documents.add ()

To create a variable in VBS, you use the command Set, followed by the variable name. To assign a data
value, you use an equal sign (=) followed by the value. Spaces do not matter on either side of the equal
sign.

Set appRef = CreateObject ("Illustrator.Application")

Set docRef = appRef.Documents.Add

Now that you have a way to refer to the document object created in the script, it's easy to add the layer.
(To modify this script for Photoshop, please note that a layer is called art layer in AS; and layers are
called artLayersinJSor ArtLayers in VBS).

tell application "Adobe Illustrator CS3"
set myDoc to make document
make layer in myDoc

end tell

Even better, we could create another variable to hold the layer. That would allow us to easily refer to the
layer if we wanted to define its properties or add an object to the layer.
tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc
end tell

Introduction to Scripting Scripting basics 12

var myDoc = app.documents.add ()
myDoc.layers.add ()

The same script again, this time creating a variable to hold the layer.
var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()

Set appRef = CreateObject("Illustrator.Application")
Set docRef = appRef.Documents.Add
docRef .Layers.Add

The same script again, this time creating a variable to hold the layer.
Set appRef = CreateObject ("Photoshop.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.Layers.Add

Variables that hold objects also hold the entire containment hierarchy that identifies the object. For
example, to refer to myLayer, you don't need to refer to the document that contains the layer. The
following scripts create a text frame in myLayer. Notice that, when you use myLayer, you don't need to
provide any containment hierarchy information about the layer.

Note: The following script uses the contents property to add text to the frame. For now, don’t worry
about the mechanics of using properties.

The following script uses objects and properties defined in the Illustrator CS3 object model, so it does not
work, for example, in InDesign or Photoshop.

tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc
set myTextFrame to make text frame in myLayer
set contents of myTextFrame to “Hello world!”
end tell

var myDoc = app.documents.add ()

var myLayer = myDoc.layers.add ()

var myTextFrame = myLayer.textFrames.add ()
myTextFrame.contents = “Hello world!”

Set appRef = CreateObject ("Illustrator.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.Layers.Add
Set frameRef = layerRef.TextFrames.Add
myTextFrame.Contents = “Hello world!”

Introduction to Scripting Scripting basics 13

Your scripts will be easier to read if you create descriptive names for your variables. Variable names such as
x or ¢ aren't helpful when you revisit a script. Better names are those that indicate the data the variable
contains, such as theDocument or myLayer.

Giving your variable names a standard prefix helps your variables stand out from the objects, commands,
and keywords of your scripting system. For example:

e You could use the prefix “doc” at the beginning of any variables that contain Document objects, such
as docRef, or “layer” to identify variables that contain Art Layer objects, such as 1ayerRef and
layerRef2.

e You could use the prefix "my" to add a personal element that separates your variables from script
objects. For example, myDoc or myLayer of myText Frame.

All variable names must conform to the following rules:

e \Variable names must be a single word (no spaces). Many people use internal capitalization (such as
myFirstPage) or underscore characters (my first page) to create more readable names. The
variable name cannot begin with an underscore character.

e \Variable names can contain numbers but cannot begin with a number.
e \Variable names cannot contain quotation marks or punctuation other than the underscore character.

e \Variable names in JavaScript and VBScript are case sensitive. thisString is not the same as
thisstringor ThisString. Variable namesin AppleScript are not case sensitive.

e Each variable in your script must have a unique name.

Scripting languages put each object in a collection (JS or VBS) or an element (AS), and then assign the
object a number, called the index, within the element or collection. The objects in an element or collection
are identical types of objects. For example, each channel object in your document belongs to a
channels element or collection; each art layer object belongsto an art layers element oran
artLayers collection.

In English, you could refer to a document by saying, "Give me the first document in the collection.’
Scripting languages allow you to identify an object in similar fashion, using its element or collection name
and index.

e In AS, you refer to the first document in the documents element as document 1.

e InJS, the first document is documents [0], (note the square braces surrounding the index) because
(and this is hard to remember at first) JavaScript begins numbering collection objects at 0.

e InVBS, the first document is Documents (0), (note the parentheses around the index). VBS begins
numbering collection objects at 1.

The following scripts reference the document and layer objects by index in order to add new objects.

Note: Because the following script does not use variables, entire containment hierarchy is required in each
object reference. For example, in the statement that adds a layer, the script must identify the
document to which the layer will be added. To add a text frame to the layer, the script must provide
the index not only of the layer that will contain the frame, but it must also identify the document
that contains the layer.

Introduction to Scripting Scripting basics 14

tell application "Adobe InDesign CS3"

make document

make layer in document 1

make text frame in layer 1 of document 1
end tell

Note: Beginning scripters using AppleScript are not encouraged to use element numbers as object
references when the element contains more than one object. For details as to why, see “How
elements and collections number subsequent items” on page 14.

In JavaScript, you indicate an item’s index by using the collection name followed by the index in square

brackets ([1).
app.documents.add ()
app.documents [0] . layers.add ()
app.documents [0] .layers [0] .textFrames.add ()

Note: Remember, in JS, index numbers within a collection start at 0.

In VBScript, you indicate an item'’s index by using the collection name followed by the index in
parentheses.

appRef .Documents.Add

appRef .Documents (1) .Layers.Add

appRef .Documents (1) .Layers (1) .TextFrames.Add

Here's how the scripting languages handle the automatic numbering if you add a second object to a
collection or element:

e ASassigns number 1 to the new object and renumbers the previously existing object so that it is now
number 2. AppleScript object numbers shift among objects to indicate the object that you worked
with most recently. This can become confusing in longer scripts. Therefore, beginning scripters are
encouraged to use variables as object references and avoid using indexes.

e JS collection numbers are static; they don't shift when you add a new object to the collection. Object
numbering in JS indicates the order in which the objects were added to the collection. Because the first
object you added was assigned the number 0, the next object you add to the collection is number 1; if
you add a third object, it is number 2. For example, when you add a document, the document
automatically contains a layer. The layer’s index is [0]. If you add a layer, the new layer’s index is [1]; if
you add a second layer, its index is [2]. If you drag layer [2] to the bottom position in the Layers palette,
it still has index [2].

e VBS collection numbers are also static and the numbering performs exactly as described for JS
collections, with the exception that the first object in the collection is always (1) in VBS.

Tip: In JS and VBS scripts, you'll find index numbers very useful as object references. For example, you may
have several files in which you want to make the background layer white. You can write a script that
says “Open all files in this folder and change the first layer’s color to white.” If you didn’t have the
capability of referring to the layers by index, you'd need to include in your script the names of all of
the background layers in all of the files.

Introduction to Scripting Scripting basics 15

Note:

Note:

Scripts are compulsive organizers. They place objects in elements or collections even when there is
only one object of that type in the entire collection.

Objects can belong to more than one collection or element. For example, in Photoshop, art
layer objects belong to the art layers elementor collection, and layer set objects belong
tothe layer sets elementor collection, but both art layer objectsand layer set objects
belong to the 1ayers element or collection. Similarly, in InDesign, rectangle objects belong to
the rectangles element or collection and text frame objects belong to the text frames
element or collection. However, both rectangle objects and text frame objects also belong to
the page items element or collection, which contains all sorts of items on a page such as ellipses,
graphic lines, polygons, buttons, and other items.

When you ran your first script and created a new document, the application opened, and then it created a
document. If you wanted to modify that document in the application’s user interface, you could have just
gone to work with your mouse, menus, toolbox, and palettes, because the document was automatically
selected.

This is true for all objects you create in a script. Until the script does something else, the new object is the
active object, ready for modifications.

Conveniently, many parent objects contain properties that allow you to refer easily to the active object.
(You'll learn about properties in detail a little later in this guide. For now, you can just copy the script
statements in this section and watch how they work without understanding completely why they look the
way they do.)

e In AS, the property that refers to an active object consists of the word current and the object name.
Some examples are:

current document
current layer
current channel
current view

e In JS, the property name is a compound word that combines act ive with the object name, in
standard JS case usage:

The first word in the combined term is lower case.

The second word (and all subsequent words) in the combined term use initial caps.

Some examples are:

activeDocument
activeLayer
activeChannel
activevView

e VBS is exactly the same as JS, except that all words in the combined term use initial caps. Some
examples are:

ActiveDocument
Activelayer
ActiveChannel
ActiveView

Introduction to Scripting Scripting basics 16

The following scripts create a document and then use this principle to create a layer in the new document.

tell application "Adobe Illustrator CS3"
make document
make layer in current document

end tell

app.documents.add ()
app.activeDocument.layers.add ()

Note: Be sure to type activeDocument without an s at the end.

Set appRef = CreateObject ("Illustrator.Application")
docRef .Documents.Add
appRef .ActiveDocument .Layers.Add

Note: Be sure to type Act iveDocument without an s at the end.

To define or modify a property of an object, you do three things:
1. Name the object.
2. Name the property.

