
Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

Roadmap

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® .NET Framework version 1.0
 ASP.NET
 Enterprise Services
 Web services
 .NET Remoting
 ADO.NET
 Visual Studio® .NET
 SQL™ Server
 Windows® 2000

Summary: This guide presents a practical, scenario driven approach to designing and building secure ASP.NET
applications for Windows 2000 and version 1.0 of the .NET Framework. It focuses on the key elements of
authentication, authorization, and secure communication within and across the tiers of distributed .NET Web
applications. (This roadmap: 6 printed pages; the entire guide: 608 printed pages)

Download

Download Building Secure ASP.NET Applications in .pdf format. (1.67 MB, 608 printed pages)

Contents

What This Guide Is About
 Part I, Security Models
 Part II, Application Scenarios
 Part III, Securing the Tiers
 Part IV, Reference
Who Should Read This Guide?
What You Must Know
Feedback and Support
Collaborators

Recommendations and sample code in the guide were built and tested using Visual Studio .NET Version 1.0 and
validated on servers running Windows 2000 Advanced Server SP 3, .NET Framework SP 2, and SQL Server 2000 SP
2.

What This Guide Is About

This guide focuses on:

• Authentication (to identify the clients of your application)

• Authorization (to provide access controls for those clients)

• Secure communication (to ensure that messages remain private and are not altered by unauthorized
parties)

Why authentication, authorization, and secure communication?

Security is a broad topic. Research has shown that early design of authentication and authorization eliminates a
high percentage of application vulnerabilities. Secure communication is an integral part of securing your distributed
application to protect sensitive data, including credentials, passed to and from your application, and between
application tiers.

There are many technologies used to build .NET Web applications. To build effective application-level authentication
and authorization strategies, you need to understand how to fine-tune the various security features within each
product and technology area, and how to make them work together to provide an effective, defense-in-depth
security strategy. This guide will help you do just that.

Figure 1 summarizes the various technologies discussed throughout the guide.

Fig . .NET Web application security ure 1

The
dige

Part I, Security Models

he rest of the guide. Familiarity with the concepts, principles, and
tech
cont

•

guide is divided into four parts. The aim is to provide a logical partitioning, which will help you to more easily
st the content.

Part I of the guide provides a foundation for t
nologies introduced in Part I will allow you to extract maximum value from the remainder of the guide. Part I
ains the following chapters.

Chapter 1: Introduction

This chapter highlights the goals of th
principles that apply to the guidance p

e guide, introduces key terminology, and presents a set of core
resented in later chapters.

• Chapter 2: Security Model for ASP.NET Applications

This chapter describes the common characteristics of .NET Web applications from a security perspective and

plications.
introduces the .NET Web application security model. It also introduces the set of core implementation
technologies that you will use to build secure .NET Web ap

• Chapter 3: Authentication and Authorization

lication's multiple tiers is a
critical task. This chapter provides guidance to help you develop an appropriate strategy for your particular
appli se the most appropriate authentication and authorization technique
and s in your application.

• Chapter 4: Secure Communication

Designing a coherent authentication and authorization strategy across your app

cation scenario. It will help you choo
apply them at the correct place

This chnologies that can be used to provide message confidentiality and
ervers on the Internet and

cryption, which can be used to
ote serviced components.

Most applications can be categorized as intranet, extranet, or Internet applications. This part of the guide presents
mmon application scenarios, each of which falls into one of those categories. The key characteristics of

h sce al security threats analyzed.

You
secu

• curity

 chapter introduces the two core te
message integrity for data that flows across the network between clients and s
corporate intranet. These are SSL and IPSec. This chapter also discusses RPC en
secure the communication with rem

Part II, Application Scenarios

a set of co
eac nario are described and the potenti

are then shown how to configure and implement the most appropriate authentication, authorization, and
re communication strategy for each application scenario.

Chapter 5: Intranet Se

This tranet application scenarios.

•

 chapter describes how to secure common in

Chapter 6: Extranet Security

This chapter describes how to secure common extranet application scenarios.

• Chapter 7: Internet Security

This mon Internet application scenarios.

Par

This
asso tains the following chapters.

 chapter describes how to secure com

t III, Securing the Tiers

 part of the guide contains detailed drill-down information that relates to the individual tiers and technologies
ciated with secure .NET Web applications. Part III con

• Chapter 8: ASP.NET Security

This chapter provides in-depth security recommendations for ASP.NET Web applications. It describes how
implement Forms and Windows authentication and how to perform authorization using the various
gatekeepers supported by ASP.NET. Among m

 to

any other topics, it also discusses how to store secrets, how to
use the correct process identity, and how to access network resources such as remote databases by using
Windows a

•

uthentication.

Chapter 9: Enterprise Services Security

This chapter explains how to secure business functionality in serviced components contained within Enterpris
Services applications. It

e
 shows you how and when to use Enterprise Services (COM+) roles for authorization,

and how to configure RPC authentication and impersonation. It also shows you how to securely call serviced
SP.NET Web application and how to identify and flow the original caller's security
e tier serviced component.

components from an A
context through a middl

• Chapter 10: Web Services Security

This ity for Web services using the underlying features of Internet
Info r message-level security, Microsoft is developing the Web Services

,
e Global XML Architecture (GXA) initiative.

 chapter focuses on platform-level secur
rmation Services (IIS) and ASP.NET. Fo

Development Kit, which allows you to build security solutions that conform to the WS-Security specification
part of th

• Chapter 11: Remoting Security

processes or on remote computers. This chapter shows you how to
implement secure .NET Remoting solutions.

•

The .NET Framework provides a remoting infrastructure that allows clients to communicate with objects,
hosted in remote application domains and

Chapter 12: Data Access Security

This chapter presents recommendations and guidance that will help you develop a secure data access
strategy. Top indows authentication from ASP.NET to the database, securing
conn s securely in a database, protecting against SQL injection attacks, and

Part IV, Reference

 guide contains supplementary information to help further your understanding of the
tech

• Chapter 13: Troubleshooting Security

ics covered include using W
ection strings, storing credential

using database roles.

This reference part of the
niques, strategies, and security solutions presented in earlier chapters.

This t of troubleshooting tips, techniques, and tools to help diagnose security related chapter presents a se
issues.

• How Tos

This section contains a series of step-by-step How-to articles that walk you through many of the solution
techniques discussed in earlier chapters.

• Base Configuration

This oftware used during the development and testing of the guide.

• Configuration Stores and Tools

 section lists the hardware and s

This ration stores used by the various authentication, authorization, and secure

• Reference Hub

 section summarizes the configu
communication services and lists the associated maintenance tools.

This vides a set of links to useful articles and Web sites that provide additional background
e.

 section pro
information about the core topics discussed throughout the guid

• How Does It Work?

This section provides supplementary information that details how particular technologies work.

• ASP.NET Identity Matrix

This mmarizes (with examples) the variables available to ASP.NET Web applications, Web services,
and ents hosted within ASP.NET that provide caller, thread, and process-level identity
info

y and Certificates

 section su
 remote compon
rmation.

• Cryptograph

This es supplementary background information about cryptography and certificates.

Security

 section includ

• .NET Web Application

This section provides a diagram that shows the authentication, authorization, and secure communication
services available across the tiers of an ASP.NET application.

• Glossary

A glossary of security terminology used throughout the guide.

If you are a middleware developer or architect, who plans to build, or is currently building .NET Web applications

• Enterprise Services

pport

Questions? Comments? Suggestions? For feedback on this security guide, please send e-mail to
secguide@microsoft.com

Who Should Read This Guide?

using one or more of the following technologies, you should read this guide.

• ASP.NET

• Web services

• Remoting

• ADO.NET

What You Must Know

To most effectively use this guide to design and build secure .NET Web applications, you should already have some
familiarity and experience with .NET development techniques and technologies. You should be familiar with
distributed application architecture and if you have already implemented .NET Web application solutions, you
should know your own application architecture and deployment pattern.

Feedback and Su

.

The security guide is designed to help you build secure .NET distributed applications. The sample code and
guidance is provided as-is. Support is available through Microsoft Product Support for a fee.

Collaborators

Many thanks to the following contributors and reviewers:

Manish Prabhu, Jesus Ruiz-Scougall, Jonathan Hawkins and Doug Purdy, Keith Ballinger, Yann Christensen and
Alexei Vopilov, Laura Barsan, Greg Fee, Greg Singleton, Sebastian Lange, Tarik Soulami, Erik Olson, Caesar Samsi,
Riyaz Pishori, Shannon Pahl, Ron Jacobs, Dave McPherson, Christopher Brown, John Banes, Joel Scambray, Girish
Chander, William Zentmayer, Shantanu Sarkar, Carl Nolan, Samuel Melendez, Jacquelyn Schmidt, Steve Busby,
Len Cardinal, Monica DeZulueta, Paula Paul, Ed Draper, Sean Finnegan, David Alberto, Kenny Jones, Doug Orange,
Alexey Yeltsov, Martin Kohlleppel, Joel Yoker, Jay Nanduri, Ilia Fortunov, Aaron Margosis (MCS), Venkat Chilakala,
John Allen, Jeremy Bostron, Martin Petersen-Frey, Karl Westerholm, Jayaprakasam Siddian Thirunavukkarasu,
Wade Mascia, Ryan Kivett, Sarath Mallavarapu, Jerry Bryant, Peter Kyte, Philip Teale, Ram Sunkara, Shaun Hayes,
Eric Schmidt, Michael Howard, Rich Benack, Carlos Lyons, Ted Kehl, Peter Dampier, Mike Sherrill, Devendra Tiwari,
Tavi Siochi, Per Vonge Nielsen, Andrew Mason, Edward Jezierski, Sandy Khaund, Edward Lafferty, Peter M. Clift,
John Munyon, Chris Sfanos, Mohammad Al-Sabt, Anandha Murukan (Satyam), Keith Brown (DevelopMentor), Andy
Eunson, John Langley (KANA Software), Kurt Dillard, Christof Sprenger, J.K.Meadows, David Alberto, Bernard Chen
(Sapient)

At a Glance

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

Summary: This section allows you to quickly see the scope and coverage of the individual chapters in the guide.
(12 printed pages)

Contents

Chapter 1: Introduction
Chapter 2: Security Model for ASP.NET Applications
Chapter 3: Authentication and Authorization
Chapter 4: Secure Communication
Chapter 5: Intranet Security
Chapter 6: Extranet Security
Chapter 7: Internet Security
Chapter 8: ASP.NET Security
Chapter 9: Enterprise Services Security
Chapter 10: Web Services Security
Chapter 11: .NET Remoting Security
Chapter 12: Data Access Security
Chapter 13: Troubleshooting Security Issues
Reference

Chapter 1: Introduction

This chapter highlights the goals of the guide, introduces key terminology and presents a set of core principles that
apply to the guidance presented in later chapters.

Chapter 2: Security Model for ASP.NET Applications

This chapter describes the common characteristics of.NET Web applications from a security perspective and
introduces the .NET Web application security model. It also introduces the set of core implementation technologies
that you will use to build secure .NET Web applications.

The full range of gatekeepers that allow you to develop defense-in-depth security strategies are also introduced
and the concept of principal-based authorization, using principal and identity objects is explained.

This chapter will help you answer the following questions:

• What are the typical deployment patterns adopted by .NET Web applications?

• What security features are provided by the various technologies that I use to build .NET Web applications?

• What gatekeepers should I be aware of and how do I use them to provide a defense-in-depth security
strategy?

• What are principal and identity objects and why are they so significant?

• How does .NET security relate to Windows security?

Chapter 3: Authentication and Authorization

Designing a coherent authentication and authorization strategy across your application's multiple tiers is a critical
task. This chapter provides guidance to help you develop an appropriate strategy for your particular application
scenario. It will help you choose the most appropriate authentication and authorization technique and apply them
at the correct places in your application.

Read this chapter to learn how to:

• Choose an appropriate authentication mechanism to identify users.

• Develop an effective authorization strategy.

• Choose an appropriate type of role-based security.

• Compare and contrast .NET roles with Enterprise Services (COM+) roles.

• Use database roles.

• Choose between the trusted subsystem resource access model and the impersonation/delegation model,
which is used to flow the original caller's security context at the operating system level throughout an
application's multiple tiers.

These two core resource access models are shown below in Figure 1 and Figure 2.

Figure 1. The Trusted Subsystem model

With the trusted subsystem model:

• Downstream resource access is performed using a fixed trusted identity and security context.

• The downstream resource manager (for example, database) trusts the upstream application to
properly authenticate and authorize callers.

• The resource manager authorizes the application to access resources. Original callers are not
authorized to directly access the resource manager.

• A trust boundary exists between the downstream and upstream components.

• Original caller identity (for auditing) flows at the application (not operating system) level.

Figure 2. The impersonation/delegation model

With the impersonation/delegation model:

• Downstream resource access is performed using the original caller's security context.

• urce manager (for example, database) authorizes individual callers.

• The original caller identity flows at the operating system and is available for platform level

ion

s cha gies that can be used to provide message confidentiality and message
t flows across the network between clients and servers on the Internet and corporate intranet.

se ar iscusses RPC encryption that can be used to secure the communication with

• Apply secure communication techniques throughout the various tiers of your application.

• Choose between SSL and IPSec.

• Configure secure communication.

• Use RPC encryption.

The chapter addresses the need to provide secure communicatio nnels between your application's various

 The downstream reso

auditing and per caller authorization.

Chapter 4: Secure Communicat

Thi pter introduces the two core technolo
integrity for data tha
The e SSL and IPSec. It also d
remote serviced components.

Read this chapter to learn how to:

n cha
physical tiers as shown in Figure 3.

Fig . A typical Web deploymure 3 ent model, with secure communications

Chapter 5: Intranet Security

s cha n scenarios and for each one presents recommended
urity conf tion steps necessary to build the secure solution are presented,

ns.

lication scenarios covered in this chapter are:

•
This scenario is shown in Figure 4.

• ASP.NET to Web services to SQL Server

• ASP.NET to Remoting to SQL Server

• Flowing the original caller to the database

This includes multi-tier Kerberos delegation scenarios, as shown in Figure 5.

Thi pter presents a set of common intranet applicatio
sec igurations. In each case, the configura
together with analysis and related scenario variatio

The app

ASP.NET to SQL Server

• ASP.NET to Enterprise Services to SQL Server

Figure 4. Security configuration for ASP.NET to remote SQL Server scenarios

Figure
Ke s delegation scenario

 5. Security configuration for ASP.NET to remote Enterprise Services to remote SQL Server
rbero

pplication to a remote SQL Server
database.

ctions to SQL Server using Windows authentication.

ined database roles.

n.

• Secure sensitive data with a combination of SSL and IPSec.

l caller's security context across multiple application

• Flow the original caller's security context by using Basic authentication.

• Authorize users with a combination of ASP.NET file authorization, URL authorization, .NET roles and
Enterprise Services (COM+) roles.

• Effectively use impersonation within an ASP.NET Web application.

Read this chapter to lean how to:

• Use the local ASPNET account to make calls from an ASP.NET Web a

• Establish trusted database conne

• Authorize database access with SQL Server user-def

• Avoid storing credentials within your applicatio

• Implement Kerberos delegation to flow the origina
tiers to a back-end database.

Chapter 6: Extranet Security

This chapter presents a set of comm
security configurations, configuration step

on extranet application scenarios and for each one presents recommended
s and analysis.

change)

This

This chapter covers the following extranet scenarios.

• Exposing a Web Service (B2B partner ex

 scenario is shown in Figure 6.

• Exposing a Web Application (partner application portal)

Figure 6. Security configuration for Web Service B2B partner exchange scenario

Read this chapter to lean how to:

• Authenticate partner companies by using client certificate authentication against a dedicated extranet
Active Directory.

• Map certificates to Windows accounts.

• Authorize partner companies by using ASP.NET file authorization and .NET roles.

• Use the ASPNET identity to access a remote SQL Server database located on the corporate intranet.

Chapter 7: Internet Security

This chapter presents a set of common Internet application scenarios, and for each one presents recommended

ernet application scenarios:

r

This

security configurations, configuration steps, and analysis.

This chapter covers the following Int

• ASP.NET to SQL Server

• ASP.NET to Remote Enterprise Services to SQL Serve

 scenario is shown in Figure 7.

Figure . Security configuration for ASP.NET to remote7 Enterprise Services to SQL Server

ad thi

dential database.

b application to SQL Server through a firewall.

ervices application through a
firewall by using SOAP.

Secure calls to serviced component in the application's middle tier.

s chap tions for ASP.NET Web applications. This chapter covers the
 secure communication services provided by IIS and ASP.NET. These are

strate

Re s chapter to learn how to:

• Use Forms authentication with a SQL Server cre

• Avoid storing passwords in the credential database.

• Authorize Internet users with URL Authorization and .NET roles.

• Use Windows authentication from an ASP.NET We

• Secure sensitive data with a combination of SSL and IPSec.

• Communicate from an ASP.NET Web application to a remote Enterprise S

•

Chapter 8: ASP.NET Security

Thi ter provides in-depth security recommenda
range of authentication, authorization and
illu d in Figure 8.

Figure 8. ASP.NET security services

Read this chapter to learn how to:

ET authentication modes.

• Implement Forms authentication.

ization.

security, using principal permission
dema

eb application.

.

unt.

environments.

eb application.

•

• Configure ASP.NET security in Web Farm scenarios.

r explains how to secure business functionality in serviced components contained within Enterprise
Services applications. It shows you how and when to use Enterprise Services (COM+) roles for authorization, and

 securely call serviced
components from an ASP.NET Web application and how to identify and flow the original caller's security context
through a middle tier serviced component.

• Configure the various ASP.N

• Implement Windows authentication.

• Work with IPrincipal and IIdentity objects.

• Effectively use the IIS and ASP.NET gatekeepers.

• Configure and use ASP.NET File authorization.

• Configure and use ASP.NET URL author

• Implement declarative, imperative and programmatic role-based
nds and IPrincipal.IsInRole.

