
(C) Bedrich Benes 1

Illumination principles

OpenGL works in two modes
1) Color is specified by user (glColor*)

2) Color is calculated from the illumination model

i.e., lights and material properties

The first mode is set by glDisable(GL_LIGHTING)
The second mode is set by glEnable(GL_LIGHTING)

Color is calculated per vertex

In OpenGL 2.0 the color is calculated also per pixel

(C) Bedrich Benes 2

Principle

1) Define material properties

2) Define normal vectors at the vertex

3) Put lights in the 3D space

that’s it

ad 1) glMaterial* makes it

ad 2) glNormal* makes it

ad 3) glLight* makes it

Illumination principles

(C) Bedrich Benes 3

Shading

Color is calculated per vertex
How is the color calculated between vertices?
There are two ways
1) Constant shading (flat shading)

Color is constant, given by the last color provided
2) Color is interpolated (Gouraud shading) [guroood]

Changing the shading mode
void glShadeModel(GLenum mode)
where
mode is either GL_FLAT or GL_SMOOTH

(C) Bedrich Benes 4

Shading

Better illumination can be achieved by
increasing the object resolution
flat interpolated high resolution

low resolution causes silhouette edges artifacts

(C) Bedrich Benes 5

Shading

Example:

glShadeModel(GL_SMOOTH);
glBegin(GL_TRIANGLES);
glColor3f(1,0,0);glVertex3f(-1,-1,0);
glColor3f(0,1,0);glVertex3f(1,-1,0);
glColor3f(0,0,1);glVertex3f(-1,1,0);

glEnd();

last color is the entire object color in the GL_FLAT mode

(C) Bedrich Benes 6

Principle

• Each vertex is always illuminated by all lights

i.e., there are no shadows

• Color is summed and clamped to the maximal intensity

(1.f or 255 per channel)

• OpenGL uses a modified version of

Phong illumnation model

• Ad hoc physically incorrect

• Fast and visually plausible results

• Lights are point lights

• Lights are invisible (!)

Illumination principles

(C) Bedrich Benes 7

• Ambient light

is everywhere, does not have direction, does not change

Types of Light

(C) Bedrich Benes 8

• Diffuse light

depends on the direction of the light and the normal vector

changes with the cosine of the angle

Types of Light

(C) Bedrich Benes 9

• Specular light

depends on the direction of the light, the normal vector, and

the position of the viewer

Types of Light

(C) Bedrich Benes 10

• Emmision light

is self illumination of an object (fluorescence)

(used in games for arrows, switches, and so on)

Types of Light

(C) Bedrich Benes 11

• Equations

ambient = ambient light ⊗ ambient material

diffuse = (max{l.n,0}) diffuse light ⊗ diffuse material

- diffuse reflection is greatest when
light falls perpendicularly
onto the surface

- smallest when 90O

or down the surface

Types of Light

(C) Bedrich Benes 12

• Equations

specular=(max{s.n,0}) shininess specular light ⊗ specular material

- specular reflection is greatest
when reflected into the eye

- shininess (explained later)

Types of Light

(C) Bedrich Benes 13

• Equations Putting this all together
Computed for red, green, and blue component separately
Emission, ambient, diffuse, and specular is summed.
Clamped to the range [0,1]

color=emission+global ambientlight ⊗ ambientmaterial +Σ light

light=attenuation*spot*(ambient+diffuse+specular)

attenuation =1/(const+d*linear+d2*quadratic)

Types of Light

(C) Bedrich Benes 14

OpenGL supports at least 8 lights
GL_LIGHT0,…,GL_LIGHT7

a light is enabled (turned on) by
glEnable(GL_LIGHTn)

and disabled by
glDisable(GL_LIGHTn)

Lights

(C) Bedrich Benes 15

Light properties are set by one procedure

void glLight{if}[v](GLenum light,GLenum p,TYPE val)

light is GL_LIGHTn
p is one of the possible parameters
val is its value (vector, scalar)

Light definition

(C) Bedrich Benes 16

param meaning default

GL_AMBIENT ambient light (0,0,0,1)
GL_DIFFUSE diffuse light (1,1,1,1)
GL_SPECULAR specular light (1,1,1,1)
GL_POSITION position of the light [0,0,1,0]

note:
position [x,y,z,1] local light
position [x,y,z,0] infinite light, i.e., directional light