3. Specify the value for the property.
The value can be any of the following datatypes:

e Astring, which is alphanumeric text that is interpreted as text. You enclose strings in quotes (""). Strings
include such values as an object’s name.

e Numeric, which is a number value that can be used in mathematical operations like addition or
division. Mathematical numbers include the length of one side of a frame or the space between
paragraphs, the opacity percentage, font size, stroke weight, and so on.

Note that some values that look like numbers are really strings. For example, a phone number or social
security number are numbers, but you would format them as strings (enclose them in quotes) because
the data would not be considered mathematical numbers.

Within the numeric category, there are different types of numbers:

e Integer, which is a whole number without any decimal points

e Real, fixed, short, long, or double, which are numbers that can include decimal digits, such as 5.9 or
1.0.

Note: These differences may not seem important now, but keep them in mind for later.

e Avariable. When you use a variable as a property value, you do not enclose the variable in quotes as
you would a string.

Introduction to Scripting Scripting basics 17

e A Boolean value, which is either true or false.

Note: In many cases, Boolean values act as an on/off switch.

e A constant value (also called an enumeration), which is a pre-defined set of values from which you can
choose. Using constant values for a property is conceptually similar to using a drop-down menu in an
Adobe application. Constants, and how and when to use them, are explained in “Constant values and
enumerations” on page 20.

e Alist (AS) or an array (JS and VBS).

Some properties require multiple values, such as the page coordinates of a point location (x and y
coordinates), or the boundaries of a text frame or geometric object. Multiple values for a single
property are called a list in AS and an array in JS or VBS. Each language specifies formatting rules.

e Thelist or array must be enclosed as follows:
e In AS, the listis enclosed in curly braces: { }
e In JSthe array is enclosed in square brackets: []
e InVBS, the array is enclosed in parentheses and follows the keyword Array: Array ()

e Values are separated by a comma (,). You can include or omit spaces after the commas; it doesn’t

matter.

e AS:{3,4,5}o0r{"stringl", "string2", "string3"}

e JS:[3,4,5]o0r ["stringl", "string2", "string3"]

e VBS:Array(3,4,5)0rArray("stringl", "string2", "string3")

e Alistorarray can included nested lists or arrays, such as a list of page coordinates. In the following
samples, notice that each nested array is enclosed individually, and that the nested arrays are
separated by commas.

o AS:{{x1, vi}, {x2, v2}, {x3, y3}}
e JS:[I[x1, vyi1l, [x2, y21, I[x3, y31]
e VBS:Array (Array(xl, yl), Array(x2, y2), Array(x3, y3))

To use properties in AS, you use the set command followed by the property name, and then type of
followed by the object reference. The following script defines the name property of the 1ayer object
tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc
set name of myLayer to "My New Layer"
end tell

You can set several properties in a single statement using the properties property. You format the
multiple properties as an array, enclosed in curly braces. Within the array, separate each property
name/property value pair with a colon (:). The following script uses properties to define the layer’s
name and visibility state.
tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc
set properties of myLayer to {name:"My New Layer", visible:false}
end tell

Introduction to Scripting Scripting basics 18

Note: Notice in the preceding script that only the string value "My New Layer" is enclosed in quotes.
The value for the visible property, f£alse, may look like a string, but it is a Boolean value. To
review value types, see “Using properties” on page 16.

You can define an object’s properties in the statement that creates the object, as in the following scripts.
tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc with properties {name:”My New Layer"}
end tell

tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc with properties {name:”My New Layer",
visible:false}
end tell

To use a property in JS, you name the object that you want the property to define or modify, insert a
period (.), and then name the property. To specify the value, place an equal sign (=) after the property
name, and then type the value.
var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()
myLayer.name = "My New Layer"
To define multiple properties, you can write multiple statements:
var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add ()
myLayer.name = "My New Layer"
myLayer.visible = false

Note: Notice in the preceding script that only the string value "My New Layer" isenclosed in quotes.
The value for the visible property, false, may look like a string, but it is a Boolean value. To
review value types, see “Using properties” on page 16.

JS provides a shorthand for defining multiple properties, called a with statement. To useawith
statement, you use the word wi th followed by the object whose properties you want to define, enclosing
the object reference in parentheses (()). Do not type a space between with and the first parenthesis.
Next, you type an opening curly brace ({), and then press Enter and type a property name and value on
the following line. To close the with statement, you type a closing curly brace (}).
var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()
with (myLayer) {
name = "My New Layer"
visible = false

}
Using a with statement saves you the trouble of typing the object reference followed by a period (in this
case, myLayer.) for each property. When using a with statement, always remember the closing curly
bracket.

JS also provides a properties property, which allows you to define several values in one statement. You
enclose the entire group of values in curly braces ({ }). Within the braces, you use a colon (:) to separate a
property name from its value, and separate property name/property value pairs using a comma (,).
var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()
mylLayer.properties = {name:"My New Layer", visible:false}

Introduction to Scripting Scripting basics 19

To use properties in VBS, you name the object, insert a period (.), and then name the property. To specify
the value, place an equal sign (=) after the property name, and then type the value.
Set appRef = CreateObject ("Illustrator.Application")
Set myDoc = appRef.Documents.Add
Set myLayer = myDoc.Layers.Add
myLayer .Name = "My First Layer"
You can define only one property per statement. To define multiple properties, you must write multiple
statements:
Set appRef = CreateObject ("Illustrator.Application")
Set myDoc = appRef.Documents.Add
Set myLayer = myDoc.Layers.Add
myLayer.Name = "My First Layer"
myLayer.Opacity = 65
myLayer.Visible = false

Note: Notice in the preceding script that only the string value "My New Layer" is enclosed in quotes.
The value for the Visible property, f£alse, may look like a string, but it is a Boolean value. To
review value types, see “Using properties” on page 16.

When defining property values, you can write a script statement with perfect syntax, but the statement
does not produce any results. This can happen when you try to define a property that is not "writeable";
the property is read-only.

For example, the name property of the document object in most Adobe applications is read-only;
therefore, you cannot use a script to define or change the name of an existing document (although you
can use a save as command or method; see “Using methods or commands” on page 23 for information).
So why bother to have a property that you can't set, you might ask. The answer is that read-only properties
are valuable sources of information. For example, you may want to find out what a document’s name is, or
how many documents are in the Documents collection.

A good way to display information in a read-only property is to use the alert box, which is a small dialog
that simply displays information. You can use alert boxes to display the value of any property: read-write or
read-only.

To display an alert box in AS, you type display dialog, and then type the dialog contentin
parentheses (()). To find out how many objects are in an element, use the count command with any
element name.

Note: The element name is the plural form of the object. For example, the document object’s element is
the document s object.

The following script displays an alert box that tells you how many documents are in the documents
element, then adds a document and displays a new alert with the updated number.
tell application "Adobe Photoshop CS3"
display dialog (count documents)
set myDoc to make document
display dialog (count documents)
end tell

Introduction to Scripting Scripting basics 20

To get a string value to display in an alert box, you must store the string value in a variable. The following
script converts the document name to a variable named myName, and then displays the value of myName.
tell application "Adobe Photoshop CS3"
set myDoc to make document
set myName to name of myDoc
display dialog myName
end tell

To display an alert box in JS, you use the alert () method by typing alert, and then typing the dialog
content in parentheses (()). Do not type a space between alert and the first parenthesis. To find out
how many objects are in a collection, use the (read-only) 1ength property of any collection object. The
following script displays an alert box that tells you how many documents are in the documents collection,
then adds a document and displays a new alert with the updated number.

Note: The collection object name is the plural form of the object. For example, the document object’s
collection object is the documents object.

alert (app.documents.length)
var myDoc = app.documents.add ()
alert (app.documents.length)
The following script displays the document’s name in an alert box.

var myDoc = app.documents.add ()
alert (myDoc.name)

To display an alert box in VBS, you use the MsgBox method by typing MsgBox, and then typing the dialog
content in parentheses (()). Do not type a space between MsgBox and the first parenthesis. To find out
how many objects are in a collection, use the (read-only) Count property of any collection object. The
following script displays an alert box that tells you how many documents are in the Document s collection,
then adds a document and displays a new alert with the updated number.

Note: The collection object is the plural form of the object. For example, the Document object’s collection
object is the Documents object.

Set appRef = CreateObject ("Photoshop.Application")
MsgBox (appRef .Documents.Count)

Set myDoc = appRef.Documents.Add

MsgBox (appRef .Documents. Count)

The following script displays the document’s name in an alert box.
Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add
MsgBox (myDoc . Name)

Some properties’ values are pre-defined by the application. For example, in most applications, the page
orientation can be either landscape or portrait. The application accepts only one of these two values; it will
not accept "vertical" or "upright" or "horizontal" or "on its side". To make sure your script provides an
acceptable value for a document’s page orientation property, the property has been written so that it can
accept only a pre-defined value.