• Know when and when not to use impersonation within an ASP.NET W

• Choose an appropriate account to run ASP.NET

• Access local and network resources using the ASP.NET process identity.

• Access remote SQL Server databases using the local ASPNET acco

• Call COM objects from ASP.NET.

• Effectively use the anonymous Internet user account in Web hosting

• Store secrets in an ASP.NET W

Secure session and view state.

Chapter 9: Enterprise Services Security

This chapte

how to configure RPC authentication and impersonation. It also shows you how to

Figure 9 shows the Enterprise Services security features covered by this chapter.

Figure 9. Enterprise Services security overview

Read this chapter to learn how to:

• Configure an Enterprise Services application using .NET attributes.

tion.

mmatically and
decl

•

programma

• Access local and network resources from a serviced component.

 passed to and from serviced components.

Chapter 10: Web Services Security

This chapter focuses on platform level security for Web services using the underlying features of IIS and ASP.NET.
For message level security, Microsoft is developing the Web Services Development Kit, which allows you to build
security solutions that conform to the WS-Security specification, part of the Global XML Architecture (GXA)
initiative.

The ASP.NET Web services platform security architecture is shown in Figure 10.

• Secure server and library applications.

• Choose an appropriate account to run an Enterprise Services server applica

• Implement method level Enterprise Services (COM+) role based security both progra
aratively.

Configure ASP.NET as a DCOM client.

• Securely call serviced components from ASP.NET.

• Compare Enterprise Services (COM+) roles with .NET roles.

• Identify callers within a serviced component.

• Flow the original caller's security context through an Enterprise Services application by using
tic impersonation within a serviced component.

• Use RPC encryption to secure sensitive data

• Understand the process of RPC authentication level negotiation.

• Use DCOM through firewalls.

Figure 10. Web services security architecture

ad thi

eb service.

uthorization in Web
servi

ough a Web service.

 service through a Web service proxy.

m model for Web services.

t

 learn how to:

Use URL authentication and .NET roles to authorize access to remote components.

Use File authentication with remoting. This requires you to create a physical .rem or .soap file that
corr mote component's object URI.

ork resources from a remote component.

tication to a remote component through the remote component proxy object.

Re s chapter to learn how to:

• Implement platform-based Web service security solutions.

• Develop an authentication and authorization strategy for a W

• Use client certificate authentication with Web services.

• Use ASP.NET file authorization, URL authorization, and .NET roles to provide a
ces.

• Flow the original caller's security context thr

• Call Web services using SSL.

• Access local and network resources from Web services.

• Pass credentials for authentication to a Web

• Implement the trusted subsyste

• Call COM objects from Web services.

Chapter 11: .NET Remoting Security

The .NET Framework provides a remoting infrastructure that allows clients to communicate with objects, hosted in
remote application domains and processes, or on remote computers. This chapter shows you how to implemen
secure .NET Remoting solutions.

Read this chapter to

• Choose an appropriate host for remote components.

• Use all of the available gatekeepers to provide defense-in-depth security.

•

•
esponds to the re

• Access local and netw

• Pass credentials for authen

• Flow the original caller's security context through a remote component.

nd from remote components using a combination of SSL and IPSec.

se Web services.

apte

s cha ts recommendations and guidance that will help you develop a secure data access strategy. The
y issues covered by this chapter are shown in Figure 11. These include storing connection strings securely, using
 appropriate identity for database access, securing data passed to and from the database, using an appropriate
thentication mechanism and implementing authorization in the database.

• Secure communication to a

• Know when to use remoting and when to u

Ch r 12: Data Access Security

Thi pter presen
ke
an
au

Figure 11. Data Access security overview

Read this chapter to learn how to:

• Use Windows authentication from ASP.NET to your database.

• Secure connection strings.

• Use DPAPI from ASP.NET Web applications to store secrets such as connection strings and credentials.

• Store credentials for authentication securely in a database.

• Validate user input to protect against SQL injection attacks.

• Mitigate the security threats associated with the use of SQL authentication.

• Know which type of database roles to use.

• Compare and contrast database user roles with SQL Server application roles.

• Secure communication to SQL Server using IPSec and also SSL.

• Create a least privilege database account.

• Enable auditing in SQL Server.

Chapter 13: Troubleshooting Security Issues

This chapter provides troubleshooting tips, techniques and tools to help diagnose security related issues. Read this
chapter to learn a proven process for effectively troubleshooting security issues you may encounter while building
your ASP.NET applications. For example, you'll learn techniques for determining identity in your ASP.NET pages,
which can be used to diagnose authentication and access control issues. You'll also learn how to troubleshoot
Kerberos authentication. The chapter concludes with a concise list of some of the more useful troubleshooting
tools, used by Microsoft support to troubleshoot customer issues.

Reference

Use the supplementary information in this section of the guide to help further your understanding of the
gies and security solutions presented in earlier chapters. Detailed How To articles provide step-

es that enable you to implement specific security solutions. It contains the following information:

rticles

 Does it Work?

 Matrix

• .NET Web Application Security Figure

ossary

techniques, strate
by-step procedur

• Reference Hub

• How To a

• How

• ASP.NET Identity

• Base Configuration

• Configuring Security

• Cryptography and Certificates

• Gl

In ction

 Meier, Ale

trodu

J.D. x Mackman, Michael Dunner and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

See the Landing Page for the starting point and a complete overview of Building Secure ASP.NET Applications.

 Summary: This chapter defines the scope and organization of the guide and highlights its goals. It also introduces
key terminology and presents a set of core principles that apply to the guidance presented in later chapters. (7
printed pages)

Contents

The Connected Landscape
Scope

at Are the Goals Wh of this Guide?
How You Should Read This Guide
Organization of the Guide
Ke inologyy Term
Pri snciple
Summary

Build ications is challenging. Your application is only as secure as its weakest link.
th dist s and making those parts work together in a secure

n r nologies.

logy and keeping a
p ahe o build secure applications, can you afford the time

and effort to learn? More to the point, can you afford not to?

e Co

you able to apply what you know when you build .NET
 today's landscape of Web-based distributed

applications, where Web services connect businesses to other business and business to customers and where
for example, to users on intranets, extranets and the Internet?

e (XML) and Hypertext Transport
Protocol (HTTP), but fundamentally they pass potentially sensitive information using plain text.

Intranet applications are not without their risks considering the sensitive nature of payroll and Human

This guide focuses on:

ing secure distributed Web appl
Wi ributed applications, you have a lot of moving part
fashio equires a working knowledge that spans products and tech

You already have a lot to consider; integrating various technologies, staying current with techno
ste ad of the competition. If you don't already know how t

Th nnected Landscape

If you already know how to build secure applications, are
Web applications? Are you able to apply your knowledge in

applications offer various degrees of exposure;

Consider some of the fundamental characteristics of this connected landscape:

• Web services use standards such as SOAP, Extensible Markup Languag

• Internet business-to-consumer applications pass sensitive data over the Web.

• Extranet business-to-business applications blur the lines of trust and allow applications to be called by
other applications in partner companies.

•
Resource (HR) applications. Such applications are particularly vulnerable to rogue administrators and
disgruntled employees.

Scope

• Authentication (to identify the clients of your application)

• Authorization (to provide access controls for those clients)

n and secure communication?

ta, including credentials, passed to and from your application and between
application tiers.

hat Guide?

s guid eference for the Microsoft .NET Framework —for
t you t Kit

• Secure communication (to ensure that messages remain private and are not altered by unauthorized
parties)

Why authentication, authorizatio

Security is a broad topic. Research has shown that early design of authentication and authorization eliminates a
high percentage of application vulnerabilities. Secure communication is an integral part of securing your distributed
application to protect sensitive da

W Are the Goals of This

Thi e is not an introduction to security. It is not a security r
tha have the .NET Framework Software Developmen (SDK) available from MSDN; see the "References"

tion o the documentation leaves off and presents a scenario-
nd proven techniques, as gleaned from the field, customer

 insight from the product teams at Microsoft.

ed to show you how to:

• Identify where and how you need to perform authentication.

ntify where and how you need to secure communication both to your application (from your end users)
and between application tiers.

w to avoid them.

ation related to authentication and authorization.

o make things work.

lso when to use various security features.

w Y ide

 guid llows you to pick and choose which chapters to read. For
ample, if you are interested in learning about the in-depth security features provided by a specific technology,

hapters 8 through 12), which contains in-depth material covering
ET, Enterprise Services, Web Services, .NET Remoting, and data access.

y chapters (Chapters 1 through 4) in Part I of the guide first, because
se wil del and identify the core technologies and security services at your

to secure specific scenarios.

ation and reference material in Part IV of the guide will help further your understanding of
. It also contains a library of How Tos that enable you to develop working security

solutions in the shortest possible time.

sec f this guide for details. This guide picks up where
based approach to sharing recommendations a
experience and

The information in this guide is design

• Raise the security bar for your application.

• Identify where and how you need to perform authorization.

• Ide

• Identify common pitfalls and ho

• Identify top risks and their mitig

• Avoid opening up security just t

• Identify not only how, but a

• Eliminate FUD (fear, uncertainty and doubt).

• Promote best practices and predictable results.

Ho ou Should Read This Gu

The e has been developed to be modular. This a
ex
you can jump straight to Part III of the guide (C
ASP.N

However, you are encouraged to read the earl
the l help you understand the security mo
disposal. Application architects should make sure they read Chapter 3, which provides some key insights into
designing an authentication and authorization strategy that spans the tiers of your Web application. Part I will
provide you with the foundation materials that will allow you to extract maximum benefit from the remainder of the
guide.

The intranet, extranet and Internet chapters (Chapters 5 through 7) in Part II of the guide will show you how to
secure specific application scenarios. If you know the architecture and deployment pattern that is or will be
adopted by your application, use this part of the guide to understand the security issues involved and the basic
configuration steps required

Finally, additional inform
specific technology areas

Organization of the Guide

The guide is divided into four parts. The aim is to provide a logical partitioning, which will help you to more easily
digest the content.

 I, Security Models

t 1 of ides a foundation for the rest of the guide. Familiarity with the concepts, principles and
hnolo nable you to extract maximum value from the remainder of the guide. Part 1

ins t .

n"

r ASP.NET Applications "

thorization"

ication"

enarios

st app be categorized as intranet, extranet or Internet applications. This part of the guide presents a
set of common application scenarios, each of which falls into one of the aforementioned categories. The key

enario are described and the potential security threats analyzed.

cure
ed

itfalls to watch out for and frequently asked questions (FAQ). Part II contains the following
chapters:

•

Par

s part
with

•

•

•
, a brief overview of the security architecture as it applies to the particular technology in

ented. Authentication and authorization strategies are discussed for each technology along with

h chap
h

pres
reco

Part

Part

Par the guide prov
tec gies introduced in Part 1 will e
conta he following chapters

• Chapter 1, "Introductio

• Chapter 2, "Security Model fo

• Chapter 3, "Authentication and Au

• Chapter 4, "Secure Commun

Part II, Application Sc

Mo lications can

characteristics of each sc

You are then shown how to configure and implement the most appropriate authentication, authorization and se
communication strategy for each application scenario. Each scenario also contains sections that include a detail
analysis, common p

Chapter 5, "Intranet Security"

• Chapter 6, "Extranet Security"

• Chapter 7, "Internet Security"

t III, Securing the Tiers

Thi of the guide contains detailed information that relates to the individual tiers and technologies associated
 secure .NET-connected Web applications. Part III contains the following chapters:

Chapter 8, "ASP.NET Security"

• Chapter 9, "Enterprise Services Security"

Chapter 10, "Web Services Security"

• Chapter 11, ".NET Remoting Security"

Chapter 12, "Data Access Security"

Within each chapter
question is pres
configurable security options, programmatic security options and actionable recommendations of when to use the
particular strategy.

Eac ter offers guidance and insight that will allow you to choose and implement the most appropriate
aut entication, authorization and secure communication option for each technology. In addition, each chapter

ents additional information specific to the particular technology. Finally, each chapter concludes with a concise
mmendation summary.

 IV, Reference

This reference part of the guide contains supplementary information to help further your understanding of
tec niques, strategies, and security solutions presented in earlier chapters. Detailed How Tos provide step-by-ste

edures that enable you to implement specific secur

the
h p

proc ity solutions. It contains the following information:

•

• ation"

•

•

•

•

Key

This section introduces some key security terminology used throughout the guide. Although a full glossary of
minology i
ow

•

• Impersonation. This is the technique used by a server application to access resources on behalf of a
clien

• Delegation. An extended form of impersonation that allows a server process that is performing work on
beh ros

hat

e server to local resource access while impersonating.

ity Context. Security context is a generic term used to refer to the collection of security settings
 the security-related behavior of a process or thread. The attributes from a process' logon session

le,

Principles

There are a number of overarching principles that apply to the guidance presented in later chapters. The following
summarizes these principles:

• Adopt the principle of least privilege. Processes that run script or execute code should run under a
least privileged account to limit the potential damage that can be done if the process is compromised. If a
malicious user manages to inject code into a server process, the privileges granted to that process determine
to a large degree the types of operations the user is able to perform. Code that requires additional trust (and
raised privileges) should be isolated within separate processes.

The ASP.NET team made a conscious decision to run the ASP.NET account with least privileges (using the
ASPNET account). During the beta release of the .NET Framework, ASP.NET ran as SYSTEM, an inherently less
secure setting.

• Chapter 13, "Troubleshooting Security"

How Tos

"Base Configur

• "Configuration Stores and Tools"

"How Does It Work?"

• "ASP.NET Identity Matrix"

"Cryptography and Certificates"

• "ASP.NET Security Model"

"Reference Hub"

"Glossary"

 Terminology

ter s provided within the "Reference" section of this guide, make sure you are very familiar with the
foll ing terms:

• Authentication. Positively identifying the clients of your application; clients might include end-users,
services, processes or computers.

• Authorization. Defining what authenticated clients are allowed to see and do within the application.

Secure Communications. Ensuring that messages remain private and unaltered as they cross networks.

t. The client's security context is used for access checks performed by the server.

alf of a client, to access resources on a remote computer. This capability is natively provided by Kerbe
on Microsoft® Windows® 2000 and later operating systems. Conventional impersonation (for example, t
provided by NTLM) allows only a single network hop. When NTLM impersonation is used, the one hop is used
between the client and server computers, restricting th

• Secur
that affect
and access token combine to form the security context of the process.

• Identity. Identity refers to a characteristic of a user or service that can uniquely identify it. For examp
this is often a display name, which often takes the form authority/user name.

• Use defense in depth. Place check points within each of the layers and subsystems within your
application. The check points are the gatekeepers that ensure that only authenticated and authorized users

• Don't trust user input. Applications should thoroughly validate all user input before performing
ith that input. The validation may include filtering out special characters. This preventive measure

protects the application against accidental misuse or deliberate attacks by people who are attempting to inject
s commands into the system. Common examples include SQL injection attacks, script injection and

• Use secure defaults. A common practice among developers is to use reduced security settings, simply to

security settings, test the effects and understand the implications before making the change.

es or
 use

platform features or proven techniques for securing your data.

eck at the gate. You don't always need to flow a user's security context to the back end for
. Often, in a distributed system, this is not the best choice. Checking the client at the gate

er at the first point of authentication (for example, within the Web application on
ing which resources and operations (potentially provided by downstream

uld be allowed to access.

design solid authentication and authorization strategies at the gate, you can circumvent the need to
delegate the original caller's security context all the way through to your application's data tier.

n it, don't assume security is taken care of for

• Reduce surface area. Avoid exposing information that is not required. By doing so, you are potentially
ope errors gracefully; don't expose any more
informa user.

.
de details that could help an

atta ent log.

ly as secure as your weakest link. Security is a concern across all of your

 disable the ASP.NET output cache module. If a future security vulnerability is found
in the module, your application is not threatened.

This chapter has provided some foundation material to prepare you for the rest of the guide. It has described the
ls of esented its overall structure. Make sure you are familiar with the key terminology and
iple is chapter, because these are used and referenced extensively throughout the

thcom

are able to access the next downstream layer.

operations w

maliciou
buffer overflow.

make an application work. If your application demands features that force you to reduce or change default

• Don't rely on security by obscurity. Trying to hide secrets by using misleading variable nam
storing them in odd file locations does not provide security. In a game of hide-and-seek, it's better to

• Ch
authorization checks
refers to authorizing the us
the Web server), and determin
services) the user sho

If you

• Assume external systems are insecure. If you don't ow
you.

ning doors that can lead to additional vulnerabilities. Also, handle
tion than is required when returning an error message to the end

• Fail to a secure mode. If your application fails, make sure it does not leave sensitive data unprotected
Also, do not provide too much detail in error messages; meaning don't inclu

cker exploit a vulnerability in your application. Write detailed error information to the Windows ev

• Remember you are on
application tiers.

• If you don't use it, disable it. You can remove potential points of attack by disabling modules and
components that your application does not require. For example, if your application doesn't use output
caching, then you should

Summary

goa the guide and pr
princ s introduced in th
for ing chapters.

Sec

. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
soft

Nov

App
Micros

See

urity Model for ASP.NET Applications

J.D
Micro Corporation

ember 2002

lies to:
 oft® ASP.NET

the Landing Page for the starting point and a complete overview of Building Secure ASP.NET Applications.

Summary: This chapter describes the common characteristics of .NET Web applications from a security
perspective and introduces the .NET Web application security model. It also introduces the set of core
implementation technologies that you will use to build secure .NET Web applications. (16 printed pages)

Contents

.NET Web Applications
Implementation Technologies
Security Architecture
Identities and Principals
Summary

vices
that span the tiers of a typical .NET Web application.

• Provide a frame of reference for typical .NET Web applications

• Identify the authentication, authorization and secure communication security features provided by the
eb applications

• Identify gatekeepers and gates that can be used in your application to enforce trust boundaries

ons.

