
//this is required to be in a package, but its not too important for this lab
package{

 //we must now import the pieces of the langauge we want to use
 //this is a little bit of inefficent importing, but it will work fine for us
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.text.*;

 //in order to script the movieclip, we must extend it in a class
 public class imageMain extends MovieClip {

 //the same loader again, now as a property of the imageMain class
 public var myLoader:Loader = new Loader();

 /*
 our stuffArray again as a property of the imageMain class
 This is an array of objects. Currently, there are three objects in the array, denoted by t
 and the , seperating each array entry.

 Within the objects we have defined two members: name and url. These are both text based, b
 such as numbers, movieclips, or even other objects.

 An array of objects is immensely useful for when we need an array of several linked pieces
 allows you to keep them all together in an easily accessible way
 */

 public var stuffArr:Array = new Array({ name:"My first work", url:"image1.png" },
 { name:"My second try", url:"image2.png" },
 { name:"My last attempt", url:"image3.png" });

 //loading clip, now from the imageMain class
 public var loading = new loadingClip();

 //this function runs right when an instance of imageMain is loaded up
 public function imageMain():void {

 //we set some properties of our loading image and add it to the stage
 loading.x = 100;
 loading.y = 150;
 loading.visible = false;
 this.addChild(loading);

 //this is a for-each loop that iterates through each item in the stuffArr array
 for(var i in stuffArr) {

 //for each item we create a new button
 var newButton = new nextb();

 /*
 then we create a property on the button equal to the current iteration of this loo
 this correspondes to the the items index in the array.
 we will be using this later on to reference the item from out array when the user
 */
 newButton.num = i;
 //then we position the button, starting at 0, and moving down 70 pixels each iteration
 newButton.y = 70 * i;
 //add an event listener for this particular button
 newButton.addEventListener(MouseEvent.CLICK, showPicture);
 //and finally add the button to the stage
 btns.addChild(newButton);

 }
 }

 //this function is called when the user clicks on a button
 public function showPicture(e:MouseEvent):void {

 //make a new loader
 myLoader = new Loader();

1/2

 /*
 Create a new URL request using the url stored in our stuff array.
 The index of the array that stores the URL is referenced by the number property that
 we created on the target button in the imageMain function
 */
 var myURL:URLRequest = new URLRequest(stuffArr[e.target.num].url);

 //add an event for when the content is loaded
 myLoader.contentLoaderInfo.addEventListener(Event.COMPLETE, addPicture);
 //add event handler for while the content is still loading
 myLoader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS, progressHandler);

 //create a variable to grab any image that is currently on the stage
 var toGo = this.getChildByName("currentGraphic");

 //if our variable has something in it
 if(toGo != null) {
 //remove it from stage
 this.removeChild(toGo);
 //set it to be removed via actionscript
 toGo = null;
 }

 //have our loading bar be visible now
 loading.visible = true;

 //set the name of our image equal to the name stored in our stuff array
 //the same as how we got the url of our image
 txtName.text = stuffArr[e.target.num].name;

 //begin the load of the image
 myLoader.load(myURL);
 }

 //this is a standard progress handler for a loader bar
 public function progressHandler(e:ProgressEvent):void {
 //get the percentage loaded
 var progressAmount:Number = e.target.bytesLoaded/e.target.bytesTotal;
 //set the width of the loading bar equal to our percentage loaded
 loading.lbar.scaleX = progressAmount;
 }

 //this function is called when the picture has been fully loaded, and needs to be aded to the
 public function addPicture(e:Event):void {

 //position where the image will appear on the screen
 myLoader.x = 100;
 myLoader.y = 50;

 //name it so we can get ahold of it later
 myLoader.name = "currentGraphic";

 //make our loader bar invisible
 loading.visible = false;

 //and add the image we loaded to the stage
 this.addChild(myLoader);

 }

 }
}

2/2