In scripting, these pre-defined values are called constants or enumerations.
Using a constant or an enumeration is similar to using a drop-down list in the application’s user interface.

Introduction to Scripting Scripting basics 21

Note: To find whether you must use an enumeration for a property’s value, look up the property in one of
the scripting references provided by Adobe. For information, see Chapter 3, “Finding an object’s
properties and methods” on page 31.

In AS, you use constants as you would any other property definition. Do not enclose the constant in
quotes. The following script uses the constant value dark green to set the layer color of a new layer.
tell application "Adobe Illustrator CS3"
set myDoc to make document
set myLayer to make layer in myDoc
set layer color of myLayer to dark green
end tell

Note: If dark green were a string value rather than an constant, the value would be enclosed in quotes:

set layer color of myLayer to "dark green"

In JS, you type the enumeration name, a period (.), and then the enumeration value. You must use the
exact spelling and capitalization as defined in the scripting references provided by Adobe. Formatting is
different in different Adobe applications. For example:

e InInDesign:

e Each enumeration begins with an upper case letter, and all words within the combined term also
begin with an upper case letter.

e The enumeration value begins with a lower case letter.
The following example uses the UIColor enumeration to set the layer color to dark green.

var myDoc = app.documents.add ()
var myLayer = mydoc.layers.add ()
myLayer.layerColor = UIColor.darkGreen

e Inlllustrator:

e Each enumeration begins with an upper case letter, and all words within the combined term also
begin with an upper case letter.

e Some enumeration values begin with an upper case letter and then use lower case letters. Others
use all upper case. You must be sure to use the value exactly as it appears in the scripting reference.

The following example uses the RulerUnits enumeration to set the default unit to centimeters.

var myDoc = app.documents.add ()
myDoc.rulerUnits = RulerUnits.Centimeters

The next script uses the BlendModes enumeration, whose values are expressed in all upper case
letters.

var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add ()
myLayer.blendingMode = BlendModes.COLORBURN

e In Photoshop:

e Each enumeration begins with an upper case letter, and all words within the combined term also
begin with an upper case letter.

Introduction to Scripting Scripting basics 22

e Enumeration values are all upper case.
The following example uses the LayerKind enumeration to make the layer a text layer.

var myDoc = app.documents.add ()
var myLayer = mydoc.artLayers.add()
myLayer.kind = LayerKind.TEXT

In VBS, you use numeric values for constants.
Set appRef = CreateObject ("Photoshop.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.ArtLayers.Add
layerRef .Kind = 2

You can use variables to contain property values. This can help you update a script quickly and accurately.
For example, you may have a publication in which all photos are 3 x 5 inches. If you use a variable to set the
photo height and the photo width, and then the measurements change, you only have to change the
values in one variable, rather than the measurements for each photo in the document.

The following script creates variables to contain the values of the document’s width and height, and then
uses the variables as values in the statement that changes the width and height.

tell application "Adobe Illustrator CS3"

set myDoc to make document with properties {height:10, width:7}

set docHeight to height of myDoc

set docWidth to width of myDoc

set myDoc with properties {height:docHeight - 2, width:docWidth - 2}
end tell

var myDoc = app.documents.add (7, 10)

var docHeight = myDoc.height

var docWidth = myDoc.width
myDoc.resizeCanvas ((docHeight - 2), (docWidth - 2))

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (7, 10)

docHeight = myDoc.Height

docWidth = myDoc.Width

myDoc.ResizeCanvas docWidth - 2, docHeight - 2

Note: The MsgBox method does not work when you open a script from the Scripts menu in some
Adobe applications. To properly display the message box, double-click the script file in Windows
Explorer®.

Introduction to Scripting Scripting basics 23

Commands (in AS) and methods (in VBS and JS) are directions you add to a script to perform tasks or
obtain results. For example, you could use the print/print () /PrintOut command/method to print
a document.

AS commands appear at the beginning of a script statement as an imperative verb. The command is
followed by a reference to the object upon which you want the command to act.

The following script prints the active document:
tell application "Adobe InDesign CS3"
print current document
end tell

You insert methods at the end of JS statements. You must place a period before the method name, and
then follow the method name with parentheses (()).
app.activeDocument.print ()

You insert methods at the end of VBS statements. You must place a period before the method name.
Set appRef = CreateObject ("Photoshop.Application")
appRef .ActiveDocument .PrintOut

Some commands or methods require additional data, called arguments or parameters. Commands or
methods can also have optional parameters.

The following scripts use the merge command, which requires some indication of the layers you want to
merge into the selected layer. Just like properties, command parameters are enclosed in curly braces ({ }).
However, you include only the parameter value, and not the parameter name, within the braces.

Note: This script is for InDesign. There is no merge operation in lllustrator. To modify this script for
Photoshop, please note that a layer is called art layer in AS; and layers are called artLayers in
JSorartLayersin VBS.

tell application "Adobe InDesign CS3"
set myDoc to make document

set myLayer to make layer in myDoc
set myLayer2 to make layer in myDoc

merge myLayer2 with {myLayer}
end tell

Introduction to Scripting Scripting basics 24

The method parameter is enclosed in the parentheses that follow the method name.
var myDoc = app.documents.add ()

var myLayer = myDoc.layers.add ()
var myLayer2 = myDoc.layers.add ()

myLayer2.merge (myLayer)

Notice that the method parameter is enclosed in parentheses after the method name. Do not type a space
before the first parenthesis.

Set appRef = CreateObject ("InDesign.Application")

Set myDoc = appRef.Documents.Add

Set myLayer = myDoc.Layers.Add
Set myLayer2 = myDoc.Layers.Add

myLayer2.Merge (myLayer)

When you define more than one parameter for a command or method, you must follow specific rules.

There are two types of parameters for AS commands:
e Adirect parameter, which defines the direct object of the action performed by the command
e Labeled parameters, which are any parameters other than direct parameters

The direct parameter must follow the command directly. In the following statement, the command is
make and the direct parameter is document.
make document

You can insert labeled parameters in any order. The following script creates two layers, and defines the
location and name of each layer. Notice that, in the statements that create the layers, the 1location and
name parameters appear in different orders.
tell application "Adobe InDesign CS3"
set myDoc to make document
tell myDoc
set myLayer to make layer at beginning of myDoc with properties {name:"Layl"}
set myLayer2 to make layer with properties {name:"Lay2"} at end of myDoc
end tell
end tell

Introduction to Scripting Scripting basics 25

In JS, you must enter parameter values in the order they are listed in the scripting reference resources so
that the script compiler knows which value defines which parameter.

Note: For information on scripting reference resources, see Chapter 3, “Finding an object’s properties and
methods” on page 31.

To skip an optional parameter, type the placeholder unde f ined. The following statement creates a
Photoshop CS3 document whose width is 4000 pixels, height is 5000 pixels, resolution is 72, name is "My
Document’, and document mode is bitmap.

app.documents.add (4000, 5000, 72, “My Document“, NewDocumentMode.BITMAP)

The next statement creates an identical document except that the resolution is left undefined.
app.documents.add (4000, 5000, undefined, “My Document“, NewDocumentMode.BITMAP)

Note: Use the undefined placeholder only to "reach” the parameters you want to define. The following
statement defines only the document’s height and width; placeholders are not needed for
subsequent optional parameters.

app.documents.add (4000, 5000)

In VBS, you must enter parameter values in the order they are listed so that the script compiler knows
which value defines which parameter.

To skip an optional parameter, type the placeholder unde f ined. The following statement creates a
Photoshop CS3 document whose width is 4000 pixels, height is 5000 pixels, resolution is 72, name is "My
Document’, and document mode is bitmap.

Set appRef = CreateObject ("Photoshop.Application")

Set myDoc = appRef.Documents.Add (4000, 5000, 72, "My Document", 5)
The next statement creates an identical document except the resolution is left undefined.

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (400, 500, undefined, "My Document", 5)

Note: Use the undefined placeholder only to "reach” the parameters you want to define. The following
statement defines only the document’s height and width; placeholders are not needed for
subsequent optional parameters.

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (4000, 5000)

The undefined placeholder is not case-sensitive.

You may have noticed that AppleScript examples start and end with the statements:

tell application "Application Name"

end tell
A tell statement names the default object that performs all commands contained within the statement.
In the preceding sample, the tell statement targets the application object. Therefore, any commands
contained within the statement must be performed by the application object unless another object is
explicitly named in a script statement within the tel1l statement.

Introduction to Scripting Scripting basics 26

The following script carefully outlines the full containment hierarchy of each object to indicate which
object the command must work upon:
tell application "Adobe InDesign CS3"
set myDoc to make document
set myLayer to make layer in myDoc
set myLayer2 to make layer in myDoc
end tell
You can create a shortcut by changing the command target. To do so, you add a nested tell statement.
The following script performs the exact same operation as the previous script. Because the nested tell
statement targets the document object, it is not necessary to refer to the document object in the
statements that create the layers.
tell application "Adobe InDesign CS3"
set myDoc to make document
tell myDoc
set myLayer to make layer
set myLayer2 to make layer
end tell
end tell
Notice that each tell statement must be closed with its own end tell statement.