Logical Tiers

Logical application architecture views any system as a set of cooperating services grouped in the following layers:

• User Services

• Business Services

• Data Services

ic types of services invariably present in any
on of interfaces between tiers. This segmentation

allows you to make more discreet architecture and design choices when implementing each layer, and to build a

ices are responsible for the client interaction with the system and provide a common bridge
into ic encapsulated by components within the Business Services layer. Traditionally, User
Servic t often with interactive users. However, they also perform the initial processing of
prog ests from other systems, where no visible user interface is involved. Authentication and

This chapter introduces .NET Web application security. It provides an overview of the security features and ser

The goal of the chapter is to:

various implementation technologies used to build .NET W

.NET Web Applications

This section provides a brief introduction to .NET Web applications and describes their characteristics both from a
logical and physical viewpoint. It also provides an introduction to the various implementation technologies used to
build .NET Web applicati

The value of this logical architecture view is to identify the gener
system, to ensure proper segmentation and to drive the definiti

more maintainable application.

The layers can be described as follows:

• User Serv
the core business log

es are associated mos
rammatic requ

auth ise nature of which varies depending upon the client type, are typically performed
within the User Services layer.

Business Services provide the core functionality of the system and encapsulate business logic. They are
inde nd back-end systems or data sources. This provides the stability and
flexibility necessary to evolve the system to support new and different channels and back-end systems.
Typ siness request involves a number of cooperating components within the
Business Services layer.

a Services provide access to data (hosted within the boundaries of the system), and to other (back-

ources, and encapsulate
specific access rules and data formats.

 logic thin a system may correlate with, but is relatively independent from,
ssible physical distribution of the components implementing the services.

It is also important to remember that the logical tiers can be identified at any level of aggregation; that is, the tiers
tem as a whole (in the context of its environment and external interactions) and for any

mple, each remote node that hosts a Web service consists of User Services (handling

 thre n no way imply specific numbers of physical tiers. All three logical
vices mputer, or they may be spread across multiple computers.

e Web

A common deployment pattern for .NET Web applications is to locate business and data access components on the
inimizes the network hops, which can help performance. This model is shown in Figure 2.1.

orization, the prec

•
pendent from the delivery channel a

ically, to service a particular bu

• Dat
end) systems through generic interfaces, which are convenient to use from components within the Business
Services layer. Data Services abstract the multitude of back-end systems and data s

The al classification of service types wi
the po

can be identified for the sys
contained subsystem. For exa
incoming requests and messages), Business Services and Data Services.

Physical Deployment Models

The e logical service layers described earlier, i
ser may be physically located on the same co

Th server as an application server

Web server. This m

Figure 2.1. The Web server as an application server

Re application tier mote

rticularly for Internet scenarios where the Web tier
is self-contained within a perimeter network (also known as DMZ, demilitarized zone, and screened subnet) and is

te application tier with packet filtering firewalls. The remote application tier

The remote application tier is a common deployment pattern, pa

separated from end users and the remo
is shown in Figure 2.2.

Figu .2. The introduction of a remotere 2 application tier

• ASP.NET

• emoting

QL Server™ 2000

P.NE

P. sed
to b T, see the following resources:

ecurity

Implementation Technologies

.NET Web applications typically implement one or more of the logical services by using the following technologies:

• Enterprise Services

• Web services

.NET R

• ADO.NET and Microsoft® S

• Internet Protocol Security (IPSec)

• Secure Sockets Layer (SSL)

AS T

AS NET is typically used to implement User Services. ASP.NET provides a pluggable architecture that can be u
uild Web pages. For more information about ASP.NE

• Chapter 8, ASP.NET S

• ASP.NET in the "Reference Hub" section of this guide

Enterprise Services

Enterprise Services provide infrastructure-level services to applications. These include distributed transactions and
resource management services such as object pooling for .NET components. For more information about Enterprise
Services, see the following resources:

• Chapter 9, Enterprise Services Security

• Understanding Enterprise Services (COM+) in .NET on MSDN®

• Enterprise Services in the "Reference Hub" section of this guide

ge of data and the remote invocation of application logic using SOAP-based
message exchanges to move data through firewalls and between heterogeneous systems. For more information

vices, se sources:

Chapter 10, Web Services Security

Web Services

Web services enable the exchan

about Web ser e the following re

•

• XML Web Ser velopment Centervices De on M

• Web Services

SDN

 in the "Reference Hub" section

moting

.NET Remoting provid work for accessing di ss and machine boundaries. For
more information abo moting, see the follow

er 11, . ng Security

 of this guide

.NET Re

es a frame
ut .NET Re

stributed objects across proce
ing resources:

• Chapt NET Remoti

• Remoting in

 and SQL 000

the "Reference Hub" section of this guide

ADO.NET Server 2

ADO.NET provides data access services. It is designed p for distribute ations, and it
has rich support for the disconnected scenarios inhere eb applicati re information
about ADO.NET, see the following resources:

 D s Security

 from the ground u
ntly associated with W

d Web applic
ons. For mo

• Chapter 12, ata Acces

• ADO.NET in the "Reference Hub" section of t

es i the em authentication m nisms (Kerberos or
NTLM). Authorization and granu at can be applied to individual database
objects. For more information about SQL Server 2000 ources:

• Chapter 12, Data Access Security

his guide

SQL Server provid ntegrated security that uses
is provided by logons

operating syst
lar permissions th
, see the following res

echa

ocol (IPSec)

IPSec provides point-to-point, transport level encryption and authentication services. For more information about
wing resources:

Internet Prot Security

IPSec, see the follo

• Chapter 4, Secure Communication.

• IPSec–The New Security Standard fo
aswamy and Dan Harkins (Prentic

r the Internet, Intranets and Virtual Private Networks by Naganand
Dor e Hall PTR, ISBN; ISBN: 0-13-011898-2); Chapter 4 is available on
Tech

cure

e communication channel. Data sent over the channel is encrypted. For more

• Chapter 4, Secure Communication

Net.

Se Sockets Layer (SSL)

SSL provides a point-to-point secur
information about SSL, see the following resources:

• Microsoft® Windows® 2000 and IIS 5.0 Administrator's Pocket Consultant (Microsoft Press, ISBN: 0-
7356-1024-X); Chapter 6 is available on TechNet

Sec ity Arch

Figure 2.
various t
througho
Enterpris
stretch from the client browser or device, right through to the database. Channels are secured with a combination
of Secure

ur itecture

3 shows the remote application tier model together with the set of security services provided by the
echnologies introduced earlier. Authentication and authorization occurs at many individual points
ut the tiers. These services are provided primarily by Internet Information Services (IIS), ASP.NET,
e Services and SQL Server. Secure communication channels are also applied throughout the tiers and

 Sockets Layer (SSL) or IPSec.

Security architecture Figure 2.3.

The n, and secure communication features provided by the technologies discussed
earlier are summarized in Table 2.1.

Security Across the Tiers

authentication, authorizatio

Table 2.1. Security features

Technology Authentication Authorization Secure Communication

IIS Anonymous
Basic
Digest

IP/DNS Address Restrictions
Web Permissions
NTFS Permissions; Windows

SSL

Windows Integrated Access Control Lists (ACLs) on
(Kerberos/NTLM)
Certificate

requested files

ASP.NET None (Custom) File Authorization
Windows URL Authorization
Forms
Passport

Principal Permissions
.NET Roles

We es Windows
None (Custom)

File Authorization
URL Authorization

b servic

tication Principal Permissions
.NET Roles

SSL and Message level
encryption

Message level authen

Re File Authorization moting Windows

ns

SSL and message level
encryption URL Authorization

Principal Permissio
.NET Roles

Enterprise Services Windows Enterprise Services (COM+) Remote Procedure C
Roles

all
(RPC) Encryption

NTFS Permissions

SQL Server 2000 Windows (Kerberos/NTLM) Server logins

Fixed database roles
User defined roles
Application roles

SSL
SQL authentication Database logins

Object permissions

Windows 2000 Kerberos Windows ACLs IPSec
NTLM

Aut

e .NET

• ASP.NET Authentication Modes

 Enterprise Services Authentication

• SQL Server Authentication

ASP.NET authentication modes

ASP.NET authentication modes include Windows, Forms, Passport and None.

Windows authentication. With this authentication mode, ASP.NET relies on IIS to authenticate users
and epresent the authenticated identity. IIS provides the following
authentication mechanisms:

• Basic authentication. Basic authentication requires the user to supply credentials in the form of
 to prove their identity. It is a proposed Internet standard based on RFC 2617

hentication

Th Framework on Windows 2000 provides the following authentication options:

•

•
 create a Windows access token to r

a user name and password .
Microsoft Internet Explorer support Basic authentication. The user's

er's credentials unencrypted, the Web server can issue
remote calls (for example, to access remote computers and resources) using the user's credentials.

n

Both Netscape Navigator and
credentials are transmitted from the browser to the Web server in an unencrypted Base64 encoded
format. Because the Web server obtains the us

Note Basic authentication should only be used in conjunction with a secure channel (typically
established by using SSL). Otherwise, user names and passwords can be easily stolen with network
monitoring software. If you use Basic authentication you should use SSL on all pages (not just a logo
page), because credentials are passed on all subsequent requests. For more information about using Basic
authentication with SSL, see Chapter 8, "ASP.NET Security."

• Digest authentication. Digest authentication, introduced with IIS 5.0, is similar to Basic
authentication except that instead of transmitting the user's credentials unencrypted from the browser to
the Web server, it transmits a hash of the credentials. As a result it is more secure, although it requires

• LM

 confirm the identity of the user. It is supported only by Internet
Explorer (and not by Netscape Navigator), and as a result tends to be used only in intranet scenarios,

us access

te to

onymous authentication. If you do not need to authenticate your clients (or you implement
thentication scheme), IIS can be configured for Anonymous authentication. In this event, the

an Internet Explorer 5.0 or later client and specific server configuration.

 Integrated Windows authentication. Integrated Windows Authentication (Kerberos or NT
depending upon the client and server configuration) uses a cryptographic exchange with the user's
Internet Explorer Web browser to

where the client software can be controlled. It is used only by the Web server if either anonymo
is disabled or if anonymous access is denied through Windows file system permissions.

• Certificate authentication. Certificate authentication uses client certificates to positively
identify users. The client certificate is passed by the user's browser (or client application) to the Web
server. (In the case of Web services, the Web services client passes the certificate by means of the
ClientCertificates property of the HttpWebRequest object). The Web server then extracts the user's
identity from the certificate. This approach relies on a client certificate being installed on the user's
computer and as a result tends to be used mostly in intranet or extranet scenarios where the user
population is well known and controlled. IIS, upon receipt of a client certificate, can map the certifica
a Windows account.

• An
a custom au

Web server creates a Windows access token to represent all anonymous users with the same anonymous
(or guest) account. The default anonymous account is IUSR_MACHINENAME, where MACHINENAME is the

ter specified at install time.

entication. This approach uses client-side redirection to forward unauthenticated users to a
specified HTML form that allows them to enter their credentials (typically user name and password). These

hen validated and an authentication ticket is generated and returned to the client. The
 of for

ometimes used solely for Web site personalization. In this case, you need write little
P.NET handles much of the process automatically with simple configuration. For

eb server in plain text. As a
result, you should use Forms authentication in conjunction with a channel secured by SSL. For

on of the authentication cookie transmitted on subsequent requests, you should
ge.

t you either don't want to authenticate users or that you are using a custom

etails about ASP.NET authentication, see Chapter 8, ASP.NET Security

NetBIOS name of your compu

• Passport authentication. With this authentication mode, ASP.NET uses the centralized authentication
services of Microsoft Passport. ASP.NET provides a convenient wrapper around functionality exposed by the
Microsoft Passport Software Development Kit (SDK), which must be installed on the Web server.

• Forms auth

credentials are t
authentication ticket maintains the user identity and optionally a list of roles that the user is a member
the duration of the user's session.

Forms authentication is s
custom code because AS
personalization scenarios, the cookie needs to hold only the user name.

Note Forms authentication sends the user name and password to the W

continued protecti
consider using SSL for all pages within your application and not just the logon pa

• None. None indicates tha
authentication protocol.

More information

For more d .

g the underlying Remote Procedure Call (RPC) transport
infrastructure, which in turn uses the operating system Security Service Provider Interface (SSPI). Clients of

A se
with
proc and Principals" section
later

The i

• Default: The default authentication level for the security package is used.

• ticates at the start of each remote procedure call.

Packet Integrity: Authenticates and verifies that none of the data has been modified in transit.

n

r 9, Enterprise Services Security

Enterprise Services authentication

Enterprise Services authentication is performed by usin

Enterprise Services applications may be authenticated using Kerberos or NTLM authentication.

rviced component can be hosted in a Library application or Server application. Library applications are hosted
in client processes and as a result assume the client's identity. Server applications run in separate server
esses under their own identity. For more information about identity, see the "Identities
 in this chapter.

ncoming calls to a serviced component can be authenticated at the following levels:

• None: No authentication occurs.

• Connect: Authentication occurs only when the connection is made.

Call: Authen

• Packet: Authenticates and verifies that all call data is received.

•

• Packet Privacy: Authenticates and encrypts the packet, including the data and the sender's identity and
signature.

More informatio

For more information about Enterprise Services authentication, see Chapte .

SQL Server authentication

SQL Server can authenticate
authentication scheme referr

 us own built-in
ed

• SQL Server and Win
SQL Server authentication
authentication.

• Windows Only. The u nect to the instance of Microsoft SQL Server by using Windows
authentication.

More information

The relative merits of each app n Chapter 12, "Data Access Security

ers by using Windows authentication (NTLM or Kerberos) or can use its
 to as SQL authentication. The following two options are available:

dows. Clients can connect to an instance of Microsoft SQL Server by using either
or Windows authentication. This is sometimes referred to as mixed mode

ser must con

roach are discussed i ."

Authorization

ramework on Window f the following authorization options:

• ASP.NET Authorization

ervices Au

• SQL Server Authorizat

ASP.NET authorization options

uthorization options
ASP.NET provides the following

ization. T
application configuration fil files and folders within

lication's Uniform ifier (URI) namespace. For example, you can selectively deny or
allow access to specific file ed by means of a URL) to nominated users. You can also
restrict access based on th the type of HTTP verb used to issue a request (GET,
POST, and so on).

pplied Windows
indows authentication.

You can use it to restrict access to specified files on a Web server. Access permissions are determined by
Windows ACLs attached to the files.

• Principal Permission Demands. Principal permission demands can be used (declaratively or
programmatically) as an additional fine-grained access control mechanism. They allow you to control access to
classes, methods or individual code blocks based on the identity and group membership of individual users.

• NET Roles. .NET roles are used to group together users who have the same permissions within your
application. They are conceptually similar to previous role-based implementations, for example Windows
groups and COM+ roles. However, unlike these earlier approaches, .NET roles do not require authenticated
Windows identities and can be used with ticket-based authentication schemes such as Forms authentication.

.NET roles can be used to control access to resources and operations and they can be configured both
declaratively and programmatically.

More information

For more information about ASP.NET authorization, see Chapter 8, ASP.NET Securi

The .NET F s 2000 provides o

 Options

• Enterprise S thorization

ion

ASP.NET a can be used by ASP.NET Web applications, Web services and remote components.
 authorization options:

• URL Author his is an authorization mechanism, configured by settings within machine and
es. URL Authorization allows you to restrict access to specific

your app Resource Ident
s or folders (address
e user's role membership and

URL Authorization requires an authenticated identity. This can be obtained by a Windows or ticket-based
authentication scheme.

• File Authorization. File authorization applies only if you use one of the IIS-su
authentication mechanisms to authenticate callers and ASP.NET is configured for W

ty.

Enterprise Services authorization

Acc functionality contained in serviced components within Enterprise Services applications is governed by
En rprise Services role membership. These are different from .NET roles and can contain Windows

ess to
te group or user

accounts. Role membership is defined within the COM+ catalog and is administered by using the Component
rvices

re inf

 m

Se tool.

Mo ormation

For ore information about Enterprise Services authorization, see Chapter 9, Enterprise Services Security.

SQL Server authorization

SQL Server allows fine-grained permissions that can be applied to individual database objects. Permissions may
based on role membership (SQL Server provides fixed database roles, user defined roles and application roles),
permission may be granted to individual Windows user or group accounts.

be
or

More information

For more information about SQL Server authorization, see Chapter 12, Data Access Security.

Gatekeepers and Gates

Throughout the remainder of this document, the term gatekeeper is used to identify the technology that is
. For

m

Each of the core technologies listed earlier provide gatekeepers for access authorization. Requests must pass

 through:

henticate users (that is, you disable Anonymous authentication). IIS Web
s control mechanism to restrict the capabilities of Web users to access

specific files and folders. Unlike NTFS file permissions, Web permissions apply to all Web users, as opposed to
individual users or groups. NTFS file permissions provide further restrictions on Web resources such as Web

ctions apply to individual users or groups.

FS file permissions. A user must be authorized by both
cess the file or folder. A failed Web permission check results in IIS
den response, whereas a failed NTFS permission check results in IIS

returning an HTTP 401–Access Denied.

per uses Enterprise Services roles to authorize access to business

SQL Server 2000 includes a series of gates that include server logins, database logins, and database

tached to secure resources.

thorization based on the identity of the user or service calling into
esource. The value of multiple gates is in-depth security with multiple

aries the set of gatekeepers and identifies for each one the gates that they are

le 2.2. Gatekeepers responsibilities and the gates they provide

responsible for a gate. A gate represents an access control point (guarding a resource) within an application
example, a resource might be an operation (represented by a method on an object) or a database or file syste
resource.

through a series of gates before being allowed to access the requested resource or operation. The following
describes the gates the requests must pass

• IIS provides a gate when you aut
permissions can be used as an acces

pages, images files, and so on. These restri

IIS checks Web permissions, followed by NT
mechanisms for them to be able to ac
returning an HTTP 403–Access Forbid

• ASP.NET provides various configurable and programmatic gates. These include URL Authorization, File
Authorization, Principal Permission demands, and .NET Roles.

• The Enterprise Services gatekee
functionality.

•
object permissions.

• Windows 2000 provides gates using ACLs at

The bottom line is that gatekeepers perform au
the gate and attempting to access a specific r
lines of defense. Table 2.2 summ
responsible for.