Light definition

(C) Bedrich Benes 17

Example:
white spheres lit by different lights

GLfloat light_position[]={0,0,-4,1.0};//w=0:infinite
GLfloat light_color[]={1,1,1,1};
glLightfv(GL_LIGHT0,GL_POSITION,light_position);
glLightfv(GL_LIGHT0,GL_DIFFUSE,light_color);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glTranslatef(0,0,-10);
glutSolidSphere(0.2, 100, 100);//middle
glLoadIdentity();glTranslatef(0.5,0,-5);
glutSolidSphere(0.2, 100, 100); //left
glLoadIdentity();glTranslatef(-0.5,0,-5);
glutSolidSphere(0.2, 100, 100); //right

Light definition

(C) Bedrich Benes 18

Example:

GLfloat specular[] = {1.f,1.f,1.f,1.f};
GLfloat diffuse[] = {1.f,0.f,0.f,1.f};
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);

GLfloat specular[]={1.f,1.f,0.f,1.f};
GLfloat diffuse[]={1.f,0.f,0.f,1.f};
GLfloat specular[]={0.f,0.f,1.f,1.f};
GLfloat diffuse[]={0.5,0.5,0.5, 1.f};
GLfloat specular[] = {1.f,0.f,0.f,1.f};
GLfloat diffuse[] = {1.f,1.f,1.f,1.f};

Light definition

(C) Bedrich Benes 19

The geometric level of detail is important for illumination

Light definition

lighttesse
l.c

(C) Bedrich Benes 20

Light definition - spot light

param meaning default

GL_SPOT_DIRECTION direction (0,0,-1)
GL_SPOT_CUTOFF the cutoff 180.0

note:
GL_SPOT_CUTOFF set to 180o sets omnidirectional light
Spot light acts as a reflector

2*cut off

(C) Bedrich Benes 21

Light definition - spot light

Example:
changing the GL_SPOT_CUTOFF
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,7.0);
glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spot_dir);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

(C) Bedrich Benes 22

Light definition - spot light

Problems
OpenGL calculates illumination per vertex
It is a quite difficult to get precise boundary of the spot light
We need a high geometric precision

spot.c

(C) Bedrich Benes 23

Light definition - spot light

Problems
How can we calculated the GL_SPOT_DIRECTION?
Easily…
We know the position of the light
P=[xP, yP, zP]
and the position (target) we want to illuminate
T=[xT, yT, zT]
so it must be the vector
D=T-P

(C) Bedrich Benes 24

Light definition - attenuation

The light emitted by a non-parallel light source
attenuates with the square of the distance

OpenGL provides the general equation

where:
d is the distance between the vertex and the light source,
C is the constant attenuation,
L is the linear attenuation, and
Q is the quadratic attenuation

QddLC
a 2

1
++

=

(C) Bedrich Benes 25

Light definition - attenuation

param meaning default

GL_CONSTANT_ATTENUATION C 1
GL_LINEAR_ATTENUATION L 0
GL_QUADRATIC_ATTENUATION Q 0

note:
By default, there is NO attenuation

ss attenuated.c

(C) Bedrich Benes 26

Global settings

Global ambient

glLightModelfv(GL_LIGHT_MODEL_AMBIENT,color);

where:
color is the color of the global ambient

Note:
All color contributions are summed and clamped to 1.f

(C) Bedrich Benes 27

Global settings

Local vs. infinite viewpoint

viewpoint location affects specular highlights

if the viewer is infinite it is much more easier (faster)

glLightModelf(GL_LIGHT_MODEL_LOCAL_VIEWER,GL_TRUE)

calculates specular reflections as if the viewer is infinite
i.e., the viewing vector is constant for each vertex,
i.e. , it is faster….