You can nest as many tell statements as you wish.

This section provides additional information about using variables.

You can change a variable’s value at any time. To do so, you simply use the variable name followed by the

assignment operator (to in AS; = in JS or VBS) and the new value. The following scripts create the variable
layerRef to contain a new layer, and then immediately create a second layer and assign itas layerRef’s
new value.

To change a variable’s value in AS, you use the set command.
tell application "Adobe Illustrator CS3"
set docRef to make document
set layerRef to make layer in myDoc with properties {name:"First Layer"}
set layerRef to make layer in myDoc with properties {name:"Second Layer"}
end tell

To change a variable’s value in JS, you use the variable name followed an equal sign (=) and the new value.
Do not begin the reassignment statement with var; you use var only when creating a new variable.
var docRef = app.documents.add ()
var layerRef = myDoc.layers.add ()
layerRef .name = "First Layer"
layerRef = myDoc.layers.add ()
layerRef .name = "Second Layer"

Introduction to Scripting

Scripting basics

27

To change a variable’s value in VBS, you use the Set command.

Set appRef = CreateObject ("Illustrator.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.Layers.Add

layerRef .Name = "First Layer"

layerRef = docRef.Layers.Add

layerRef .Name = "Second Layer"

You can also create variables to contain existing objects.

tell application "Adobe Photoshop CS3"
set myDoc to current document

end tell

var myDoc

Set appRef
Set docRef

This section covers two options that help make your script files more readable:

o Comments

e Line breaks

A script comment is text that the scripting engine ignores when it executes your script.

= app.activeDocument

= CreateObject ("Illustrator.Application")
= appRef .ActiveDocument

Comments are very useful when you want to document the operation or purpose of a script (for yourself

or for someone else). Most programmers, even the most advanced, take the time to insert comments for
almost every element in a script. Comments may not seem important to you when you are writing your
scripts, but you will be glad you included comments a month or a year later when you open a script and

wonder what you were trying to do and why.

Introduction to Scripting Scripting basics 28

To comment all or part of a single line in an AS, type two hyphens (- -) at the beginning of the comment.
To comment multiple lines, surround the comment with (* and *).
tell application "Adobe InDesign CS3"
--This is a single-line comment
print current document --this is a partial-line comment

--the hyphens hide everything to their right from the scripting engine
(* This is a multi-line
comment, which is completely
ignored by the scripting engine, no matter how
many lines it contains.
The trick is to remember to close the comment.
If you don’t the rest of your script is
hidden from the scripting engine!*)
end tell

Note: The only thing this script does is print the current document.

To comment all or part of a single line in JS, type two forward slashes (/ /) at the beginning of the
comment. To comment multiple lines, surround the comment with /* and * /.
//This is a single-line comment

app.activeDocument .print () //this part of the line is also a comment

/* This is a multi-line
comment, which is completely
ignored by the scripting engine, no matter how
many lines it contains.
Don’t forget the closing asterisk and slash
or the rest of your script will be commented out...*/

Note: The only thing this script does is print the active document.

In VBS, type Rem (for “remark”) or ' (a single straight quote) at the beginning of the comment. VBS does
not support comments that span more than one line. To comment several lines in a row, start each line
with either comment format.

'This is a comment.

Set appRef = CreateObject ("Photoshop.Application")

Rem This is also a comment.

appRef .ActiveDocument .PrintOut 'This part of the line is a comment.

' This is a multi-line

' comment that requires

' a comment marker at the beginning

' of each line.

Rem This is also a multi-line comment. Generally, multi-line

Rem comments in VBS are easier for you to identify (and read) in your scripts

Rem if they begin with a single straight quote (') rather than if they begin

Rem with Rem, because Rem can look like any other text in the script

' The choice is yours but isn’t this more easily

' identifiable as a comment than the preceding

' four lines were?

Note: The only thing this script does is print the active document.

Introduction to Scripting Scripting basics 29

In both AppleScript and VBScript, a carriage return at the end of a line signals the end of a statement.
When your script lines are too long to fit on one line, you can use special continuation characters—
characters that break a line but direct the script to read the broken line as a legitimate instruction.

Note: You can also expand the scripting editor window to continue the statement on a single line.

Type the character — (Option+Return) to break a long line but continue the statement.
tell application "Adobe InDesign CS3"
set myDoc to make document
set myLayer to make layer in myDoc with properties {name:"My First Layer"} at the™
beginning of myDoc (* without the line break character, AS would consider this
line an incomplete statement¥)
(* note that line continuation characters are not required in a multi-line comment
such as this one*)
set myLayer2 to make layer in myDoc with properties {name:"My Other Layer"} —
before myLayer
end tell

Type an underscore (_) followed by a carriage return to break a long line but continue the statement.

Note: In both languages, the continuation character loses its functionality if it is placed inside a string
(that is, within the quotes). If the line break occurs within a string value, place the break character
before the string and insert the line break early.

Note: In JavaScript, statements can contain carriage returns, so there is no need for a continuation
character. However, the ExtendScript interpreter interprets each line as a complete statement. In
general, therefore, it's best to insert returns only at the ends of statements.

In VBScript and JavaScript, arrays are similar to collections; however, unlike collections, arrays are not
created automatically.
You can think of an array as a list of values for a single variable. For example, the following JavaScript array

lists 4 values for the variable myFiles:
var myFiles = new Array ()

myFiles[0] = "clouds.bmp"
myFiles[1] = “clouds.gif”
myFiles[2] = “clouds.jpg”
myFiles [3] = “clouds.pd£f”

Notice that each value is numbered. To use a value in a statement, you must include the number. The
following statement opens the file clouds .gif:
open (myFiles[1])

Introduction to Scripting Scripting basics 30

The following sample includes the same statements in VBScript:
Dim myFiles (4)

myFiles (0) = “clouds.bmp”
myFiles (1) = “clouds.gif”
myFiles (2) = “clouds.jpg”
myFiles (3) = “clouds.pd£f”

appRef .Open myFiles (1)

Note: While indexes in VBS collections always begin numbering at (1), you can stipulate in your VBS scripts
whether arrays that you create begin numbering at (1) or (0). To find out how to set the array index
starting number, refer to any VBScript text book. For information on collections and index numbers,
see “Object collections or elements as object references” on page 13.

Your first script demonstrated how to create an object using the make command (AS), add () method (JS),
or Add method (VBS) of the object’s collection object. For example:

tell application "Adobe Photoshop CS3"
make document
end tell

app.documents.add ()

Set appRef = CreateObject ("Photoshop.Application")

appRef .Documents.Add ()
However, some objects do not have a make command (AS), add () method (JS), or Add method (VBS). To
create objects of these types, refer to the section “Creating new objects” in the chapter for your scripting
language in the Adobe scripting guide for your application.

At this point you have enough knowledge to create simple scripts that perform basic tasks. To further your
scripting skills, use any of the following resources:

e "“Advanced scripting technigues” on page 43.

e The Adobe scripting guide for your application.
e "“Bibliography” on page 50.

Finding an object’s properties and methods

Adobe provides the following resources to help you find and use the objects, methods or commands,
properties, enumerations, and parameters you need to create effective scripts.

e Object dictionaries or type libraries. Each scriptable Adobe application provides a reference library or
dictionary within your script editor environment.

e The Adobe scripting reference documents (in PDF format), which are located on your installation CD.
(Scripting reference documents are not provided for all Adobe applications.)

This section explains how to display and use the scripting environment object browsers for each scripting
language.

The AppleScript dictionaries are available through Apple’s Script Editor application.

Note: The default location for the Script Editor application is Applications > AppleScript > Script Editor.
1. In Script Editor, choose File > Open Dictionary. Script Editor displays an Open Dictionary dialog.

2. Choose your Adobe application, and then choose Open. Script Editor opens the Adobe application and
then displays the application’s dictionary.

The AS dictionary divides objects into suites. Suite names are indicative of the type of objects that the
suite contains.

» To view an object’s properties:

1. In the upper left pane of the data dictionary screen, select the suite that contains the object.
2. Select the object in the upper middle pane.

Note: Objects are indicated by a square icon: [[£; commands are indicated by a round icon: (& .

The object description appears in the lower viewing pane. The object’s elements and properties are
listed below the description. Each element name is a hyperlink to the element’s object type.

31

Introduction to Scripting Finding an object’s properties and methods 32

3. Each property listing contains the following:
e The property name
e The data type in parentheses
e If the data type is an object, the data type is a hyperlink to the object.

e Ifthe data typeis an enumeration, the data type is "anything". The valid values are listed after the
property description and separated by forward slashes (/), and are preceded by the notation
"Can return:".

e The access value:
e If the objectis read-only, r/o appears after the data type.
o If the object is read-write, no access value is given.

e A description of the property.