Tab

Gatekeeper Gates

Windows Operating System Logon rights (positive and negative, for example "Deny logon locally")
Other privileges (for example "Act as part of the operating system")
Access checks against secured resources such as the registry and file system.

Access checks use ACLs attached to the secure resources, which specify who is and
 the types of operation that may

TCP/IP filtering

who is not allowed to access the resource and also
be permitted.

IP Security

IIS igest, Integrated, Certificate)
IP address and domain name restrictions (these can be used as an additional line of
Authentication (Anonymous, Basic, D

defense, but should not be relied upon due to the relative ease of spoofing IP
addresses).
Web permissions
NTFS permissions

ASP
File Authorization

.NET URL Authorization

Principal Permission Demands
.NET Roles

Enterprise Services Windows (NTLM / Kerberos) authentication
les Enterprise Services (COM+) ro

Impersonation levels

Web services Uses gates provided by IIS and ASP.NET

Remoting Uses gates provided by the host. If hosted in ASP.NET it uses the gates provided by
IIS and ASP.NET. If hosted in a Windows service, then you must develop a custom
solution.

ADO.NET Connection strings. Credentials may be explicit or you may use Windows
authentication (for example, if you connect to SQL Server)

SQL Server Server logins
Database logins
Database object permissions

By u
acce back-end resources. The scope of access is narrowed by successive gates that become more and

ular as the request proceeds through the application to the back-end resources.

Con is shown in Figure 2.4.

sing the various gates throughout the tiers of your application, you can filter out users that should be allowed
ss to your

more gran

sider the Internet-based application example using IIS that

Fig iltering users with gatekeepers

re 2.4 illustrates the following:

ure 2.4. F

Figu

•

• File authorization might further narrow access down to 100 users.

r Web application code might allow only 10 users to access your restricted resource, based on
specific role membership.

Ide

c
secu nd IIdentity objects.

want to know the security context code is running under, the identity of the
is consulted. With .NET programming, if you want to query the

The .NET Framework uses identity and principal objects to represent users when .NET code is running and together

within the System.Security.Principal namespace. Common interfaces allow the .NET
Framework to treat identity and principal objects in a polymorphic fashion, regardless of the underlying

eme

The mbership through an IsInRole method and also provides
ss to an associated IIdentity object.

You can disable Anonymous authentication in IIS. As a result, only accounts that IIS is able to
authenticate are allowed access. This might reduce the potential number of users to 10,000.

• Next, in ASP.NET you use URL Authorization, which might reduce the user count to 1,000 users.

• Finally, you

ntities and Principals

.NET se urity is layered on top of Windows security. The user centric concept of Windows security is based on
rity context provided by a logon session while .NET security is based on IPrincipal a

In Windows programming when you
process owner or currently executing thread
security context of the current user, you retrieve the current IPrincipal object from Thread.CurrentPrincipal.

they provide the backbone of .NET role-based authorization.

Identity and principal objects must implement the IIdentity and IPrincipal interfaces respectively. These
interfaces are defined

impl ntation details.

IPrincipal interface allows you to test role me
acce

public interface IPrincipal

{

 bool IsInRole(string role);

 IIdentity Identity {get;}

}

The ntity interface provides additional authentication details such as the name and authentication type. IIde

pu interface IIdentity blic

{

 string authenticationType {get;}

 bool IsAuthenticated {get;}

 string Name {get;}

}

The Framework supplies a number of concrete implementations of IPrincipal and IIdentity as shown
Fig e 2.5 and described in the following sections.

 .NET in
ur

Figure 2.5. IPrincipal and IIdentity implementation classes

WindowsPrincipal and WindowsIdentity

The .NET version of a Windows security context is divided between two classes:

• WindowsPrincipal. This class stores the roles associated with the current Windows user. The
WindowsPrincipal implementation treats Windows groups as roles. The IPrncipal.IsInRole method returns
true or false based on the user's Windows group membership.

• WindowsIdentity. This class holds the identity part of the current user's security context and can be
obtained from the static WindowsIdentity.GetCurrent()method. This returns a WindowsIdentity object
that has a Token property that returns an IntPtr that represents a Windows handle to the access token
associated with the current execution thread. This token can then be passed to native Win32® application
programming interface (API) functions such as GetTokenInformation, SetTokenInformation,
CheckTokenMembership and so on, to retrieve security information about the token.

Note The static WindowsIdentity.GetCurrent()method returns the identity of the currently executing
thread, which may or may not be impersonating. This is similar to the Win32 GetUserName API.

GenericPrincipal and Associated Identity Objects

These implementations are very simple and are used by applications that do not use Windows authentication and
where the application does not need complex representations of a principal. They can be created in code very
easily and as a result a certain degree of trust must exist when an application deals with a GenericPrincipal.

If you are relying upon using the IsInRole method on the GenericPrincipal in order to make authorization
decisions, you must trust the application that sends you the GenericPrincipal. This is in contrast to using
WindowsPrincipal objects, where you must trust the operating system to provide a valid WindowsPrincipal
object with an authenticated identity and valid group/role names.

The following types of identity object can be associated with the GenericPrincipal class:

• FormsIdentity. This class represents an identity that has been authenticated with Forms authentication.
It contains a FormsAuthenticationTicket, which contains information about the user's authentication
session.

• PassportIdentity. This class represents an identity that has been authenticated with Passport
authentication and contains Passport profile information.

• GenericIdentity. This class represents a logical user that is not tied to any particular operating system
technology and is typically used in association with custom authentication and authorization mechanisms.

ASP.NET and HttpContext.User

Typically, Thread.CurrentPrincipal is checked in .NET code before any authorization decisions are made.
ASP.NET, however, provides the authenticated user's security context using HttpContext.User.

This property accepts and returns an IPrincipal interface. The property contains an authenticated user for the
ntext.User when it makes authorization decisions.

 module automatically constructs a
ject and stores it in HttpContext.User. If you use other authentication mechanisms such

as Forms or Passport, you must construct a GenericPrincipal object and store it in HttpContext.User.

ASP.NET identities

 the execution of an ASP.NET Web application, there may be multiple identities present
ese identities include:

• HttpContext.User returns an IPrincipal object that contains security information for the current Web

ing
T Web applications.

However, if the Web application has been configured for impersonation, the identity represents the
ticated user (which if IIS Anonymous authentication is in effect, is IUSR_MACHINE).

f the currently executing .NET thread, which rides on top

•

current request. ASP.NET retrieves HttpCo

When you use Windows authentication, the Windows authentication
WindowsPrincipal ob

At any given time during
during a single request. Th

request. This is the authenticated Web client.

• WindowsIdentity.GetCurrent()returns the identity of the security context of the currently execut
Win32 thread. By default, this identity is ASPNET; the default account used to run ASP.NE

authen

• Thread.CurrentPrincipal returns the principal o
of the Win32 thread.

More information

For a detailed analysis of ASP.NET identity for a combination of Web application configurations (both with
and without impersonation), see ASP.NET Identity Matrix within the "Reference" section of this guide.

• For more information about creating your own IPrincipal implementation, see Chapter 8, ASP.NET
Security, and How to Implement IPrincipal in the "Reference" section of this guide.

the curr r own security model.

hough there is no security built into the Remoting architecture, it was designed with security in mind. It is left up

not Remoting boundaries depends on the location of the client and remote
mple:

te
main(s), the remoting infrastructure copies a reference to the IPrincipal object associated with

the caller's context to the receiver's context.

• case, IPrincipal objects are not transmitted between processes.

l object based on the supplied credentials.

mm

s cha
rela
impl

•

• used to provide secure communications across the layers of a
.NET Web application; for example, from browser to database.

 when you use Basic or Forms
authentication.

Remoting and Web Services

In ent version of the .NET Framework, Remoting and Web services do not have thei
They both inherit the security feature of IIS and ASP.NET.

Alt
to the developer and/or administrator to incorporate certain levels of security in Remoting applications. Whether or

principal objects are passed across
object, for exa

• Remoting within the same process. When remoting is used between objects in the same or separa
application do

Remoting across processes. In this
The credentials used to construct the original IPrincipal must be transmitted to the remote process, which
may be located on a separate computer. This allows the remote computer to construct an appropriate
IPrincipa

Su ary

Thi pter has introduced the full set of authentication and authorization options provided by the various .NET
ted technologies. By using multiple gatekeepers throughout your .NET Web application, you will be able to
ement a defense-in-depth security strategy. To summarize:

ASP.NET applications can use the existing security features provided by Windows and IIS.

A combination of SSL and IPSec can be

• Use SSL to protect the clear text credentials passed across the network

• .NET represents users who have been identified with Windows authentication using a combination of the
WindowsPrincipal and WindowsIdentity classes.

al and GenericIdentity or FormsIdentity classes are used to represent users who
have be n-Windows authentication schemes, such as Forms authentication.

nd identity implementations by creating classes that implement
IPri

plications, the IPrincipal object that represents the authenticated user is
assoc HTTP Web request using the HttpContext.User property.

ur application through which authorized users can access
reso s are responsible for controlling access to gates.

• Use multiple gatekeepers to provide a defense-in-depth strategy.

Authentication and Authorization

• The GenericPrincip
en identified with no

• You can create your own principal a
ncipal and IIdentity.

• Within ASP.NET Web ap
iated with the current

• Gates are access control points within yo
urces or services. Gatekeeper

The next chapter, Chapter 3, , provides additional information to help you choose
enario. the most appropriate authentication and authorization strategy for your particular application sc

Authentication and Authorization

.
Micr

Nov

See the Landing Page

J.D Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
osoft Corporation

ember 2002

Applies to:
 Microsoft® ASP.NET

 for the starting point and a complete overview of Building Secure ASP.NET Applications.

n and authorization
technique and apply them at the correct places in your application. (22 printed pages)

Con

Desi

Summary: This chapter provides guidance to help you develop an appropriate authorization strategy for your
particular application scenario. It will help you choose the most appropriate authenticatio

tents

gning an Authentication and Authorization Strategy
Au ation Approachesthoriz

ing IdentityFlow
-Based AuthorizationRole

Choosing an Authentication Mechanism
Summary

Desi uth ributed Web applications is a challenging task. The
good news is that proper authentication and authorization design during the early phases of your application
deve ment help

s chap on and will also help
wer t

• what mechanisms should I use?

• What au

inst

• ications and design considerations for heterogeneous and homogenous platforms?

•

• How should I flow user identity throughout the tiers of my application? When should I use operating
n/delegation?

st, any meaningful authorization policy requires authenticated users.

ser

Some gatekeepers such as ASP.NET file authorization, Enterprise Services (COM+) roles and Windows ACLs,
 (in the form of a WindowsIdentity object that encapsulates a

Windows access token, which defines the caller's security context). Other gatekeepers, such as ASP.NET URL
arily

Designing an Authentication and Authorization Strategy

gning an a entication and authorization strategy for dist

lop s to mitigate many top security risks.

Thi ter will help you design an appropriate authorization strategy for your applicati
ans he following key questions:

Where should I perform authorization and

thentication mechanism should I use?

• Should I use Active Directory® directory service for authentication or should I validate credentials aga
a custom data store?

What are the impl

How should I represent users who do not use the Microsoft® Windows® operating system within my
application?

system level impersonatio

When you consider authorization, you must also consider authentication. The two processes go hand in hand for
two reasons:

• Fir

• Second, the way in which you authenticate users (and specifically the way in which the authenticated u
identity is represented within your application) determines the available gatekeepers at your disposal.

require an authenticated Windows identity

authorization and .NET roles, do not. They simply require an authenticated identity; one that is not necess
represented by a Windows access token.

The following steps identify a process that will help you develop an authentication and authorization strategy for
your application:

1. Identify resources

2. Choose an authorization strategy

3. Choose the identities used for resource access

5. Choose an authentication approach

entify

ntify se to clients. Typical resources include:

• Web Server resources such as Web pages, Web services, static resources (HTML pages and images).

ces and data from directory stores such as Active

ization strategies are:

 based on the role membership of the
caller. Roles are used to partition your application's user base into sets of users that share the same security

for example, Senior Managers, Managers and Employees .Users are mapped
zed to perform the requested operation, the application uses fixed identities

trusted by the respective resource managers (for

 security context. This impersonation approach

In th jority of .NET Web applications where scalability is essential, a role-based approach to authorization
represents the best choice. For certain smaller scale intranet applications that serve per-user content from

ources (such as files) that can be secured with Windows ACLs against individual users, a resource-based

The pattern for role-based authorization is:

• Authenticate users within your front-end Web application.

 Map users to roles.

example, databases) trust the
application to authorize callers and are willing to grant permissions to the trusted service identity or identities.

fic HR application
(but not to individual users).

4. Consider identity flow

6. Decide how to flow identity

Id Resources

Ide resources that your application needs to expo

• Database resources such as per-user data or application-wide data.

• Network resources such as remote file system resour
Directory.

You must also identify the system resources that your application needs to access. This is in contrast to resources
that are exposed to clients. Examples of system resources include the registry, event logs and configuration files.

Choose an Authorization Strategy

The two basic author

• Role based. Access to operations (typically methods) is secured

privileges within the application;
to roles and if the user is authori
with which to access resources. These identities are
example, databases, the file system and so on).

• Resource based. Individual resources are secured using Windows ACLs. The application impersonates
the caller prior to accessing resources, which allows the operating system to perform standard access checks.
All resource access is performed using the original caller's
severely impacts application scalability, because it means that connection pooling cannot be used effectively
within the application's middle tier.

e vast ma

res
approach may be appropriate.

recommended and common

•

• Authorize access to operations (not directly to resources) based on role membership.

• Access the necessary back-end resources (required to support the requested and authorized operations)
by using fixed service identities. The back-end resource managers (for

For example, a database administrator may grant access permissions exclusively to a speci

Mo ormation

For more informa

re inf

• tion about the two contrasting authorization approaches, see Authorization Approaches
late

•

r in this chapter.

For more information about role-based authorization and the various types of roles that can be used, see
Role-Based Authorization later in this chapter.

Cho

nally Web services, Enterprise Services and

.NET Remoting components. In all cases, the identity used for resource access can be:

key

• Service account. This approach uses a (fixed) service account. For example:

ccess this might be a fixed SQL user name and password presented by the

n't have Windows accounts to work with, you can construct your own
identities (using IPrincipal and IIdentity implementations) that can contain details that relate to your own
spec e could include role lists, unique identifiers, or any other type of

 identity with IPrincipal and IIdentity types and placing them in the current
Web context (using HttpContext.User), you immediately benefit from built-in gatekeepers such as .NET roles

s.

example, if a back-end
resource manager needs to perform per-caller authorization, the caller's identity must be passed to that resource

rough your application.

Choose an Authentication Approach

Two key factors that influence the choice of authentication approach are first and foremost the nature of your
application's user base (what types of browsers are they using and do they have Windows accounts), and secondly
your application's impersonation/delegation and auditing requirements.

More information

ose the Identities Used for Resource Access

Answer the question, "who will access resources?"

Choose the identity or identities that should be used to access resources across the layers of your application. This
includes resources accessed from Web-based applications, and optio

• Original caller's identity. This assumes an impersonation/delegation model in which the original caller
identity can be obtained and then flowed through each layer of your system. The delegation factor is a
criteria used to determine your authentication mechanism.

• Process identity. This is the default case (without specific impersonation). Local resource access and
downstream calls are made using the current process identity. The feasibility of this approach depends on the
boundary being crossed, because the process identity must be recognized by the target system.

This implies that calls are made in one of the following ways:

• Within the same Windows security domain

• Across Windows security domains (using trust and domain accounts, or duplicated user names
and passwords where no trust relationship exists)

• For database a
component connecting to the database.

• When a fixed Windows identity is required, use an Enterprise Services server application.

• Custom identity. When you do

ific security context. For example, thes
custom information.

By implementing your custom

and PrincipalPermission demand

Consider Identity Flow

To support per-user authorization, auditing, and per-user data retrieval you may need to flow the original caller's
identity through various application tiers and across multiple computer boundaries. For

manager.

Based on resource manager authorization requirements and the auditing requirements of your system, identify
which identities need to be passed th

For more detailed considerations that help you to choose an authentication mechanism for your application, see
Choosing an Authentication Mechanism later in this chapter.

Decide How to Flow Identity

You can flow identity (to provide security context) at the application level or you can flow identity and security
context at the operating system level.

To flow identity at the application level, use method and stored procedure parameters. Application identity flow
supports:

• Per-user data retrieval using trusted query parameters

• SELECT x,y FROM SomeTable WHERE username="bob"

 tier

Operating system identity flow supports:

• Platform level auditing (for example, Windows auditing and SQL Server auditing)

Per-user authorization based on Windows identities

low ide ing system level, you can use the impersonation/delegation model. In some
umst , while in others (where perhaps the environment does not support

Kerberos) you may need to use other approaches such as, using Basic authentication. With Basic authentication,
 user' access downstream network

resources.

g Identity

• Custom auditing within any application

•
To f ntity at the operat
circ ances you can use Kerberos delegation

the s credentials are available to the server application and can be used to

More information

For more information about flowing identity and how to obtain an impersonation token with network credentials
(that is, supports delegation), see Flowin later in this chapter.

There are two basic approaches to authorization:

 application-defined, logical roles. Members of a particular role
share the same privileges within the application. Access to operations (typically expressed by method calls) is

mbership of the caller.

 secured using Windows ACLs. The ACL determines which users
are allowed to access the resource and also the types of operation that each user is allowed to perform (read,
writ

Role Based

th a ro
auth mbership of the caller. Roles (analyzed and defined at application design time) are

d as l ithin
 a ss to

spec n.

Where within your application this role mapping occurs is a key design criterion; for example:

Authorization Approaches

• Role based. Users are partitioned into

authorized based on the role-me

Resources are accessed using fixed identities (such as a Web application's or Web service's process identity).
The resource managers trust the application to correctly authorize users and they authorize the trusted
identity.

• Resource based. Individual resources are

e, delete and so on).

Resources are accessed using the original caller's identity (using impersonation).