(C) Bedrich Benes 28

Global settings

Front vs. front and back faces illumination

by default only front faces are lit

glLightModelf(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE)

turns on both faces illumination calculation

(C) Bedrich Benes 29

Material definition

void glMaterial{if}[v](GLenum face, GLenum p, TYPE val)
face is GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK
p is one of the possible parameters (see bellow)
val is its value

defines the portion of light reflected by the material
the light can be reflected in three typical ways
Ambient - to all sides equally
Diffuse - to all sides equally, but the intensity depends

on the normal vector and light position
Specular - depends on the above and the viewer position

(C) Bedrich Benes 30

param meaning default

GL_AMBIENT ambient reflection (0.2,0.2,0.2,1)
GL_DIFFUSE diffuse reflection (0.8,0.8,0.8,1)
GL_AMBIENT_AND_DIFFUSE
GL_SPECULAR specular reflection (0,0,0,1)
GL_SHININESS exponent 0.0
GL_EMISSION self illumination (0,0,0,1)

Material definition

(C) Bedrich Benes 31

Material definition

materials.c

(C) Bedrich Benes 32

Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS

Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0

Bronze 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0

Polished 0.25 0.4 0.774597 76.8
Bronze 0.148 0.2368 0.458561

0.06475 0.1036 0.200621
1.0 1.0 1.0

Chrome 0.25 0.4 0.774597 76.8
0.25 0.4 0.774597
0.25 0.4 0.774597
1.0 1.0 1.0

Copper 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0

Material definition

(C) Bedrich Benes 33

Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS

Polished 0.2295 0.5508 0.580594 51.2
Copper 0.08825 0.2118 0.223257

0.0275 0.066 0.0695701
1.0 1.0 1.0

Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0

Polished 0.24725 0.34615 0.797357 83.2
Gold 0.2245 0.3143 0.723991

0.0645 0.0903 0.208006
1.0 1.0 1.0

Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

Material definition

(C) Bedrich Benes 34

Material definition

The shininess coefficient

5 10

50

shininess.c

(C) Bedrich Benes 35

Material definition

The T-vertex and lighting
T-vertex causes
illumination artifacts

(C) Bedrich Benes 36

Normal vector

The normal vector is critical
it is defined for each vertex by the call of
glNormal*()
so the classical per-vertex definition is

glNormal*()
glMaterial*()
glVertex*()

(C) Bedrich Benes 37

Normal vector

The normal vector must be normalized
This can be done by OpenGL automatically by

glEnable(GL_AUTO_NORMAL)

or by yourself…
void Normalize(GLdouble *v){
static GLdouble size;
size = v[0]*v[0]+v[1]*v[1]+v[2]*v[2];
size = sqrt(size);
v[0]/=size;
v[1]/=size;
v[2]/=size;

}
(C) Bedrich Benes 38

Normal vector

How the normal vector can be obtained?
1) Analytically
if we know it from the surface definition
e.g., Sphere - each vertex v has normal vector n=v-o
where o is the origin

2) By local differences
and the vector product

v1=A-B
v2=A-C
n=v1 x v2 A C

B

(C) Bedrich Benes 39

Normal vector

How the normal vector can be obtained?
In many cases it is good to average the neighboring normals
a) normals per face

b) normals per vertex (average of the case a))

(C) Bedrich Benes 40

Normal vector

Example:
analytically obtained normals
silhouette edges are
really rough,
but the inner part
looks alright

(C) Bedrich Benes 41

Call of glMaterial() is expensive
in a case of extensive changes of material properties use

void glColorMaterial(GLenum face, GLenum mode)
where
face is GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK
mode is GL_AMBIENT, GL_DIFFUSE etc.

use if one property varies for many vertices
enabled it glEnable(GL_COLOR_MATERIAL);
and use glColor*

Material definition

(C) Bedrich Benes 42

Example:
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glColor3fv(color1);
Render1();
glColor3fv(color2);
Render2();
glColor3fv(color3);
Render3();
glDisable(GL_COLOR_MATERIAL);

Material definition

(C) Bedrich Benes 43

• Jackie Neider, Tom Davis, Mason Woo
OpenGL Programming Guide,
Addison-Wesley Publication Company
ON LINE at http://www.opengl.org.ru/docs/

• www.opengl.org/developers/code/tutorials.html
• SIGGRAPH 2001
An Interactive Introduction To OpenGL Programming
ww.opengl.org/developers/code/s2001/index.html

• SIGGRAPH '99
Lighting and Shading Techniques for Interactive
Applications
www.opengl.org/developers/code/sig99/index.html

Readings