1. Select a suite to display the suite’s objects 2. Select the object
and commands in the upper middle pane

Color Suite = = = graphic I button ,r-]|
Datamerge Suite [[form field -
Hyperlinks Suite > [graphic line
3. View the object’s Indexing Suite = I f] group
information in the Interactive Elemenfts Suite > * guide b |
Layout Suite b A oval A
lower pane: - - .
Libraries Suite = 7 & master spread [page item Y
object description ——[ayer m : Every layer -
. - ELEMENTS
links to the object’s contains buttons, form fields, graphic lines, groups, guides, ovals, page items, polygons
elements rectangles, text frames; contained by documents.
PROPERTIES

—all graphics (list of graphic, rfo) : All graphics

properties list _L all page items (list of page item, rfo) : All page items

class (type class, rfo) : The class descriptor type

"‘ id (integer, r/o} : The layer's unigue id

| ignore wrap (boolean) : Whether text wrap on this layer will be ignored if the layer is
hidden.

| index Index of the layer within its parent document

label (string) : A Tabel that can be set to any string

{anything) | The color of the layer. [Can return:list of 3 fixed (0 - 255) or light

een/blue/vellow/magenta/cyan/gray/black/orange/dark

/tan/brown/violet/gold/dark blue/pink/lavender/brick red/olive

ch/burgundy/grass green/ochre/purple... il
(boolean ; Whether quides on this laver are locked A

data types and access values are parenthesized following the enumerated values are
property name Note: The access value appears only when the preceded by "Can
property is read-only return:"

Viewing commands and command parameters

Note: The data dictionary lists the objects you can use with a command. However, it does not list the
commands you can use with an object. To view a list of commands you can use with an object, refer
to the AppleScript scripting reference for your application. See “Using Adobe scripting reference
documents” on page 39 for more information.

» To view commands in the data dictionary:
1. Inthe upper left pane of the data dictionary screen, select the suite that contains the command.

The upper middle pane lists the commands and objects contained in the suite.

Introduction to Scripting Finding an object’s properties and methods 33

2. Select the command in the upper middle pane.

Note: Commands are indicated by a round icon: (@ ; objects are indicated by a square icon: [&.
The command description appears in the lower viewing pane.
e Below the description, the objects with which you can use the command are listed.
e Below the list of supported objects, the parameters are listed.
e |If the parameter is optional, it is enclosed in square brackets ([1).
e If no brackets appear around the parameter name, the parameter is required.
e Each parameter name is followed by the data type.
e If the data type is an object, the data type is a hyperlink to the object.

e If the data type is an enumeration, the valid values are preceded by the notation "Can accept:"
and then listed, separated by forward slashes (/).

1. Select a suite to display the suite’s commands

and objects in the upper middle pane 2. Select the command
| Color Suite ~ (& create guide .
3. View the Datamerge Su_i e S I@ detach L)
command’s Hyperlinks Suife (@ exclude oyerlap path
inf ionin th 7 Indexing Suite] (@ expornt
information in the Interactive Elements Suite @ fit |
lower pane: | Layout Suite * 4 (@ flip item A i
Libraries Suite = |* (8 intersect path ¥ |
command description — gy 0t v ; Export the object to file |

list of objects that use — ___| export reference : Supported by the following objects: page item, oval, rectangle,
graphic line, polygon, group, image, EPS, PDF, WiMF, PICT, graphic. |
— format anything : The export format (either one of the enumerations or same thing |
A that appears in the Export dialog pop-up) Can accept:|tagged text/POF type/EPS |
. type/RTF/SVG/SVG compressed/text type/XML/IPG/InCopy/InCopy CS2
parameters, W'th d'ata Story/InDesign interchange/InDesign snippet ..
types and descriptions to alias or string : Where to export the object
[showing options boolean] : Whether to display {he export options dialog
- ‘[uslng POF export preset] : An export style to use

|

the command

optional parameters are enclosed in Note: When the parameter value is an enumeration, the
square brackets ([1) enumerated values are preceded by "Can accept:"

You can use the ExtendScript Tools Kit (ESTK), which is installed with your Adobe applications, to display
the JavaScript objects and methods available for your Adobe application.

For information on displaying and using the JavaScript object model viewer for your Adobe application,
see the JavaScript Tools Guide.

You can use the Visual Basic editor in any Microsoft Office application to display the VBScript objects and
methods available for your Adobe application.

Note: If you use a different editor, refer to the editor’s help system to find out how to display type libraries.

Introduction to Scripting Finding an object’s properties and methods 34

» To view the VBS object library:

—_

. Start any Microsoft Office application, and then choose Tools > Macro > Visual Basic Editor.
2. In the Visual Basic editor window, choose Tools > References.

3. Inthe References dialog’s Available References list, select your Creative Suite application, and then click
OK.

4. In the Visual Basic editor window, choose View > Object Browser.

5. Select your Adobe application in the drop-down list in the upper left corner of the Object Browser

window.
-0/ x|
InDesign j 4| PI |_;,,‘h| ?l
Excel -
Select your CS3 Mustrator M
application in InDesign
the drop-down Office k = | Member |
list Photoshop
stdole
VBA =
VBAProject R
rblaasea Members of '=glohals="
@ {=globals> aﬁ’ @ idAbbreviated N
Classes pane 21 AnchoredObjectDef: E idAboveline Members of
1 AnchoredObjectSetti E idAhoveRightEmBoxTexdalionment pane
B AngleCombaohox E idAabhoveRightlcfBoxTextAlignment
Bl AngleComboboxes E idAkhsolute
B AngleEdithox & idAhsoluteColarimetric

ChDocuments and Settings Al Userstdpplication DatalddobenDesign
verzion 4 Scripting Support'd DRezources for Visual Basic tb
Adobe InDeszign C=2 Type Library ;I

Library nDesign ﬂ

The VBS object type library displays objects and constants in the Classes pane on the left side of of the
Object Browser window. In the Classes pane:

e Objects are indicated by the following icon: £

e Constants are indicated by the following icon: =&

Introduction to Scripting Finding an object’s properties and methods 35

To display an object’s properties and method, you select the object type in the Classes pane. The
properties and methods are listed in the Members of pane to the right of the Classes pane.

e Properties are indicated by the following icon: &

e Methods are indicated by the following icon: =%

Understanding property listings in the Object Browser
When you select a property in the Members of pane, the property’s information is displayed in the
information pane at the bottom of the Object Browser window as follows:

e The property name is followed by the data type.

e If the data type is a constant, the constant appears as a hyperlink to the constant’s values. Constant
names begin with a prefix that matches the Adobe application’s abbreviated name. For example:

e The prefix Ps is used for enumerations in Photoshop CS3.
Examples: PsColorProfileType, PsBitsPerChannel Type
e The prefix id is used for enumerations in InDesign CS3.
Examples: idRenderingIntent, idPageOrientation
e The prefix 21 is used for enumerations in lllustrator CS3. (Ai = Adobe /llustrator)
Examples: AiCropOptions, AiBlendModes
e If the data type is an object, the object name is a hyperlink to the object type.

e The access value appears only if the property is read-only. If the property is read-write, no access value
appears.

=
Iln[!esiun j 1| FI Iﬁl il
| -l #lx

Search Results

Likrany | Class | Member |
|Classes Mermbers of 'Document'
i DiaplayF‘erfnrmance;I EE MetadataPreferences ;l
21 DisplaySetting EE MixedinkGroups | _1.Select the

& DisplaySettings E& Mixedinks / property in
3 Document . e Modified the
@ DocurnentPreferenc: (2 (NS, \icmbers of

The data type 21 DocumentPreset EE ObjectStyles pane
appearsnexttothe | iy bgeymantPresets EE Cvals

property name Dncumemg =% Package
The access value is StrokeStyle »||=® PackageForGoLive [
listed only when

access is read-only rnpe rw Name Aei String -

The property Defaurt metmber of In[lesmrl.[locumerrt

description appears | The name of the Documert
at the bottom of the

information pane

Introduction to Scripting Finding an object’s properties and methods 36

Finding an enumeration’s numeric value
In VBS, you use an enumeration’s numeric value as a property value. For example, in the following script,
the layer type, represented by the Kind property in the last line of the script, is defined by the numeric
value 2, which represents the TextLayer constant value.