Wi le-based (or operations-based) approach to security, access to operations (not back-end resources) is
orized based on the role me

use ogical containers that group together users who share the same security privileges (or capabilities) w
the pplication. Users are mapped to roles within the application and role membership is used to control acce

ific operations (methods) exposed by the applicatio

• On one extreme, role mapping might be performed within a back-end resource manager such as a
database. This requires the original caller's security context to flow through your application's tiers to the

 With this
ger

ck-end tiers; for

entities to access back-end resource managers provides
greater opportunities for application scalability (thanks to connection pooling). Also, the use of trusted identities

viates the
difficu

This approach tends to work best for applications that provide access to resources that can be individually secured
with Windows ACLs, such as files. An example would be an FTP application or a simple data driven Web application.
The approach starts to break down where the requested resource consists of data that needs to be obtained and
consolidated from a number of different sources; for example, multiple databases, database tables, external
applications or Web services.

The resource-based approach also relies on the original caller's security context flowing through the application to
the back-end resource managers. This can require complex configuration and significantly reduces the ability of a
multi-tiered application to scale to large numbers of users, because it prevents the efficient use of pooling (for
example, database connection pooling) within the application's middle tier.

Resource Access Models

The two contrasting approaches to authorization can be seen within the two most commonly used resource-access
security models used by .NET Web applications (and distributed multi-tier applications in general). These are:

•

t

The Trusted Subsystem Model

y to access downstream services and resources. The
he

t

The model name stems from the fact that the downstream service (perhaps a database) trusts the upstream

the
database using the trusted identity.

back-end database.

• On the other extreme, role mapping might be performed within your front-end Web application.
approach, downstream resource managers are accessed using fixed identities that each resource mana
authorizes and is willing to trust.

• A third option is to perform role mapping somewhere in between the front-end and ba
example, within a middle tier Enterprise Services application.

In multi-tiered Web applications, the use of trusted id

alle need to flow the original caller's security context at the operating system level, something that can
be lt (if not impossible in certain scenarios) to achieve.

Resource Based

The resource-based approach to authorization relies on Windows ACLs and the underlying access control mechanics
of the operating system. The application impersonates the caller and leaves it to the operating system in
conjunction with specific resource managers (the file system, databases, and so on) to perform access checks.

 The trusted subsystem model

• The impersonation/delegation model

Each model offers advantages and disadvantages both from a security and scalability perspective. The nex
sections describe these models.

With this model, the middle tier service uses a fixed identit
security context of the original caller does not flow through the service at the operating system level, although t
application may choose to flow the original caller's identity at the application level. It may need to do so to suppor
back-end auditing requirements, or to support per-user data access and authorization.

service to authorize callers. Figure 3.1 shows this model. Pay particular attention to the trust boundary. In this
example, the database trusts the middle tier to authorize callers and allow only authorized callers to access

 3.1. The Trusted Subsystem mFigure odel

The ing:

•

•

 identity

 id

The d
Win
Win

ernati
conn

For more information about the relative merits of Windows and SQL authentication when communicating with SQL
Data Access Security

pattern for resource access in the trusted subsystem model is the follow

 Authenticate users

Map users to roles

• Authorize based on role membership

• Access downstream resource manager using a fixed trusted

Fixed entities

fixed identity used to access downstream systems and resource managers is often provided by a preconfigure
dows account, referred to as a service account. With a Microsoft SQL Server™ resource manager, this implies
dows authentication to SQL Server.

Alt vely, some applications use a nominated SQL account (specified by a user name and password in a
ection string) to access SQL Server. In this scenario, the database must be configured for SQL authentication.

Server, see Chapter 12, .

le to perform slightly more fine-grained authorization, based on the
role membership of the caller. For example, you may have two groups of users, one who should be authorized to

Consider the following approach with SQL Server:

 application-specific roles. For example, you might want
to use one account for Internet users and another for internal operators and/or administrators.

• rver user-defined database role, and establish the necessary database
permissions for each role.

• cation and use role membership to determine which account to
impersonate before connecting to the database.

This shown in Figure 3.2.

Using multiple trusted identities

Some resource managers may need to be ab

perform read/write operations and the other read-only operations.

• Create two Windows accounts, one for read operations and one for read/write operations.

More generally, you have separate accounts to mirror

Map each account to a SQL Se

Map users to roles within your appli

 approach is

Figure 3.2. Using multiple identities to access a database to support more fine-grained authorizatio

The Impersonation / Delegat

n

ion Model

l, a service or component (usually somewhere within the logical business services layer)
 the client's identity (using operating system-level impersonation) before it accesses the next

 is

As a result of the delegation, the security context used for the downstream resource access is that of the client.

ice to perform per-caller authorization using the original caller's identity.

e to use operating system-level auditing features.

As a concrete example of this technique, a middle-tier Enterprise Services component might impersonate the caller
base. acce ng a database connection tied to the security context of

ler. With this mo tabase au
d on permission to the ind of

the caller). The impersonation/delegation model is

With this mode
impersonates
downstream service. If the next service in line is on the same computer, impersonation is sufficient. Delegation
required if the downstream service is located on a remote computer.

This model is typically used for a couple of reasons:

• It allows the downstream serv

• It allows the downstream servic

prior to accessing a data The database is ssed usi
the original cal
decisions base

del, the da
s assigned

thenticates each and every caller and makes authorization
ividual caller's identity (or the Windows group membership
shown in Figure 3.3.

Figure 3.3. The impersonation/delegation mod

Choosing a Resource Access Model

The trusted subsystem model is used in the vast m f Internet applications and large-scale intranet
applications, primarily for scalability reasons. The impersonation model tends to be used in smaller-scale

scalability rimary con -
repudiation) is a critical concern.

Advantage of the impersonation / delegation m

The primary advantage of the impersonation / dele ting allows
administrators to track which users have attempted idered

el

ajority o

applications where is not the p cern and those applications where auditing (for reasons of non

odel

gation model is auditing (close to the data). Audi
 to access specific resources. Generally auditing is cons

most authoritative if the audits are generated at the precise time of resource access and by the same routines th
access the resource.

The impersonation / delegation model supports this by m

at

aintaining the user's security context for downstream
resource access. This allows the back-end system to authoritatively log the user and the requested access.

 challenges. Most security service providers don't support delegation, Kerberos is the
notab

Processes that perform impersonation require higher privileges (specifically the Act as part of the operating
syst indows 2000 and will not apply to Windows Server).

• Scalability. The impersonation / delegation model means that you cannot effectively use database
 pooling, because database access is performed by using connections that are tied to the individual
ntexts of the original callers. This significantly limits the application's ability to scale to large

that
back-end resources increases (and

Advantages of the trusted subsystem model

ing advantages:

his model because all back-end resource access uses the security context of the service account,
regardless of the caller's identity.

ngle identity.

 trusted-subsystem model, only the middle-tier service account

Disadvantages of the trusted subsystem model

 from a couple of drawbacks:

 level) the
identity of the original caller to the back end, and have the auditing performed there. You have to trust the

server clocks are
synchronized).

s

Distributed applications can be divided into multiple secure subsystems. For example, a front-end Web application,
iddle-ti stems. Each

u ociated security context) to the
next downstream subsystem in order to support authorization against the original caller.

Disadvantages of the impersonation / delegation model

The disadvantages associated with the impersonation / delegation model include:

• Technology
le exception.

em privilege). (This restriction applies to W

connection
security co
numbers of users.

• Increased administration effort. ACLs on back-end resources need to be maintained in such a way
each user is granted the appropriate level of access. When the number of
the number of users increases), a significant administration effort is required to manage ACLs.

The trusted subsystem model offers the follow

• Scalability. The trusted subsystem model supports connection pooling, an essential requirement for
application scalability. Connection pooling allows multiple clients to reuse available, pooled connections. It
works with t

• Minimizes back-end ACL management. Only the service account accesses back-end resources (for
example, databases). ACLs are configured against this si

• Users can't access data directly. In the
is granted access to the back-end resources. As a result, users cannot directly access back-end data without
going through the application (and being subjected to application authorization).

The trusted-subsystem model suffers

• Auditing. To perform auditing at the back end, you can explicitly pass (at the application

middle-tier and you do have a potential repudiation risk. Alternatively, you can generate an audit trail in the
middle tier and then correlate it with back-end audit trails (for this you must ensure that the

• Increased risk from server compromise. In the trusted-subsystem model, the middle-tier service is
granted broad access to back-end resources. As a result, a compromised middle-tier service potentially make
it easier for an attacker to gain broad access to back-end resources.

Flowing Identity

a m er Web service, a remote component, and a database represent four different security subsy
performs authentication and authorization.

Yo must identify those subsystems that must flow the caller's identity (and ass

Application vs. Operating System Identity Flow

s

e authenticated caller's identity do not automatically flow across

res that allow you to retrieve and process user-specific data. For

Strategies for flowing identities include using the delegation features of the operating system or passing tickets
and/or credentials at the application level. For example:

• To flow identity at the application level, you typically pass credentials (or tickets) using method argument
or stored procedure parameters.

Note GenericPrincipal objects that carry th
processes. This requires custom code.

You can pass parameters to stored procedu
example:

SELECT CreditLimit From Table Where UserName="Bob"

.

extended form of impersonation called delegation.

un using the security context of the server
he process' security context are maintained by the process' logon session

Windows access token. All local and remote resource access is performed
ess.

Impersonation

e
.

er's token must have network credentials. If it doesn't, all remote resource access is performed
as the anonymous user (AUTHORITY\ANONYMOUS LOGON).

ows

authenticated caller can be delegated.

Table 3.1. IIS Authentication types

This approach is sometimes referred to as a trusted query parameter approach

• Operating system identity flow requires an

Impersonation and Delegation

Under typical circumstances, threads within a server application r
process. The attributes that comprise t
and are exposed by the process level
using the process level security context that is determined by the Windows account used to run the server proc

When a server application is configured for impersonation, an impersonation token is attached to the thread used
to process a request. The impersonation token represents the security context of the authenticated caller (or
anonymous user). Any local resource access is performed using the thread impersonation token that results in th
use of the caller's security context

Delegation

If the server application thread attempts to access a remote resource, delegation is required. Specifically, the
impersonated call

There are a number of factors that determine whether or not a security context can be delegated. Table 3.1 sh
the various IIS authentication types and for each one indicates whether or not the security context of the

Authentication Type Can Delegate Notes

Anonymous Depends If the anonymous account (by default IUSR_MACHINE) is
configured
unless the
identical local ching usernames and
passwords)
If the anon ain account it can be
delegated.

in IIS as a local account, it cannot be delegated
local (Web server) and remote computer have

accounts (with mat
.
ymous account is a dom

Basic Yes If Basic auth local accounts, it can be
delegated if ocal accounts on the local and remote
computers counts can also be
delegated.

entication is used with
 the l
are identical. Domain ac

Digest No

Integrated Windows Depends Integrated ws authentication either results in NTLM or
Kerberos (d stem on
client and server computer).
NTLM does upport delegation.

supports delegation with a suitably configured
environment.

in t Kerberos

Windo
epending upon the version of operating sy

not s
Kerberos

For more formation, see How To: Implemen
Delegation for Windows 2000 in the References section of this
guide.

Client Certificates Depends Can be dele d if used with IIS certificate mapping and the
pped to a local account that is duplicated on the

mputer or is mapped to a domain account.
 because the credentials for the mapped account are

stored on the local server and are used to create an Interactive
logon session (which has network credentials).
Active Directory certificate mapping does not support
delegation.

gate
s macertificate i

remote co
This works

Important Kerberos delegation under Windows 2000 is unconstrained. In other words, a user may be able to
make multiple network hops across multiple remote computers. To close this potential security risk, you should

it the in account's reach by removing the account from the Domain Users group and allow the
ount to nly to log on to specific computers.

le-Bas

st .NET Web applications will use a role-based approach to authorization. You need to consider the various role
es an propriate for your application scenario. You have the following options:

Enterprise Services (COM+) roles

 flexible and revolve around IPrincipal objects that contain the list of roles that an

You can perform authorization using .NET roles either declaratively using PrincipalPermission demands or
l.IsInRole method.

T rol n

ion uses Windows authentication, ASP.NET automatically constructs a WindowsPrincipal that is
ached n process is

lete and
horiza

The ows
authentication, .NET roles are the same as Windows groups.

ows authentication mechanism such as Forms or Passport, you must write code
to create a GenericPrincipal object (or a custom IPrincipal object) and populate it with a set of roles obtained

a store such as a SQL Server database.

lim scope of the doma
acc be used o

Ro ed Authorization

Mo
typ d choose the one(s) most ap

• .NET roles

•

• SQL Server User Defined Database roles

• SQL Server Application roles

.NET Roles

.NET roles are extremely
authenticated identity belongs to. .NET roles can be used within Web applications, Web services, or remote
components hosted within ASP.NET (and accessed using the HttpChannel).

programmatically in code, using imperative PrincipalPermission demands or the IPrincipa

.NE es with Windows authenticatio

If your applicat
att to the context of the current Web request (using HttpContext.User). After the authenticatio
comp ASP.NET has attached to object to the current request, it is used for all subsequent .NET role-based
aut tion.

Windows group membership of the authenticated caller is used to determine the set of roles. With Wind

.NET roles with non-Windows authentication

If your application uses a non-Wind

from a custom authentication dat

Custom IPrincipal objects

The .NET Role-based security mechanism is extensible. You can develop your own classes that implement
IPrincipal and IIdentity and provide your own extended role-based authorization functionality.

As long as the custom IPrincipal object (containing roles obtained from a custom data store) is attached to the
current request context (using HttpContext.User), basic role-checking functionality is ensured.

 i
Prin om identity. Furthermore, you can implement extended role
semantics; for example, by providing an additional method such as IsInMultipleRoles(string [] roles) which

uld al

Mor

By mplementing the IPrincipal interface, you ensure that both the declarative and imperative forms of
cipalPermission demands work with your cust

wo low you to test and assert for membership of multiple roles.

e information

• For more information about .NET role-based authorization, see Chapter 8, ASP.NET Security.

For more information about creating GenericPrincipal objects, see • l How To: Create GenericPrincipa
Objects with Forms Authentication in the Reference section of this guide.

ise Services (COM+) roles pushes access checks to the middle tier and allows you to use database
connection pooling when connecting to back-end databases. However, for meaningful Enterprise Services (COM+)

-bas tion must impersonate and flow the original caller's identity
(using a Windows access token) to the Enterprise Services application. To achieve this, the following entries must
be pla

Enterprise Services (COM+) Roles

Using Enterpr

role ed authorization, your front-end Web applica

ced in the Web application's Web.config file.

<authentication mode="Windows" />

<identity impersonate="true" />

If it i uffi ethods),
you can dep n tool.

If you requi some of the administrative and deployment
advantage rise Services (COM+) roles, because role logic is hard-coded.

SQL erv Defined Database Roles

With this a ou create roles in the database, assign permissions based on the roles and map Windows
group and user accou is approach requires you to flow the caller's identity to the back end (if you
are u the pre entication to SQL Server).

SQL erv

With is a ted to the roles within the database, but SQL Server application roles
cont no result, you lose the granularity of the original caller.

With applic ication (as opposed to a set of users). The
application a cepts a role name and password. One of the
main sad of this approach is that it requires the application to securely manage credentials (the role
name password).

Mor fo

For more informa er user defined database roles and application roles, see Chapter 12, Data

s s cient to use declarative checks at the method level (to determine which users can call which m
loy your application and update role membership using the Component Services administratio

re programmatic checks in method code, you lose
s of Enterp

 S er User

pproach, y
nts to the roles. Th

sing ferred Windows auth

 S er Application Roles

 th pproach, permissions are gran
ain user or group accounts. As a

ation roles, you are authorizing access to a specific appl
ctivates the role using a built-in stored procedure that ac

 di vantages
 and associated

e in rmation

tion about SQL Serv
Acce Securityss .

.NE ol

The owi tures of .NET roles and Enterprise Services (COM+) roles.

Table 3.2. Comparing Enterprise Services roles with .NET roles

T R es versus Enterprise Services (COM+) Roles

foll ng table presents a comparison of the fea

Feature Enterprise Services Roles .NET Roles

Administration Component Services Administration
Tool

Custom

Data ore Custom data store (for example, SQL Server or
Active Directory)

 St COM+ Catalog

Declara ive Yes t
[SecurityRole("Manager")]

Yes
[PrincipalPermission(
SecurityAction.Demand,
Role="Manager")]

Imperative Yes
ContextUtil.IsCallerInRole()

Yes
IPrincipal.IsInRole

Class, Inte
Method Level
Gran rity

rface and Yes Yes

ula

Extensible No
om IPrincipal implementation)

 Yes
(using cust

Available to
component

 all .NET
s

Only for components that
derive from ServicedComponent base
class

Yes

Role Memb
accounts roles ARE Windows groups–no extra level of

ership Roles contain Windows group or user When using WindowsPrincipals,

abstraction

Requ ex
Inte
implementa

Yes
To obtain method level authorization,
an interface must be explicitly defined
and implemented

No ires plicit
rface

tion

Using .NET Ro

You can secure the foll

• File

• Fo

• W

• Web services (.asmx files)

• Objects

• M

• Code blo

The fact that you can use .NET roles to protect operations (performed by methods and properties) and specific
code block to local and remote resources accessed by your application.

Note items in the preceding list (Files, folders, Web pages, and Web services) are protected using
the U lAut nModule, which can use the role membership of the caller (and the caller's identity) to make
authorization d

If yo use
cons ts a he associated
role set.

To use .NE mechanism, you must write code to:

les

owing items with .NET roles:

s

lders

eb pages (.aspx files)

ethods and properties

cks within methods

s means that you can protect access

 The first four
r horizatio

ecisions.

u Windows authentication, much of the work required to use .NET roles is done for you. ASP.NET
truc WindowsPrincipal object and the Windows group membership of the user determines t

T roles with a non-Windows authentication

• Ca

• Valid

• Re request.

e G esents the authenticated user and is used for subsequent .NET role checks,
such a ission demands and programmatic IPrincipal.IsInRole checks.