Set appRef = CreateObject ("Photoshop.Application")

Set docRef = appRef.Documents.Add

Set layerRef = docRef.ArtLayers.Add

layerRef .Kind = 2 'PsTextLayer

» To find an enumeration’s numeric value:
1. Click the link to the enumeration’s information.
IR
IPhotoshop j 1 | s | |_;;ﬁ| il
! M. 1EY

Search Results

Library | Class | Memhber |
|CIaSSES Members of ArtLayer'
1 ActionList ;l EE |sBackgroundLayer ;l
1 ActionReference =
1 Application = Link
B ArtLaver i e LinkedLayers
21 ArtLayers =% Merge
21 BatchOptions =@ MixChannels
Click the link to the 1 BitmapConversiond =S Maove —
enumeration’s information BMPSaveOptions EE Mame
\%mm@ﬁwmenoﬂl@ Opacity [
Froperty Kind As PsLayerKind ﬂ
Membet of Photoshop Artl aver

to creste & text layer et this property to text laver' on an empty art layer of type

‘mormal* _I

1

Introduction to Scripting Finding an object’s properties and methods 37

2. Click the enumeration value to display the numeric value in the bottom pane.
=
IPhotoslmp j _4|_P| il
! Rl 1EY

Search Results
Likirary | Class | Mermhber |

|Classes Members of PsLayerkind'

2F PsGuideLineStyle ||@ psinversionLayer A
2 PslllustratorPathTym pslivelsLayer

=& Psintent psMofmallayer

=& PsJavaScriptExecuti psPatternFillLayer

2® Psdustification psPosterizelayer

2 PsLanguage i psSelectiveCalarLayer

2F PsLayverCompressic psSmantOhjectlayer

22 iPsLayerkind : psSolidFillLayer

=F PSLEHSTWE_ Click the enumeration
2P PsMagnificationType » | value in the right pane to

|C|:|nst psTextLayer = 2 |/ display its numeric value

Wember of Photoshop Psl averKind in the bottom pane

psTextlayer
psThresholdLayer

FEREEEREEE

Understanding method listings
When you select a method in the Members of pane, the method'’s information is displayed in the
information pane at the bottom of the Object Browser window as follows:

o The method name is followed by the parameters.

e Optional parameters are enclosed in square brackets ([]).

e If no brackets appear around a parameter name, the parameter is required.
e Each parameter name is followed by the data type.

e If the data type is an object, the data type is a hyperlink to the object.

e If the data type is an enumeration, the enumeration name begins with the application’s initials and
is a hyperlink to the enumeration’s information.

e If a default value exists for a parameter, the value is listed after the datatype after an equal sign (=).

Note: The default value is used if you do not define a value for the parameter. Only optional
parameters have default values.

Introduction to Scripting

Finding an object’s properties and methods 38

The data type is
listed after the
method name; if the
datatype is an
enumeration, the
enumeration name
begins with the
application’s initials
and is a link to the
enumeration’s
information

=7 Object Browser

=10l x|

2 O I == B A
| -] &~

IInDesign

Search Results

Library | Class | mMember

|Clasaea

i DictinnawF‘reference;l
1 DisplayPerfarmance
1 DisplaySetting

21 DisplaySettings
B1iDocument :
21 DocumentPreferenc:
21 DocumentPreset

21 DocumentPresets B-3¥ Close

ris| Dncumnlants -| CMYEPolicy

Members of 'Tocument'

=& putoStyle

= AutoTag

& BaselineFrameGridOptions
5 Bookmarks

' ButtonFreferences

E& Buttons

5 CharacterStyles

1]

1. Select the method
in the Members of
pane

The parameters are

listed in parentheses
% after the method

- |
Sub Clﬂsei[S‘aw'n AgidSaveOptions =| idAsk], [Saw’ngm]i

Mermbet of InDesign Document

Close the Document § Saving: Whether to save changes before closing the
Document f =avingln: The: file in swhich tu:u\sa'-.-'e the Document sz File (String)

” name, with optional
parameters enclosed

j in square brackets ([])

LI If a default value exists,

The method description appears at the bottom of the information pane

it follows an equal sign
(=) Note: Any data
type can have a default
value

Introduction to Scripting Finding an object’s properties and methods 39

Adobe provides scripting references for many applications. The references are located on your
installation CD.

In the scripting references, each language is documented in a separate chapter. Within each chapter, the
objects are listed alphabetically. For each object, the following tables are provided:

e Elements (AS only)
e Properties
e Methods, commands, or functions

Additionally, most object sections contain a scripting sample using the object and some of its properties
and methods or commands. You can use any sample script as an example or a starting point for your
script, in which you may change properties or methods.

Elements are the object collections contained by an object. When object contains elements, a table shows
the various ways in which you can refer to the elements. For beginning scripters, the main thing to
understand about the Elements table is the Name or Element column, which tells you which objects are
just below the object in the containment hierarchy. For example, the following Elements table is taken
from a document object in InDesign.

Name Refer to by

character style index, name, range, relative, satisfying a test, ID
layer index, name, range, relative, satisfying a test, ID
story index, name, range, relative, satisfying a test, ID

The information you can get from this table is that, in document objects that you create for this
application, you can create character style, layer, and story objects.

For example:
tell application "Adobe InDesign CS3"
set myDoc to make document
set myCharStyle to make character style in myDoc with properties {name:"Bold"}
set myLayer to make layer in myDoc
set myStory to make story in myDoc
end tell

The following script statement would produce an error, because stroke style is notan element of this
application’s document object.
tell application "Adobe InDesign CS3"
set myDoc to make document
set myStrokeStyle to make stroke style in myDoc with properties {name:"Erratic"}
end tell

Introduction to Scripting

Finding an object’s properties and methods 40

The properties table for an object lists the following:

e The properties you can use with the object

e The value type for each property

When the value type is a constant or enumeration, the value is a presented either as a list of valid values
or as a hypertext link to the constant’s listing.

When the value type is another object, the value is a presented as a hypertext link to the object’s listing.

e The property’s input status: Read-only or Read-write

e Adescription, which includes the following:

e An explanation of what the property defines or does

e Ranges for valid values

e Dependencies on other properties

The following sample Properties table foran art layer objectin Photoshop contains samples of each

type of data.

Property Value Type What it is

bounds Array of 4 numbers Read-only. An array of coordinates that describes the bounding
rectangle of the layer in the format [y1, x1, y2, x2].

kind LayerKind Read-only. The type of layer.

name string Read-write. The name of the layer.

opacity number (double) Read-write. The opacity as a percentage. (Range: 0.0 to 100.0)

textItem TextItem object Read-only. The text item that is associated with the layer.
Note: Valid only when kind = LayerKind.TEXT.

visible Boolean Read-write. If true, the layer is visible.

For example:

tell application "Adobe Photoshop CS3"

set myDoc to make document

set myLayer to make art layer in myDoc
set properties of myLayer to {kind:text layer, name:"Captions", opacity:45.5, =

visible:true}

set contents of text object in myLayer to "Photo Captions"

end tell

Note: You cannot define the bounds of the layer because the bounds property is read-only.

Introduction to Scripting Finding an object’s properties and methods 41

Note:

var myDoc = app.documents.add ()
var myLayer = myDoc.artLayers.add()

alert (myLayer.bounds) // can’t set the property because it is read-only
myLayer.kind = LayerKind.TEXT

myLayer.name = "Captions"
myLayer.opacity = 45.5 // can use a decimal point because the type is not integer
myLayer.textItem.contents = "Day 1: John goes to school"

//see the properties table for the textItem object to find the contents property
myLayer.visible = true

Set appRef = CreateObject ("Photoshop.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.Layers.Add

msgBox (layerRef .Bounds) ' can’t set the property because it is read-only
layerRef .Kind = 2
layerRef .Name = "Captions"

layerRef .Opacity = 45.5 // can use a decimal point because the type is not integer
layerRef .TextItem.Contents = "Day 1: John goes to school"

//see the Properties table for the TextItem object to find the Contents property
layerRef .Visible = true

In JS and VBS, collection objects are kept in properties of the containing object. To determine an
object’s containment hierarchy, you must locate the object or objects that use the object’s
collection object (that is, the object’s plural form) as a property. For example, documents . layers,
or layers.textFrames.

The Methods table for an object lists the following:

The methods you can use with the object

The parameter(s) for each method

When a parameter type is a constant or another object, the value is presented as a hypertext link to
the constant or object’s listing. In the Methods table sample below, the parameter types
NewDocumentMode and DocumentFil1l are constants.

Parameters can be required or optional. Optional parameters are indicated by square brackets ([1).

Return value type(s), which is what the method produces

When a return is a constant or another object, the value is presented as a hypertext link to the constant
or object’s listing. In the Methods table sample below, the return value Document is an object.

A description, which defines what the method does

Introduction to Scripting Finding an object’s properties and methods 42

The following sample Methods table lists the parameters for the add method for a Photoshop CS3

document.
Method Parameter Type Returns What it does
add Document Adds a document object.
([width] UnitValue . .
[, height] UnitValue (pixelAspectRatio
[, resolution]) number (double) Range: 0.10t010.00)
[, name] string
[, mode]) NewDocumentMode
[, initialFill] DocumentFill
[, pixelAspectRatio]) number (double)

In the preceding table:
o All of the parameters are optional, as indicated by the square brackets.

e Thewidthand height parameters default to the current ruler units, and therefore the data type is
listed as UnitValue. In other words, if the current vertical ruler unit is inches and the horizontal ruler
unit is centimeters, the following statement will create a document that is 5 inches wide and 7
centimeters tall:

o AS

make document with properties {width:5, height:7}
o JS

app.documents.add (5, 7)
e VBS

appRef .Documents.Add (5, 7)
e modeand initialFill take constant values.