More info

For more in ocess involved in creating a GenericPrincipal object for Forms authentication,
see Chapte ET Security

pture the user's credentials.

ate the user's credentials against a custom data store such as a SQL Server database.

trieve a role list, construct a GenericPrincipal object and associate it with the current Web

Th enericPrincipal object repr
s declarative PrincipalPerm

rmation

formation about the pr
r 8, ASP.N .

Checking role membership

The following type available:

Important cated user) being
associated with the current request. For ASP.NET Web applications, the IPrincipal object must be attached to
HttpConte ed to
Thread.Cu

• Manual role checks. For fine-grained authorization, you can call the IPrincipal.IsInRole method to
thor rship of the caller. Both AND and OR logic

• D le checks (gates to your methods). You can annotate methods with the
inci ssionAttribute class (which can be shortened to PrincipalPermission), to declaratively

demand role membership. These support OR logic only. For example you can demand that a caller is in at
st one spe le, the caller must be a teller or a manager). You cannot specify that a caller

must be a manager and a teller using declarative checks.

• Im ission.Demand
within code to perform fine-grained authorization logic. Logical AND and OR operations are supported.

Role-chec

The followi d imperative
techniques.

1. Author on:

Note nerally authorize based on role membership,
ich authorize sets of users who share the same privileges within your application.

ser name check

s of .NET role checks are

 .NET role checking relies upon an IPrincipal object (representing the authenti

xt.User. For Windows Forms applications, the IPrincipal object must be attach
rrentPrincipal.

au ize access to specific code blocks based on the role membe
can be used when checking role membership.

eclarative ro
Pr palPermi

lea cific role (for examp

perative role checks (checks within your methods). You can call PrincipalPerm

king examples

ng code fragments show some example role checks using programmatic, declarative, an

izing Bob to perform an operati

 Although you can authorize individual users, you should ge
wh allows you to

• Direct u

• GenericIdentity userIdentity = new GenericIdentity("Bob");

• if (userIdentity.Name=="Bob")

• {

• }

• Declarative check

• [PrincipalPermissionAttribute(SecurityAction.Demand,

• User="Bob")]

• public void DoPrivilegedMethod()

• {

• }

• Imperative check

• PrincipalPermission permCheckUser = new

• PrincipalPermission(

• "Bob",

• null);

• permCheckUser.Demand();

2. Au tellers to perform an operation:

eck

thorizing

• Direct role name ch

• GenericIdentity userIdentity = new GenericIdentity("Bob");

• // Role names would be retrieved from a custom data store

• string[] roles = new String[]{"Manager", "Teller"};

• GenericPrincipal userPrincipal = new

• GenericPrincipal(userIdentity,

• roles);

• if (userPrincipal.IsInRole("Teller"))

• {

• }

• Declarative check

• [PrincipalPermissionAttribute(SecurityAction.Demand,

• Role="Teller")]

• void SomeTellerOnlyMethod()

• {

• }

• Imperative check

• public SomeMethod()

• {

• PrincipalPermission permCheck = new PrincipalPermission(

• null,"Teller");

• permCheck.Demand();

• // Only Tellers can execute the following code

• // Non members of the Teller role result in a security

• exception

• . . .

• }

3. horize managers OR tellers to perform operati :

Direct role name check

Aut on

•

• if (Thread.CurrentPrincipal.IsInRole("Teller") ||

• Thread.CurrentPrincipal.IsInRole("Manager"))

• {

• // Perform privileged operations

• }

tive check • Declara

• SecurityAction.Demand, [PrincipalPermissionAttribute(

• Role="Teller"),

• PrincipalPermissionAttribute(SecurityAction.Demand,

• Role="Manager")]

• public void DoPrivilegedMethod()

• {

• Ã‚Â…

• }

• Imperative check

• PrincipalPermission permCheckTellers = new

• PrincipalPermission(

• null,"Teller");

• PrincipalPermission permCheckManagers = new

• PrincipalPermission(

• null,"Manager");

•

4. Authorize only those people who are managers AND tellers to perform operation:

rect role name check

 (permCheckTellers.Union(permCheckManagers)).Demand();

• Di

• if (Thread.CurrentPrincipal.IsInRole("Teller") &&

• Thread.CurrentPrincipal.IsInRole("Manager"))

• {

• // Perform privileged operation

• }

• Declarative check

It is not possible to perform AND checks with .NET roles declaratively. Stacking PrincipalPermission
demands together results in a logical OR.

• Imperative check

• PrincipalPermission permCheckTellers = new

• PrincipalPermission(

• null,"Teller");

• permCheckTellers.Demand();

• PrincipalPermission permCheckManagers = new

• PrincipalPermission(

• null, "Manager");

• permCheckManagers.Demand();

Choosing an Authentication Mechanism

This section presents guidance that is designed to help you choose an appropriate authentication mechanism for
common application scenarios. You should start by considering the following issues:

• Identities. A Windows authentication mechanism is appropriate only if your application's users have
Windows acco a henti a trus c by y ati
server.

redential management. One of the key advantages of Windows authentication is that it enables you to
perating system take care of credential management. With non-Windows approaches, such as Forms

, you must carefully consider where and how you store user credentials. The two most common
approaches are to use:

SQL Server databases

User objects n Active tory

re information about the security considerations of using SQL Server as a credential store, see Chapter
Data Access Security

unts that c n be aut cated by ted authority a cessible our applic on's Web

• C
let the o
authentication

•

•
For mo
12,

 withi Direc

.

mation about using Forms authentication against custom data stores (including Active
, see Chapter 8, ASP.NET Security

For more infor
Directory) .

 . Do yo ed to imp nt an imp nation/deleg model and flow the inal
s security context at the operating system level across tiers? For example, to support auditing or per-

user (granular) authorization. If so, you need to be able to impersonate the caller and delegate their security
s chapter.

ser type. Do your users all have Internet Explorer or do you need to support a user base with
wser types? Table 3.3 illustrates which authentication mechanisms require Internet Explorer

browsers, and which support a variety of common browser types.

• Identity
caller'

flow u ne leme erso ation orig

context to the next downstream subsystem, as described in the "Delegation" section earlier in thi

• Brow
mixed bro

Table 3.3. Authentication browser requirements

Authentication Type Requires
Internet
Explorer

Notes

Fo No rms

Passport No

Integrated Windows (Kerberos or
T M)

Yes Kerberos also requires Windows 2000 or later operatin
systems on the client and server coN L

g
mputers and

accounts configured for delegation. For more
information, see How To: Implement Kerberos
Delegation for Windows 2000 in the Reference section of
this guide.

Basi t c No Basic authentication is part of the HTTP 1.1 protocol tha
is supported by virtually all browsers

Digest Yes

Ce ficate No Clients require X.509 certificates rti

Inte et Scen

• The basi

• Users do not have Windows accounts in the server's domain or in a trusted domain accessible by
the server.

rn arios

c assumptions for Internet scenarios are:

• Users do not have client certificates.

e for choosing an authentication mechanism for Internet scenarios. Figure 3.4 shows a decision tre

Figure 3.4. Choosing an authentication mechanism for Internet applications

out Web service security and the WS-Security specification, part of the Global XML
e (GXA) initiative, see Chapter 10, Web Services Security

For more information ab
Architectur .

parison

 merits of Forms and Passport authentication.

 of Forms authentication

ry.

• ASP.NET provides much of the infrastructure. Relatively little custom code is required in comparison to
clas

Adv uthentication

• ement issues from the application.

 It can be used with role-based authorization schemes.

Mor

•

Forms / Passport com

This section summarizes the relative

Advantages

• Supports authentication against a custom data store; typically a SQL Server database or Active Directo

• Supports role-based authorization with role lookup from a data store.

• Smooth integration with Web user interface.

sic ASP.

antages of Passport a

• Passport is a centralized solution.

It removes credential manag

•

• It is very secure as it is built on cryptography technologies.

e information

For more information about Web service authentication approaches, see Chapter 10, Web Services
Security.

• For more information about using Forms Authentication with SQL Server, see How To: Use Forms
authentication with SQL Server 2000 in the Reference section of this guide.

Intranet / Extranet Scenarios

nd Figure 3.5 shows a decision tree that can be used to help choose an authentication mechanism for intranet a
extranet application scenarios.

Figure 3.5. Choosing an authentication mechanism for intranet and extranet applications

ilable authentication mechanisms.

ble 3.

Authentication Mechanism Comparison

The following table presents a comparison of the ava

Ta 4: Available authentication methods

 Basic Digest NTLM Kerberos Certs Forms Passport

Use ed Yes Yes Yes Yes No No rs ne
Windows

No

accounts in
server's domain

Supports Yes No No Yes Can do Yes Yes
delegation*

Req
nts an
vers

Yes No Yes No No No uires Win2K No
clie d
ser

Cred
pass
text
SSL)

entials
ed as clear
 (requires

Yes No No No No Yes No

Supports non-IE
browsers

Yes No No No Yes Yes Yes

* Re Flowing Identity" section earlier in this chapter for details.

Sum

• Designing distributed application authentication and authorization approaches is a challenging task. Proper
authentication and authorization design during the early design phases of your application development helps
mitigate many of the top security risks. The following summarizes the information in this chapter:

fer to the "Delegation" topic in the "

mary

•

 If your application does not use Windows authentication, use .NET role checking to provide
authorization. Validate credentials against a custom data store, retrieve a role list and create a
GenericPrincipal object. Associate it with the current Web request (HttpContext.User).

ET

indows authentication and Enterprise Services, consider using
Enterprise Services (COM+) roles.

• For meaningful role-based authorization using Enterprise Services (COM+) roles, the original
lication is

ows

•

• e-

Use the trusted subsystem resource access model to gain the benefits of database connection
pooling.

•

• If your application uses Windows authentication and doesn't use Enterprise Services, use .N
roles. Remember that for Windows authentication, .NET roles are Windows groups.

• If your application uses W

caller's identity must flow to the Enterprise Services application. If the Enterprise Services app
called from an ASP.NET Web application, this means that the Web application must use Wind
authentication and be configured for impersonation.

Annotate methods with the PrincipalPermission attribute to declaratively demand role
membership. The method is not called if the caller is not in the specified role and a security exception is
generated.

Call PrincipalPermission.Demand within method code (or use IPrincipal.IsInRole) for fin
grained authorization decisions.

• Consider implementing a custom IPrincipal object to gain additional role-checking semantics.

Sec

J.D.
Micr

Novem

See the Landing Page

ure Communication

Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
osoft Corporation

ber 2002

Applies to:
 Microsoft® ASP.NET

 for the starting point and a complete overview of Building Secure ASP.NET Applications.

ers on the Internet and
corporate intranet. These are SSL and IPSec. It also discusses RPC encryption, which can be used to secure the

serviced components. (10 printed pages)

Know What to Secure

Summary: This chapter introduces the two core technologies that can be used to provide message confidentiality
and message integrity for data that flows across the network between clients and serv

communication with remote

Contents

SSL/TLS
IPSec
RPC Encryption
Point-to-Point Security
Choosing Between IPSec and SSL
Farming and Load Balancing
Summary

Many applications pass security sensitive data across networks to and from end users and between intermediate
application nodes. Sensitive data might include credentials used for authentication, or data such as credit card
numbers or bank transaction details. To guard against unwanted information disclosure and to protect the data
from unauthorized modification while in transit, the channel between communication end points must be secured.

n provides the following two features:

erned with ensuring that data remains private and confidential, and cannot be
viewed by eavesdroppers who may be armed with network monitoring software. Privacy is usually provided by

• Integrity. Secure communication channels must also ensure that data is protected from accidental or
delib
Authentication Codes (MACs).

This chapter covers the foll munication technologies:

• Secure rity (SSL/TLS). This is most commonly used to secure
channel between a browser and Web , it can also be used to secure Web service messages

and communications to and from a database server running Microsoft® SQL Server™ 2000.

•

e server.

ides

Kno

When a Web request flows across the physical deployment tiers of your application, it crosses a number of
muni

Secure communicatio

• Privacy. Privacy is conc

means of encryption.

erate (malicious) modification while in transit. Integrity is usually provided by using Message

owing secure com

Sockets Layer / Transport Layer Secu
the server. However

 Internet Protocol Security (IPSec). IPSec provides a transport level secure communication solution
and can be used to secure the data sent between two computers; for example, an application server and a
databas

• Remote Procedure Call (RPC) Encryption. The RPC protocol used by Distributed COM (DCOM) prov
an authentication level (packet privacy) that results in the encryption of every packet of data sent between
client and server.

w What to Secure

com cation channels. A commonly used Web application deployment model is shown in Figure 4.1.

Fig .1. A typical Web deployment model

is typical deployment model, a request passes through thre

ure 4

In th e distinct channels. The client-to-Web server link
may be over the Internet or corporate intranet and typically uses HTTP. The remaining two links are between

eless, all three links represent potential security concerns.
l

el can be secured by using a combination of SSL, IPSec and RPC encryption.

internal servers within your corporate domain. Noneth
Many purely intranet-based applications convey security sensitive data between tiers; for example, HR and payrol
applications that deal with sensitive employee data.

Figure 4.2 shows how each chann

Figu

The choice of technology depends on a number of factors including the transport protocol, end point technologies,
and environm

SSL/TLS

SSL/TLS is used to establish an encrypted communication channel between client and server. The handshake
mechanism used to establish the secure channel is well documented and details can be found in the following

icles i

•

re 4.2. A typical Web deployment model, with secure communications

ental considerations (such as hardware, operating system versions, firewalls, and so on).

art n the Microsoft Knowledge Base:

Q257591, Description of the Secure Sockets Layer (SSL) Handshake

• Q257587, Description of the Server Authentication Process During the SSL Handshake

• Q257586, Description of the Client Authentication Process During the SSL Handshake

Using SSL

When you use SSL you should be aware of the following:

• When SSL is applied, the client uses the HTTPS protocol (and specifies an https:// URL) and the server
liste

•
SSL uses complex cryptographic functions to encrypt and decrypt data and as a result impacts the

d

• erformance hit associated with SSL is greatest during session establishment, ensure that
your connections do not time out.

ns on TCP port 443.

You should monitor your application's performance when you enable SSL.

performance of your application. The largest performance hit occurs during the initial handshake, where
asymmetric public/private-key encryption is used. Subsequently (after a secure session key is generated an
exchanged), faster, symmetric encryption is used to encrypt application data.

• You should optimize pages that use SSL by including less text and simple graphics in those pages.

Because the p

You can fine tune this by increasing the value of the ServerCacheTime registry entry. For more information,
see article Q247658, HOW TO: Configure Secure Sockets Layer Server and Client Cache Elements in the
Microsoft Knowledge Base.

• SSL requires a server authentication certificate to be installed on the Web server (or database server if
you are using SSL to communicate with SQL Server 2000). For more information about installing server
authentication certificates, see How To: Set Up SSL on a Web Server in the How To section of this guide.

IPSec

ec ca ata sent between two computers; for example, an application server and a
database server. on, integrity, and authentication
serv s are imple municate with one another in the
norm manner u

ing IPSec you can:

• Provide message confidentiality by encrypting all of the data sent between two computers.

.

• Provide mutual authentication between two computers (not users). For example, you can help secure a
data
examp

unication to

Note IPSec is not intended as a replacement for application level security. Today it is used as a defense-in-depth
nd to secure non-TLS protocols from

network-wire attacks.

W e

• ings. IPSec is completely
cont

•
Spec t Key Exchange, or Kerberos (which is
alre

For m IPSec

IPS n be used to secure the d
IPSec is completely transparent to applications as encrypti

ice mented at the transport level. Applications continue to com
al sing TCP and UDP ports.

Us

• Provide message integrity between two computers (without encrypting data)

base server by establishing a policy that permits requests only from a specific client computer (for
le, an application or Web server).

• Restrict which computers can communicate with one another. You can also restrict comm
specific IP protocols and TCP/UDP ports.

mechanism or to secure insecure applications without changing them, a

Using IPSec

h n you use IPSec you should be aware of the following:

• IPSec can be used for both authentication and encryption.

There are no IPSec APIs for developers to programmatically control sett
rolled and configured through the IPSec snap-in, within the Local Security Policy Microsoft Management

Console (MMC).

IPSec in the Microsoft Windows® 2000 operating system cannot secure all types of IP traffic.

ifically, it cannot be used to secure Broadcast, Multicast, Interne
ady a secure protocol) traffic.

ore information, see article Q253169, Traffic That Can and Cannot Be Secured by , in the Microsoft

secmon.exe) provides information about which
IPSec policy is active and whether a secure channel between computers is established.

on, see the Knowledge Base articles:

 HOW TO: Use IPSec Monitor in Windows 2000

Knowledge Base.

• You use IPSec filters to control when IPSec is applied.

To test the IPSec policies, use IPSec Monitor. IPSec Monitor (Ip

For more informati

• Q313195,

Q231587, Using the IP Security Monitor Tool to View IPSec Communications•

For more information, see the following Knowledge Base articles:

• To establish a trust between two servers, you can use IPSec with mutual authentication. This uses
certificates to authenticate both computers.

• Q248711, Mutual Authentication Methods Supported for L2TP/IPSec

• Q253498, HOW TO: Install a Certificate for Use with IP Security

• If you need to use IPSec to secure communication between two computers that are separated by a
firew

For a

all, make sure that the firewall does not use Network Address Translation (NAT). IPSec does not work
with any NAT-based devices.

more information and configuration steps, see article Q233256, HOW TO Enable IPSec Traffic through
Firewall in the Microsoft Knowledge Base and How To: Use IPSec to Provide Secure Communication Between
Two Servers in the Reference section of this guide.

RP

C is th f configurable authentication levels
t range fro

The most se ts parameter state for every remote procedure call (and
refore

of th ent and server computers.

sing RPC Encryption

u are most likely to want to use RPC encryption when your Web-based application communicates with serviced
components (within Enterprise Services server applications) located on remote computers.