The following script statements define values for each of the parameters listed in the sample methods
table.

make documement with properties {width:5, height:7, resolution:72,—
name:"Diary", mode:bitmap, initial fill:transparent, pixel aspect ratio: 4.7}

app.documents.add (5, 7, 72, "Diary", NewDocumentMode.BITMAP,
DocumentFill.TRANSPARENT, 4.7)

appRef .Documents.Add (5, 7, 72, "Diary", 5, 3, 4.7)

Advanced scripting techniques

Most scripts do not proceed sequentially from beginning to end. Often, scripts take different paths
depending on data gleaned from the current document, or they repeat commands multiple times. Control
structures are the script language features that enable your scripts to do such things.

If you could talk to your Adobe application, you might say, “If the document has only a single layer, then
create another layer.” This is an example of a conditional statement. Conditional statements make
decisions—they give your scripts a way to evaluate something, such as the number of layers, and then act
according to the result. If the condition is met, then the script performs the action included in the i f
statement. If the condition is not met, then the script skips the action included in the i £ statement.

Each of the following scripts opens a document and then checks whether the document contains a single
layer. If only one layer exists, the script adds a layer and sets the new layer’s fill opacity to 65%.

An if statement in AS begins with the word i £, followed by the comparison phrase in parentheses,
followed by the word then. You must close the if statement with end 1if.
tell application "Adobe Photoshop CS3"
--insert the name of your hard drive at the beginning of the filepath
set myFilepath to alias "Hard Drive Name:Applications:Adobe Photoshop CS3:71
Samples:Ducky.tif"
open myFilepath
set myDoc to current document
tell myDoc
if (art layer count = 1) then
set myLayer to make art layer with properties {fill opacity:65}
end if
end tell
end tell

Note: AS uses a single equal sign (=) for comparing values.

Now close Ducky.tif and try the script again, but change the i £ statement to the following:
if (art layer count < 1) then

43

Introduction to Scripting Advanced scripting techniques 44

An if statement in JS begins with the word i £, followed by the comparison phrase in parentheses.
Enclose the action in the i f statement in curly braces ({ }).
var myDoc = app.open(File("/c/Program Files/Adobe/Adobe Photoshop
CS2/Samples/Ducky.tif")) ;
if (myDoc.artLayers.length == 1) {
var myLayer = myDoc.artLayers.add ()
myLayer.fillOpacity = 65

}

Note: JavaScript uses a double equal sign (==) for comparing values, as opposed to the single equal sign
(=) used for assigning values to properties or variables.

Now close Ducky.tif and try the script again, but change the if statement to the following:
if (myDoc.artLayers.length < 1) {

An if statement in VBS begins with the word 1£, followed by the comparison phrase, followed by the
word Then. You must close the if statement with End If.
Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Open("/c/Program Files/Adobe/Adobe Photoshop
CS2/Samples/Ducky.tif")
If myDoc.ArtLayers.Count = 1 Then
Set myLayer = myDoc.ArtLayers.Add
myLayer.FillOpacity = 65
End If

Note: VBS uses a single equal sign for both comparing and assigning values.

Now close Ducky.tif and try the script again, but change the i f statement to the following:
If myDoc.ArtLayers.Count < 1 Then

Sometimes, you might have a slightly more complicated request, such as, “If the document has one layer,
set the layer’s fill opacity to 50%—but if the document has two or more layers, set the fill opacity of the
active layer to 65%." This kind of situation calls foran 1 £ else statement.

tell application "Adobe Photoshop CS3"
--insert the name of your hard drive at the beginning of the filepath
set myFilepath to alias "Hard Drive Name:Applications:Adobe Photoshop CS2:7
Samples:Ducky.tif"
open myFilepath
set myDoc to current document
tell myDoc
if (count of art layers < 2) then
set £ill opacity of current layer to 50
else
set fill opacity of current layer to 65
end if
end tell
end tell

Introduction to Scripting Advanced scripting techniques 45

var myDoc = app.open(File("/c/Program Files/Adobe/Adobe Photoshop
CS3/Samples/Ducky.tif")) ;
if (myDoc.artLayers.length < 2) {
myDoc.activelLayer.fillOpacity = 50
}
elsef
myDoc.activeLayer.fillOpacity = 65

}

Set appRef = CreateObject ("Photoshop.Application")

Set myDoc = appRef.Open("/c/Program Files/Adobe/Adobe Photoshop CS3/
Samples/Duckyl.tif")

If myDoc.ArtLayers.Count < 2 Then
myDoc.ActiveLayer.FillOpacity = 50

Else
myDoc.Activelayer.FillOpacity = 65

End If

You may want your script to find and change all objects of a certain type. For example, your document may
have some visible layers and some invisible layers, and you want to make all of the layers visible. You would
like this script to work for several documents, but your documents have varying numbers of layers.

This is a situation in which a repeat statement (AS) or a loop (JS and VBS) comes in handy. A loop "walks"
through a collection of objects and performs an action on each object.

To use the scripts in this section, open your Adobe application and create a document that has at least
nine layers. Make some of the layers visible, and hide other layers. Save the document, and then run the
script, substituting the name of your application and the 1ayer object name in your application’s DOM.

The basic principle behind each of these loops is that the script identifies the first layer in the element or
collection and sets the layer’s visibility to t rue, then identifies the next layer and repeats the action, and
then identifies the following layer until each layer has been acted upon.

This script uses two variables, myLayerCount and myCounter, to identify a layer and then increment the
layer number until all layers in the document have been identified.
tell application "Adobe Illustrator CS3"
set myDoc to current document
tell myDoc
set myLayerCount to (count layers)
set myCounter to 1
repeat while myCounter <= (myLayerCount + 1)
set myLayer to layer myCounter
set myLayer with properties {visible:true}
--the next statement increments the counter to get the next layer
set myCounter to myCounter + 1
end repeat
end tell
end tell

Introduction to Scripting Advanced scripting techniques 46

This script uses a £or loop, which is one of the most common techniques in JavaScript. Like the
AppleScript above, the script uses two variables, myLayerCount and myCounter, to identify a layer and
then increment the layer number until all layers in the document have been identified. The increment
takes place in the third statement within the for statement: myCounter++. The ++ syntax adds 1 to the
current value, but does not add 1 until the loop’s action has been done.

The for loop in this script would say the following in plain English:
1. Begin with the value of myCounter at 0.

2. If the value of myCounter is less than the value of myLayerCount, then use the value of myCounter
as the index for the layer assigned to myLayer, and set the visibility of myLayer to true.

3. Add 1 to the value of myCounter, and then compare myCounter’s new value to the value of
myLayerCount

4. If myCounter is still less than myLayerCount, use the new value of myCounter as the index of
myLayer and set the visibility of myLayer to true, then add 1 to the value of myCounter.

5. Repeat until myCounter is no longer less than myLayerCount.

var myDoc = app.activeDocument
var myLayerCount = myDoc.layers.length

for (var myCounter = 0; myCounter < myLayerCount; myCounter++)
{var myLayer = myDoc.layers [myCounter]
mylLayer.visible = true}

The For Each Next loop in VBScript simply tells the application to set the Visible property of each
object in the Layers collection in the active document to True. Notice that the collection is identified by
the containment hierarchy of parent objects (in this case by the variable myDoc) followed by the collection
name, which is the plural form of the object name (in this case Layers).

Set appRef = CreateObject ("Illustrator.Application")

Set myDoc = appRef.ActiveDocument

For Each object in myDoc.Layers
object.Visible = True
Next

Note: The object named in the loop can be anything. The script works the same if you substitute x for
object as in the following script.

Set appRef = CreateObject("Illustrator.Application")
Set myDoc = appRef.ActiveDocument

For Each x in myDoc.Layers
x.Visible = True
Next

Each scripting language contains many more devices and techniques for adding power and complexity to
your scripts. To continue learning how to script your Adobe applications, please refer to the Adobe
scripting guide for your application. Also, see “Bibliography” on page 50.

Troubleshooting

This chapter explains how to interpret some basic error messages that you may receive when you run a
script.

Script Editor and the ESTK, as well as many other scripting editors, highlight certain words when you type
them.

For example, the Boolean values t rue and £alse are always highlighted. Other examples are listed
below.

tell
end
with
set

var
if

else
with

Dim

Set

MsgBox
These highlighted words are reserved by the scripting language for special purposes and cannot be used
as variable names. You can use reserved words as part of a string, because they are enclosed in quotes. You
can also use them in comments, because comments are ignored by the scripting engine.