In this event, to use RPC Packet Privacy authentication (and encryption) you must configure both the client and the
server. A process of high-water mark negotiation occurs between client and server, which ensures that the higher
of the two (client and server) settings are used.

The server settings can be defined at the (Enterprise Services) application level, either by using .NET attributes
within your serviced component assembly, or by using the Component Services administration tool at deployment
time.

If the client is an ASP.NET Web application or Web service, the authentication level used by the client is configured
using the comAuthenticationLevel attribute on the <processModel> element within Machine.config. This
provides the default authentication level for all ASP.NET applications that run on the Web server.

More information

For more information about RPC authentication level negotiation and service component configuration, see Chapter
9, Enterprise Services Security

C Encryption

RP e underlying transport mechanism used by DCOM. RPC provides a set o
tha m no authentication (and no protection of data) to full encryption of parameter state.

cure level (RPC Packet Privacy) encryp
the every DCOM method invocation). The level of RPC encryption, 40-bit or 128-bit, depends on the version

e Windows operating system that is running on the cli

U

Yo

.

Point-to-Point Security

• Point-to-point communication scenarios can be broadly categorized into the following topics:

• Browser to Web Server

• Web Server to Remote Application Server

• Application Server to Database Server

Browser to Web Server

To secure sensitive data sent between a browser and Web server, use SSL. You need to use SSL in the following
situations:

• You are using Forms authentication and need to secure the clear text credentials submitted to a Web
server from a logon form.

In this scenario, you should use SSL to secure access to all pages (not just the logon page) to ensure that the
authentication cookie, generated as a result on the initial authentication process, remains secure throughout
the lifetime of the client's browser session with the application.

• You are using Basic authentication and need to secure the (Base64 encoded) clear text credentials.

L to secure access to all pages (not just the initial log on), as Basic authentication sends the
 application (not just the initial one).

Note Base64 is used to encode binary data as printable ASCII text. Unlike encryption, it does not
ide message integrity or privacy.

sensitive data between the browser and Web server (and vice-versa); for
umbers or bank account details.

The transport channel between a Web server and a remote application server should be secured by using IPSec,
tem

ise Services. If your remote server hosts one or more serviced components (in an Enterprise
server application) and you are communicating directly with them (and as a result using DCOM), use

ncryption.

e RPC encryption between a Web application and remote serviced
 Services Security

You should use SS
clear text credentials to the Web server with all requests to the

prov

• Your application passes
example, credit card n

Web Server to Remote Application Server

SSL or RPC Encryption. The choice depends on the transport protocols, environmental factors (operating sys
versions, firewalls and so on).

• Enterpr
Services
RPC Packet Privacy e

For more information about how to configur
component, see Chapter 9,Enterprise .

eb Services. If your remote server hosts a Web service, you can choose between IPSec and SSL.

ity specification. Microsoft
provides the Web Services Development Toolkit to allow you to develop message level security

• .NET Components (using .NET Remoting). If your remote server hosts one or more .NET components
n link. If

n Server to Database Server

 a server authentication certificate to be installed in the database

server's machine store.

 n n the following situations:

 and are not using Windows authentication. For example, you
may rver or you may be connecting to a non-SQL Server database. In
thes lear text, which can represent a significant security concern.

ation about Windows and SQL
authentication, see Chapter 12, Data Access Security

• W

You should generally use SSL because the Web service already uses the HTTP transport. SSL also allows you
to only encrypt the data sent to and from the Web service (and not all traffic sent between the two
computers). IPSec results in the encryption of all traffic sent between the two computers.

Note Message-level security (including data encryption) is addressed by the Global XML Web
Services Architecture (GXA) initiative and specifically the WS-Secur

solutions.

and you connect to them over the TCP channel, you can use IPSec to provide a secure communicatio
you host the .NET components within ASP.NET, you can use SSL (configured using IIS).

Applicatio

To secure the data sent between an application server and database server, you can use IPSec. If your database
server runs SQL Server 2000 (and the SQL Server 2000 network libraries are installed on the application server),
you can use SSL. This latter option requires

You may eed to secure the link to the database server i

• You are connecting to the database server
 be using SQL authentication to SQL Se
e cases, the credentials are passed in c

Note One of the key benefits of using Windows authentication to SQL Server is that it means that the
credentials are never passed across the network. For more inform

.

Using SSL to SQL Server

• Your application may be submitting and retrieving sensitive data to and from the database (for example,
payroll data).

Consider the following points if you use SSL to secure the channel to a SQL Server database:

• s installed. Earlier versions or generic libraries

• SSL only works for TCP/IP (the recommended communication protocol for SQL Server) and named pipes.

• You can configure the server to force the use of encryption for all connections (from all clients).

• On the client, you can:

rce the use of encryption for all outgoing connections.

ose whether or not to use encryption on a per-connection basis, by
using the connection string.

e not required if the client or server IP addresses change.

re inf

r more information about using SSL to SQL Server, see the following resources:

• For SSL to work, you must install a server authentication certificate in the machine store on the database
server computer. The client computer must also have a root Certificate Authority certificate from the same (or
trusting) authority that issued the server certificate.

 Clients must have the SQL Server 2000 connectivity librarie
will not work.

• Fo

• Allow client applications to cho

• Unlike IPSec, configuration changes ar

Mo ormation

Fo

• How To: Use SSL to Secure Communication with SQL Server 2000 in the Reference section of this guide

• Webcast: Microsoft SQL Server 2000: How to Configure SSL Encryption (April 23, 2002)

Choosing Between IPSec and SSL

ts when choosing between IPSec and SSL:

tion of specific network connections.
However, sites can be partitioned to use or not use SSL. Also, when you use SSL to connect to SQL Server,

ection basis (from the client application) whether or not to use SSL.

• c is transparent to applic t can be used with secure protocols that run on top of IP such as
FTP and SMTP. However, S s closely tied to the application.

an be used for compu or
trusted subsystem scenarios, wh ion
(running on a specific computer)
connect to the database server, i

• IPSec requires that both com

• NAT-based fi

Farming and Load Balancin

If you use SSL in conjunction with mu
numbers. You cannot use multiple sit ss and port number. If the IP address is combined

ting in a load

More Information

For more information, see Q187504, HTTP 1.1 Host Headers Are Not Supported When You Use SSL

Consider the following poin

• IPSec can used to secure all IP traffic between computers; SSL is specific to an individual application.

• IPSec is a computer-wide setting and does not support the encryp

you can choose on a per conn

IPSe
HTTP,

ations, so i
SL/TLS i

• IPSec c ter authentication in addition to encryption. This is particularly significant f
ere the database authorizes a fixed identity from a specific applicat
. IPSec can be used to ensure that only the specific application server can
n order to prevent attacks from other computers.

puters run Windows 2000 or later.

SSL can work through a rewall; IPSec cannot.

g

ltiple virtual Web sites, you need to use unique IP addresses or unique port
es with the same IP addre

with a server affinity set balancer, this will work fine.

, in the
ledge Base. Microsoft Know

Summary

This chapter described how a combination of SSL, IPSec and RPC encryption can be used to provide an end-to-end
secure communication solution for your distributed application. To summarize:

• Channel security is a concern for data passed over the Internet and on the corporate intranet.

• Consider the security requirements of the Web browser to Web server, Web server to application server,
and application server to database server links.

• Secure communication provides privacy and integrity. It does not protect you from non-repudiation (for
this use, client certificates)

• Channel security options include SSL, IPSec and RPC Encryption. The latter option applies when your
application uses DCOM to communicate with remote serviced components.

• If you use SSL to communicate with SQL Server, the application choose (on a per-connection basis)
whether or not to encrypt the connection.

• IPSec encrypts all IP traffic that flows between two computers.

nism is dependent upon transport protocol, operating system versions, and

• There is always a trade-off between secure communication and performance. Choose the level of security
that

 can

• The choice of security mecha
network considerations (including firewalls).

 is appropriate to your application requirements.

Intranet Security

J.D. Meier, Alex Mackman, Michael Du
Microsoft Corporation

 Microsoft® ASP.NET
 Microsoft SQL Server™

nner, and Srinath Vasireddy

November 2002

Applies to:

See the Landing Page for the starting

Summary: This chapter describes how . It presents the
characteristics of each scenario and de . Analysis sections are also
included to provide further information. (34 printed pages)

Contents

ASP.NET to SQL Server

point and a complete overview of Building Secure ASP.NET Applications.

 to secure common intranet application scenarios
scribes the steps necessary to secure the scenario

ices to SQL ServerASP.NET to Enterprise Serv

ET to Web Services to SQL ServASP.N er
ASP.NET to Remoting to SQL Server

taFlowing the Original Caller to the Da base
Summary

Access to intranet applications is restricted to a limited group of authorized users (such as employees that belong
to a domain). While an intranet setting its th ll face several challenges
when you develop authentication, auth zation or example, you may have
non-trusting domains, which make it d ult to ity context and identity through to the back-end
resources within your system. You may also be eterogeneous environment with mixed browser
types. This makes it more difficult to u a com nism.

h e all computers run the Microsoft® Windows® 2000 operating system or
s s are trusted for delegation, delegation of the original caller's security

ecomes an option.

 secure communication. Despite the fact that your application runs in an intranet
environment, you cannot consider the data sent over the network secure. It is likely that you will need to secure

t n application servers and

r ed in this chapter to illustrate key authentication, authorization,
s:

er

ervice

• L Server

ASP.NET to Remoting to SQL

s a W
caller'

browser to database using intermediat nd application servers.

cribed in ccount used to run ASP.NET
applications or change its password to allow duplicated accounts to be created on remote computers. These
scenarios update the <processModel> element of Machine.config. This results in credentials being stored in clear

achine.config. For a detailed discussion of this topic, see Accessing Network Resources

 lim e exposure of your application, you may sti
ori , and secure communication strategies. F
iffic flow a caller's secur

 operating within a h
se mon authentication mecha

If you have a homogenous intranet w
later and you have a domain where u
context to the back end b

er
er

You must also consider

the data sent between browsers and
databases.

he Web server in addition to data sent betwee

The following common intranet scena
and secure communication technique

ios are us

• ASP.NET to Microsoft SQL S

• ASP.NET to Enterprise S

ver™

s to SQL Server

 ASP.NET to Web Services to SQ

• Server

In addition, this chapter describe
Database), in which the original

indows 2000 delegation scenario (Flowing the Original Caller to the
s security context and identity flows at the operating system level from
e Web a

Note Several scenarios des this chapter either replace the default ASPNET a

text within m in Chapter 8,
"ASP.NET Security."

ASP.NET to SQL Server

is scenario, a HR database serves per-user data securely on a homogenous intranet. The application uses a
ted subsystem model and executes calls on behalf of the original callers. The application authenticates callers

ng Integrated Windows authentication and makes ca

In th
trus
by usi lls to the database using the ASP.NET process identity.

e to th

 basi

Du e sensitive nature of the data, SSL is used between the Web server and clients.

The c model for this application scenario is shown in Figure 5.1.

Figure 5.1. AS

Characte ics

s scenar

Cl have Internet Explorer.

•

•

• access the application.

Sec

In this scenario, the Web server authenticates the caller and restricts access to local resources by using the caller's
ntity.

the
priv he database trusts the ASP.NET application).

bl

P.NET to SQL Server

rist

Thi io has the following characteristics:

• ients

User accounts are in Microsoft Active Directory® directory service.

The application provides sensitive, per-user data.

Only authenticated clients should

• The database trusts the application to authenticate users properly (that is, the application makes calls to
the database on behalf of the users).

• Microsoft SQL Server is using a single database user role for authorization.

ure the Scenario

ide You don't have to impersonate within the Web application in order to restrict access to resources against
original caller. The database authenticates against the ASP.NET default process identity, which is a least
ileged account (that is, t

Ta e 5.1. Security measures

Category Details

Authentication Provide strong authentication at the Web server to authenticate original

icate

callers by using Integrated Windows authentication in IIS.
Use Windows authentication within ASP.NET (no impersonation).
Secure connections to the database using SQL Server configured for Windows
authentication.
The database trusts the ASP.NET worker process to make calls. Authent
the ASP.NET process identity at the database.

Auth
For easier administration, users are added to Windows groups and groups are
used within the ACLs.

orization Configure resources on the Web server using ACLs tied to the original callers.

The Web application performs .NET role checks against the original caller to
restrict access to pages.

Secure Communication Secure sensitive data sent between the Web server and the database
Secure sensitive data sent between the original callers and the Web
application

The Result

re 5.2 shows the recommended security configuration for this scenario. Figu

Figu ded security configuration for the ASP.NET to SQL Server intranet scenario

ion Steps

owing:

re 5.2. The recommen

Security Configurat

Before you begin, you'll want to see the foll

• Creating custom ASP.NET accounts (see How To: Create a Custom Account to Run ASP.NET in the
Reference section of this guide)

• Creating a least privileged database account (see Chapter 12, Data Access Security)

Configuring SSL on a Web server (see • How To: Set Up SSL on a Web Server in the Reference section of
this

•

 guide)

Configuring IPSec (see How To: Use IPSec to Provide Secure Communication Between Two Servers in the
Refe

Confi

rence section of this guide)

guring IIS

Step More Information

Disab
Web appl
dire

Enab
Authentication

n settings, use the IIS MMC snap-in. Right-le Anonymous access for your To work with IIS authenticatio
ication's virtual root

ctory

le Integrated Windows

click your application's virtual directory, and then click Properties.
Click the Directory Security tab, and then click Edit within the
Anonymous access and authentication control group.

Configuring ASP.NET

Step More Information

Change the ASPNET password to a ASPNET is a least privileged local account used by de
known strong password value

fault to run ASP.NET
Web applications.

t the ASPNET account's password to a known value by using Local Users Se
and Groups.
Edit Machine.config located in %windir%\Microsoft.NET\Framework\
v1.0.3705\CONFIG
and reconfigure the password attribute on the <processModel> element
Default

<!-- userName="machine" password="AutoGenerate"

 -- >

Becomes

<!-- userName="machine"

 password="YourNewStrongPassword" -- >

Configur
application to use Windows

Edit Web.config in your application's virtual directory root
Set the <authentication> element to:

e your ASP.NET Web

authentication

<authentication mode="Windows" />

Ma e impersonation is off Impersonation is off by default; however, double check to ensure that it's
turned off in Web.config, as follows:

ke sur

<identity impersonate="false" />

The same effect can be achieved by removing the <identity> element.

Configuring SQL Server

Step More Information

Cre Windows account on your
SQL Server computer that matches

ASP.NET process account

The user name and password must match the ASPNET account.

Give the account the following privileges:

ate a

the
(ASPNET)

ter from the network • Access this compu

• Deny logon locally

• Log on as a batch job

Configure SQL Server for Windows
authentication

Create a SQL Server Login for the
nt

This grants access to the SQL Server
local ASPNET accou

Create a new database user and
map the login name to the database

This grants access

user

to the specified database

Cre new user-defined database ate a

le
role and add the database user to
the ro

Estab tabase permissions for Grant minimum permissions lish da
 data ess Securitythe base role For more information, see Chapter 12, Data Acc .

Configuring secure communication

Step More Information

Co e the Web site for SSL See nfigur How To: Set Up SSL on a Web Server in the Reference section of this
guide.

Configure IPSec between Web
r

See How To: Use IPSec to Provide Secure Communication Between Two
server and database serve Servers in the Reference section of this guide.

Analysis

• Integrated Windows authentication in IIS is ideal in this scenario because all users have Windows account
and are using Microsoft Internet Explorer. The benefit of Integrated Windows authentication is that the u
password is never sent over the network. Additionally, the logon is transparent for the user because Windo
uses the current

s
ser's

ws
 interactive user's logon session.

t privileged account, so potential damage from compromise is mitigated.

• You don't need to impersonate in ASP.NET to perform .NET role checks or to secure resources within
s ACLs against the origin To perform .NET role checks against the original caller, the

WindowsPrincipal object that represents the original caller is retrieved from the HTTP context as follows:

• ASP.NET is running as leas

Window al caller.

• WindowsPrincipal wp = (HttpContext.Current.User as

• WindowsPrincipal);

• if (wp.IsInRole("Manager"))

• {

• // User is authorized to perform manager-specific functionality

• }

ET FileAuthorizationModule provides ACL checks against the original caller for ASP.NET file types
uch as .jpg, .gif and .htm files, IIS acts
identity, based on the NTFS

permissions associated with the file.

• Using Windows authentication to SQL Server means that you avoid storing credentials in files and passing
credentials over the network to the database server.

• The use of a duplicated Windows account on the database server (one that matches the ASPNET local
account) results in increased administration. If a password is changed on one computer, it must be
synchronized and updated on the other. In some scenarios, you may be able to use a least-privileged domain
account for easier administration.

• The duplicated local account approach also works in the presence of a firewall where the ports required for
Windows authentication may not be open. The use of Windows authentication and domain accounts may not
work in this scenario.

• You'll need to ensure that your Windows groups are as granular as your security needs. Because .NET
role-based security is based on Windows group membership this solution relies on Windows groups being set
up at the correct level of granularity to match the categories of users (sharing the same security privileges)
who access the application. The Windows groups that you use here to manage roles could be local to that
computer or domain groups

• SQL Server database user roles are preferred to SQL server application roles to avoid the associated
password management and connection pooling issues associated with the use of SQL application roles.

L application roles, which severely impacts application scalability.

Server database user roles and SQL Server application roles, see Chapter 12,

The ASP.N
that are mapped within IIS to the aspnet_isapi.dll. For static file types s
as the gatekeeper and performs access checks using the original caller's

Applications activate SQL application roles by calling a built-in stored procedure with a role name and a
password. Therefore, the password must be stored securely. Database connection pooling must also be
disabled when you use SQ

For more information about SQL
Data Access Security.

• The database user is added to a database user role and permissions are assigned for the rol
base account changes; you don't have to change the permissions on all database obje

e so that if the
data cts.

Q&A

• Why can't I enable impersonation for the Web application, so that I can secure the resources
accessed by my Web application using ACLs configured against the original caller?