If your script indicates a syntax error, check to make sure you have not improperly used a reserved word.
For a full list of reserved words in your scripting language, refer to one of the resources listed in Chapter 6,

“Bibliography” on page 50.

When your AppleScript script has an error, the Script Editor highlights the offending part of the script and
displays an error message.

Check the highlighed portion of the script for spelling and punctuation. If you do not find an error in the
highlighted text, check the text that immediately precedes the highlight. If the preceding text contains an
error, the error may have caused the script engine to expect something other than what it found in the
highlighted section.

47

Introduction to Scripting Troubleshooting 48

Some common error messages are explained below.

Can't get object: Usually, you have not adequately defined the object in the containment hierarchy.
Try adding in parent object (where parent object isthe object that contains the object
indicated in the error message) after the object name in your script, or create a nested tell statement
that names the parent object.

Expected “ but found end of script: Make sure all quotes are closed around strings.

Requested property not available for this object: Check the spelling of all properties.

Tip: Choose Result Log at the bottom of the Script Editor window to view your script’s progress line by

line.

The ESTK alerts you to errors in several ways:

If your script contains a syntax error, the script does not run and the offending section of the script is
highlighted in gray. Often, a description of the problem is displayed in the status bar at the bottom of
the ESTK window.

When a syntax error occurs, check the following:

e Make sure your use of upper and lower case is correct. Remember, all terms in JavaScript (except
enumeration names) begin with a lowercase letter and use upper case for the first letter in each
word in a combined term, such as artLayer.

Also, remember that variable names are case-sensitive.
e Close all parentheses, curly braces, quotes. Make sure each of these are in pairs.

e Make sure quote marks are straight quotes. Also, don’t mix single and double quotes. For example:

e Incorrect: myDoc.name = "My Document’
e Correct:myDoc.name = ’'My Document’
e Correct:myDoc.name = "My Document"

Note: Some syntax errors, such as curly quotes or smart quotes, are highlighted in red. The status bar
message says simply “Syntax error”. Make sure you use straight quotes.

If your script contains a runtime error, such as an object that is not correctly identified or a property
that does not exist for the object that is trying to use it, the offending statement is highlighted but the
script keeps running, as indicated by the swirling icon in the lower right corner. Additionally, the error is
described both in the JavaScript Console pane and in the status bar.

When a runtime error occurs:
e Choose Debug > Stop, or press Shift+F5 to stop the script.

e Look in the JavaScript Console to find the nature of the error. The following brief descriptions of
some common error messages can help you know where to start.

e element is undefined If the undefined element is a variable, make sure the variable name is
spelled correctly and uses the correct case. Also, make sure the variable has been either defined
with a var statement or assigned a value.

If the undefined element is a string value, make sure the value is in quotes.

e undefined is not an object Make sure the object in the highlighted statement is identified
correctly in the containment hierarchy. For example, if the object is a layer, make sure you have

Introduction to Scripting Troubleshooting 49

defined which document contains the layer. For document objects, it may be necessary to
include the parent object app.

VBScript error messages

When your VBScript script contains an error, a Windows Script Host displays an error message that
identifies the line in which the error occurred and the position within the line where the offending syntax
or object begins.

This message indicates the problem is located in at the
beginning of line 3 in the script

windows Script Host x|

@ acripts CH\Documents and Settings \Deskkoplparams, vbs

Lime: 3
Chat: 1
Error: The requested action requires that the target document is the Frontmost docurnent.
Code: S0041FA4

Source: Adobe Photoshop

(8].4

6

Bibliography

This chapter contains a list of scripting books for beginners. This is only a partial list. You can also search
the Internet for online tutorials in your scripting language.

For further information and instruction in using the AppleScript scripting language, see these documents
and resources:

o “AppleScript for the Internet: Visual QuickStart Guide,” 1st ed., Ethan Wilde, Peachpit Press, 1998. ISBN
0-201-35359-8.

e "AppleScript Language Guide: English Dialect,” 1st ed., Apple Computer, Inc., Addison-Wesley
Publishing Co., 1993.ISBN 0-201-40735-3.

e “Danny Goodman’s AppleScript Handbook,” 2nd ed., Danny Goodman, iUniverse, 1998. ISBN
0-966-55141-9.

e Apple Computer, Inc. AppleScript website:

www.apple.com/applescript

For further information and instruction in using the JavaScript scripting language, see these documents
and resources:

e “JavaScript: The Definitive Guide," David Flanagan, O'Reily Media Inc, 2002. ISBN 0-596-00048-0.
e “JavaScript Bible," Danny Goodman, Hungry Minds Inc, 2001. ISBN 0-7645-4718-6.
e "“Adobe Scripting,” Chandler McWilliams, Wiley Publishing, Inc., 2003. ISBN 0-7645-2455-0.

For further information and instruction in using VBScript and the VBSA scripting language, see these
documents and resources:

e “Learn to Program with VBScript 6, 1st ed., John Smiley, Active Path, 1998. ISBN 1-902-74500-0.

e “Microsoft VBScript 6.0 Professional,” 1st ed., Michael Halvorson, Microsoft Press, 1998. ISBN
1-572-31809-0.

e "“VBS & VBSA in a Nutshell,” 1st ed., Paul Lomax, O'Reilly, 1998. ISBN 1-56592-358-8.
e Microsoft Developers Network (MSDN) scripting website:

msdn.microsoft.com/scripting

50

http://www.apple.com/macosx/features/applescript/
http://msdn2.microsoft.com/en-us/library/ms950396.aspx

Index

A
actions 5
alert boxes 19
AppleScript
definition 6
dictionaries 31
first script 7
web site 50
arguments
definition 9
using 23
arrays 29
creating 29
defined 17
B
bibliography 50
Boolean 17
C
commands
properties 23
using 23
viewing in AS dictionaries 31, 32, 33
comments 27
conditional statements 43
constants
defined 17
using 20
containment hierarchy 9, 12
in scripting references 39
D
datatypes 16
dialogs 19
dictionaries 31
DOM
definition 9
viewing 10
E
elements
viewing in scripting references 39
enumerations
defined 17
using 20
ESTK
default location 7
troubleshooting in 48
viewing JS object model 33
ExtendScript
definition 6

I
if else statements 44
if statements 43
Illustrator, See Adobe Illustrator
index
definition 13
numbering schemes 14
J
JavaScript
advantages of 6
case usage 15
definition 6
first script 7
JavaScript Tools Guide 7
L
long lines 29
loops 45
M
macros 5
methods
arguments 23
definition 9
using 23
viewing in scripting references 41
viewing in VBS type libraries 37
o
objects
active 15
collections 13
current 15
definition 9
elements 13
parent 10
references 10
using 9
viewing in AS dictionaries 31, 33
viewing in scripting references 39
viewing in VBS type libraries 34
P
parameters
definition 9
direct (AS) 24
labeled (AS) 24
optional 23
required 23
using 23
using multiple 24
viewing in scripting references 41
parent object 10

51

Introduction to Scripting

Index

52

properties
datatypes 16
definition 9
multiple values 17
read-only 19
read-write 19
using 16
viewing in AS dictionaries 31
viewing in scripting references 40
viewing in VBS type libraries 35
S
script comments 27
Script Editor
AppleScript dictionaries 31
default location 6
troubleshooting in 47
scripting
about 6
definition 6
using 5
scripts

running automatically 6

Startup folder 6
strings 16

T

tell statements (AS) 25
Vv

var 11

variables

as property values 16

changing value of 26

creating 10

definition 10

for existing objects 27

naming 13

using for property values 22

values definition 10
VBScript

definition 7

extension 8

first script 8

type libraries 33

	Contents
	Introduction
	Isn’t scripting difficult to learn?
	Why use scripting?
	How do I know when to use scripting?
	What about actions or macros?
	Okay, so-what exactly is scripting?
	AppleScript
	JavaScript
	VBScript

	How do I begin?

	Scripting basics
	The building blocks of scripting
	Understanding objects, properties, methods, and commands
	Using Objects
	DOM Concepts
	Variables
	Object collections or elements as object references
	Referring to the current or active object

	Using properties
	Understanding read-only and read-write properties
	Constant values and enumerations
	Using variables for property values

	Using methods or commands
	Command or method parameters

	Tell statements (AS only)
	Notes about variables
	Changing a variable’s value
	Using variables to refer to existing objects

	Making script files readable
	Commenting the script
	Continuing long lines in AppleScript and VBScript

	Using Arrays
	Creating objects
	More information about scripting

	Finding an object’s properties and methods
	Using scripting environment browsers
	AppleScript data dictionaries
	JavaScript object model viewer
	VBScript type libraries

	Using Adobe scripting reference documents
	Working with an object’s elements table (AS only)
	Working with an object’s properties table
	Working with an object’s methods table

	Advanced scripting techniques
	Conditional statements
	if statements
	Loops

	More information about scripting

	Troubleshooting
	Reserved words
	AppleScript Script Editor error messages
	ESTK error messages
	VBScript error messages

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