If yo
 using Integrated Windows authentication). Therefore, the remote call to

SQL Server will use a NULL session, which will result in a failed call. With impersonation disabled, the remote
se the ASP.NET process identity.

e preceding scenario uses the A ationModule, which performs authorization using
ller identity and does not require impersonation.

tion instead of Integrated Windows authentication (NTLM) and you do enable
rsonation, each call to the database would use the original caller's security context. Each user account (or

hich the user belongs) would require SQL Server logins. Permissions on database
the Windows group (or original caller).

• doesn't know who the original caller is. How can I create an audit trail?

udit end user activity within the ss the identity of the user explicitly as a parameter of
e data access call.

Non-Internet Explorer Browsers

Integrated Windows authentication to IIS requires Internet Explorer. In a mixed browser environment, your typical

• Basic authentication and S owsers. Since the user's
credentials are passed over the ne .

• Client certificates. Individual client certificates can either be mapped to a unique Windows account or a

tication. Form can validate credentials against a custom data store such
se or against Active Directory.

If you authenticate against Active t you retrieve only the necessary groups that are
pertinent to your application. Just l queries against a database using SELECT * clauses,
you shouldn't blindly retrieve all g

If you authenticate against a database, you need to carefully parse the input used in SQL commands to
protect against SQL injection attacks, and you should store password hashes (with salt) in the database

d passwords.

r more information about using ential store and storing passwords in the database, see

u enable impersonation, the impersonated security context will not have network credentials (assuming
delegation is not enabled and you are

request will u

Th SP.NET FileAuthoriz
Windows ACLs against the origina

If you use Basic authentica
impe
the Windows groups to w
objects would need to be secured against

l ca

 The database

A
th

Web application or pa

Related Scenarios

options would include:

SL. Basic authentication is supported by most br
twork, you must use SSL to secure the scenario

single Windows account can be us

• Forms authen
as a databa

ed to represent all clients. The use of client certificates also requires SSL.

s authentication

 Directory, make sure tha
ike you shouldn't issue

roups from Active Directory.

instead of clear text or encrypte

Fo SQL Server as a cred
Chapter 12, Data Access Security.

Notice that in all cases, if you don
credentials for you, you end up usi
you are passing security sensitive d

't use
ng S s. If
ata

SQL authentication to the databas

In some scenarios you may be forced entication.
For example, there may be a firewall b ay not be a
member of your domain for security reaso prevents Windows authentication. In this case, you might
use SQL authentication between the d server. To secure this scenario, you should:

n API (
tion,

• Storing Database Co

 Integrated Windows authentication, where the platform manages
SL. However, this benefit pertains strictly to the authentication proces
 over the network, you must still use IPSec or SSL.

e

to use SQL authentication instead of the preferred Windows auth
etween the Web application and database, or the Web server m

ns. This also
atabase and Web

• Use the Data Protectio
passwords. For more informa

DPAPI) to secure database connection strings that contain usernames and
see the following resources:

nnection Strings Securely, in Chapter 12, "Data Access Security"

• How To: Use DPAPI re) from ASP.NET(Machine Sto in the Reference section of this guide

• How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services in the Reference section

: Create a DP

of this guide

• How To API Library in the Reference section of this guide

• Use IPSec or SSL betw
over the network.

een the Web server and database server to protect the clear text credentials passed

 d

 t lication to the database using the security context of the original
porta

• If you choose this approach, you need th accounts configured for
delegation) or Basic authenticatio

A delegation scenario is discussed the "F aller to the Database" section later in this
chapter.

rsonation in ASP.NET. This means that local system resource access is
using the original caller's security context and as a result, ACLs on local resources such as the

ent log require appropriate configuration.

 pooling is limited because original callers won't be able to share connections. Each
connection is associated with the caller's security context.

ing the user's security context is to flow the original caller's identity at the
pplication level (for example, by using method and stored procedure parameters).

l bus an Enterprise Services application that in turn
pl es transactions over the

nal departmen 5.3.

Flowing the original caller to the

In this scenario, calls are made from
caller. With this approach, it's im

atabase

he Web app
nt to note the following:

to use either Kerberos authentication (wi
n.

in lowing the Original C

• You must also enable impe
performed
registry and ev

• Database connection

• An alternate approach to flow
a

ASP.NET to Enterprise Services to SQL Server

In this scenario, ASP.NET pages cal
connects to a database. As an exam
intranet and allows inter

iness components hosted in
e, consider an internal purchase order system that us
ts to place orders. This scenario is shown in Figure

Fig .3. ASP.NET calls a component within Enterprise Services, which calls the database.

racteristics

ure 5

Cha

s scenar

•

• Components are deployed on the Web server.

•

Thi io has the following characteristics:

Users have Internet Explorer.

• The application handles sensitive data that must be secured while in transit.

Business components connect to SQL Server using Windows authentication.

• Business functionality within these components is restricted based on the identity of the caller.

•

• ct to the database using the server application's process identity.

cure

In th
servi
calle database authenticates against the Enterprise Service application's process identity (that is,.
the database trusts the serviced components within the Enterprise Services application). When the serviced

t makes calls to the database, it passes the user's identity at the application level (by using trusted
query parameters).

bl

Serviced components are configured as a server application (out-of-process).

Components conne

• Impersonation is enabled within ASP.NET (to facilitate Enterprise Services role-based security).

Se the Scenario

is scenario, the Web server authenticates the original caller and flows the caller's security context to the
ced component. The serviced component authorizes access to business functionality based on the original
r's identity. The

componen

Ta e 5.2. Security measures

Ca tegory Detail

Auth s

Flow the original caller's security context to the serviced component to
Services (COM+) role checks.

s to the database use Windows authentication.

rocess

entication Provide strong authentication at the Web server using Integrated Window
authentication.

support Enterprise
Secure connection
The database trusts the serviced component's identity to make the database
calls. The database authenticates the Enterprise Services application p
identity.

Authorization Authorize access to business logic using Enterprise Services (COM+) roles.

Secure Communication Secure sensitive data sent between the users and the Web application by
using SSL.

etween the Web server and the database by Secure sensitive data sent b
using IPSec.

The Result

Figure 5.4 shows the recommended security configuration for this scenario.

Figu
Se ntranet scenario

re 5.4. The recommended security configuration for the ASP.NET to local Enterprise Services to SQL
rver i

Security Configuration Steps

Before you begin, you'll want to see the following:

• Creating a least privileged database account (see Chapter 12, Data Access Security)

• Configuring SSL on a Web server (see How To: Set Up SSL on a Web Server in the Reference section of
this guide)

• Configuring IPSec (see How To: Use IPSec to Provide Secure Communication Between Two Servers in th
Reference section of this guide)

e

ervices security (see How To: Use Role-based Security with Enterprise Services• Configuring Enterprise S in
guide)

g IIS

the Reference section of this

Configurin

Step More Information

Disable Anonymous access for your
Web application's virtual root
directory

Enable Integrated Windows
Authentication

Configuring ASP.NET

Step More Information

Configure your ASP.NET Web
se Windows

Edit Web.config in your application's virtual directory root.
application to u
authentication

Set the <authentication> element to:

<authentication mode="Windows" />

Configure your ASP.NET Web
ation

Edit Web.config in your Web application's virtual directory
application for imperson Set the <identity> element to:

<identity impersonate="true" />

Configure ASP.NET DCOM security to
ensure that calls to Enterprise
Services support caller

Edit Machine.config and locate the <processModel> element. Confirm that
the comImpersonationLevel attribute is set to Impersonate (this is the
default setting)

impersonation

<processModel

 comImpersonationLevel="Impersonate"

Configuring enterprise services

Step More Information

Create a custom account for running
Enterprise Services

Note: If you use a local account, you must also create a duplicate account
on the SQL Server computer.

Configure the Enterprise Services
application as a server application

This can be configured using the Component Services tool, or via the
following .NET attribute placed in the service component assembly.

[assembly:

 ApplicationActivation(ActivationOption.

 Server)]

Configure Enterprise Services
(COM+) roles

Use the Component Services tool or script to add Windows users and/or
groups to roles.

Roles can be defined using .NET attributes within the serviced component
assembly.

Configure Enterprise Services to run
as your custom account

This must be configured using the Component Services tool or script. You
cannot use .NET attributes within the serviced component assembly.

Configuring SQL Server

Step More Information

Create a Windows account on your
SQL Server computer that matches
the Enterprise Servi

The user name and password must match your custom Enterprise Servic
account.

ces process
account

es

Give the account the following privileges:

ss this computer from the network

• Deny logon locally

• Acce

• Log on as a batch job

Co igure SQL Server for Windows
entication

 nf
auth

Create a SQL Server Login for your
Enterprise Services account

This grants access to the SQL Server.

Create a new database user and
e login name to the database

This grants access to the specified database.
map th
user

Create a new database user ro
add the da

le and
tabase user to the role

Establish database permissio
the database user role

ns for Grant minimum permissions
For details, see Chapter 12, Data Access Security

Configuring secure communication

Step More Information

Configure the Web site for SSL SSL on a Web ServerSee How To: Set Up in the Reference section of this
guide.

Configure IPSec between We
server and data

b
base server

 Communication Between Two See How To: Use IPSec to Provide Secure
Servers in the Reference section of this guide.

Analysis

se Services nts, so potential damage from
compromise is mitigated. If either ed, the account's limited privileges reduce
the scope of damage. Also, in the d, potential damage is
constrained.

• The ASP.NET application must be configured for impersonation in order to flow the security context of the
original caller to the Enterprise Services components (to support Enterprise Services (COM+) role-based

• ASP.NET and Enterpri are running as least privileged accou
 process identity were compromis
 case of ASP.NET, if malicious script were injecte

authorization). If you do not impersonate, role checks are made against the process identity (that is, the
rker process). Impers ation affects who you authorize resources against.

Without impersonation, syste e against the ASP.NET process identity. With
ersonation, system resource c nst the original caller. For more information about

 P.NET, see Accessing System Resources

ASP.NET wo on

•
imp

m resource checks ar
hecks are made agai

accessing system resources from AS in Chapter 8, "ASP.NET Security."

) roles, access checks are pushed to the middle tier, where the
. In this case, callers are checked at the gate, mapped to roles, and calls to business

is avoids unnecessary calls to the back end. Another advantage of Enterprise
hat you can create and administer roles at deployment rime, using the Component

Services Manager.

entication to SQ means you avoid storing credentials in files and sending them across the

The use of a local account to run th rvices application, together with a duplicated account
rk

tion may not be open. T tion and domain accounts may not work in
this scenario.

Pitfalls

• The use of a duplicated Windo nt on the database server (one that matches the Enterprise
Services process account) results in increased administration. Passwords should be manually updated and
synchronized on a periodic basis.

• Because .NET role-based secu d on Windows group membership, this solution relies on Windows
groups being set up at the correct ity to match the categories of users (sharing the same
security privileges) who access the application.

ASP.NET to Web Services to SQL Server

In this scenario, a Web server that run ervice on a remote server. This server
in turn connects to a remote database rovides
sensitive data specific to a user. The a sic model for
this application scenario is shown in Figure 5.5.

• By using Enterprise Services (COM+
business logic is located
logic are based on roles. Th
Services (COM+) roles is t

• Windows auth
network.

L

• e Enterprise Se
on the database server, also wo
authentica

s in the presence of a firewall where the ports required for Windows
he use of Windows authentica

ws accou

rity is base
 level of granular

s ASP.NET pages connects to a Web s
 server. As an example, consider a HR Web application that p
pplication relies on the Web service for data retrieval. The ba

Figure 5.5. ASP.NET to remote Web Serv

The Web service exposes a method that a her own personal details.
Details must be provided only to authe
provides a method that supports the r ust be available only to
members of the HR or payroll department. In this scenario, employees are categorized into three Windows groups:

HR department)

embers of this group can retriev ployee.

h

ev

• Employees (all employees)

Members of this group can only retrieve their own details.

ice to SQL Server

llows an individual employee to retrieve his or
nticated individuals using the Web application. The Web service also

etrieval of any employee details. This functionality m

• HRDept (members of the

M e details about any em

• PayrollDept (members of t

Members of this group can retri

e Payroll department)

e details about any employee.

Due to the sensitive nature of the data e traffic be s should be secure.

Characteristics

er 5.x or later.

 2000 or l

 in Active Directory within a single forest.

 orig database.

All tiers use Windows authentication.

ured for delegation.

• The database does not support delegation.

ts the ASP.NET Web application authenticates the original caller's identity
mote server that hosts the Web service. This enables authorization checks

pplied to Web methods to eithe to the original caller. The database authenticates
against the Web service process identity (the database trusts the Web service). The Web service in turn makes

 u

, th tween all node

• Users have Internet Explor

• All computers run Windows

• User accounts are

ater.

• The application flows the

•

inal caller's security context all the way to the

• Domain user accounts are config

Secure the Scenario

In this scenario, the Web server that hos
and flows their security context to the re
to be a r allow or deny access

calls to the database and passes the ser's identity at the application level using stored procedure parameters.

Table 5.3. Security measures

Category Detail

Authentication The Web application authenticates users by using Integrated Windows
authentication from IIS.

The Web service uses Integrated Windows authentication from IIS. It
authenticates the original caller's security context delegated by the Web
application.

The Kerberos authentication protocol is used to flow the original caller security
context from the Web application to the Web service using delegation.

Windows authentication is used to connect to the database using the ASP.NET
process account.

Au ation The Web application performs role checks against the original caller to rest
access to pages.

thoriz rict

he Access to the Web service methods is controlled by using .NET roles based on t
original caller's Windows group membership.

Secure Communication Sensitive data sent between the original callers and the Web application and Web

s secure by using

service is secured by using SSL.

Sensitive data sent between the Web service and the database i
IPSec.

The

ure 5.6 shows the recommended security configuration for this scenario.

 Result

Fig

re 5.6. The recommended security configuration for the ASP.NET to Web Service to SQL Server
 scenario

Figu
intranet

Befo

Security Configuration Steps

re you begin, you'll want to see the following:

• Configuring SSL on a Web server (see How To: Set Up SSL on a Web Server in the Reference section of
this guide)

• Configuring IPSec (see How To: Use IPSec to Provide Secure Communication Between Two Servers in the
Reference section of this guide)

figuring the Web server (that hosts the Web applicatioCon n)

Co re IIS nfigu

Step More Information

Disable Anonymous access for your
b appl

d e

Enable Windows Integrated
tion for your Web

application's virtual root

We ication's virtual root
ir ctory

Authentica

Configure ASP.NET

Step More Information

Con
application to use Windows

henti

application's virtual directory figure your ASP.NET Web Edit Web.config in your Web

aut cation Set the <authentication> element to:

<authentication mode="Windows" />

Con
appl

figure your ASP.NET Web
ication for impersonation

Edit Web.config in your Web application's virtual directory

Set the <identity> element to:

<identity impersonate="true" />

Co ring the application server (that hosts the Web service) nfigu

Configure IIS

Step More Information

Disable Anonymous access for your
Web service's virtual root directory

rectory

Enable Windows Integrated
Authentication for your Web
service's virtual root di

Configure ASP.NET

Step More Information

Change the ASPNET password to a
known value

ASPNET is a least privileged local account used by default to run the
ASP.NET Web applications.
Set the ASPNET account's password to a know value by using Local Users
and Groups.
Edit Machine.config located in %windir%\Microsoft.NET\Framework\
v1.0.3705\CONFIG
and reconfigure the password attribute on the <processModel> element:
Default

<!-- userName="machine" password="AutoGenerate"

 -- >

Becomes

<!-- userName="machine"

 password="YourNewStrongPassword" -- >

Configure your ASP.NET Web service
tion

Edit Web.config in your Web service's virtual directory
Set the <authentication> element to: to use Windows authentica

<authentication mode="Windows" />

Make sure impersonation is off Impersonation is off by default; however, double check to ensure that it's
turned off in Web.config, as follows:

<identity impersonate="false" />

t because impersonation is disabled by default, the same effect can
ieved by removing the <identity> element.

Note tha
be ach

Configure SQL Server

Step More Information

Create a Windows account on your
mputer that matches
rocess account used

to run the Web service

The user name and password must match your custom ASP.NET account.

• Access this computer from the network

SQL Server co
the ASP.NET p Give the account the following privileges:

• Deny logon locally

• Log on as a batch job

Configure SQL Server for Windows
authentication

Create a SQL Server Login for your
custom ASP.NET account

to the SQL Server. This grants access

Create a new database user and
name to the database

This grants access to the specified database.
map the login
user

Create a new database user role and
add the database user to the role

Establish database permissions for
the database user role

Grant minimum permissions

Configuring secure communication

Step More Information

Configure the Web site on the Web
server for SSL

See How To: Set Up SSL on a Web Server in the Reference section of this
guide.

Configure IPSec between Web
server and database server

See How To: Use IPSec to Provide Secure Communication Between Two
Servers"in the Reference section of this guide.

Analysis

• Integrated Windows authentication in IIS is ideal in this scenario because all ers are using Windows
2000 or later, Internet Explorer 5.x or later, and have accounts in Active Directory, which makes it possible to

ss computer boundaries.

OT marked as "Sensitive and cannot be delegated" in Active Directory. The
ust be marked as "Trusted for delegation" in Active Directory. For more

ation for Windows 2000

us

use the Kerberos authentication protocol (which supports delegation). This allows you to flow the security
context of the user acro

• End user accounts must be N
Web server computer account m
details, see How To: Implement Kerberos Deleg in the Reference section of this guide.

• ASP.NET on the Web server and application server runs with a least privileged local account (the local
ASP

 configured for Integrated Windows authentication.

ond to the network authentication challenge issued by IIS on the
downstream Web server. You must specify this explicitly by setting the Credentials property of the Web

lowing:

NET account), so potential damage from compromise is mitigated.

• The Web service and Web application are both configured for Windows authentication. IIS on both
computers is

• When making a call to the Web service from the Web application, no credentials are passed by default.
They are required in order to resp

service proxy as shown in the fol

• wsproxy.Credentials = CredentialCache.DefaultCredentials;

For more information about calling Web services with credentials, see Chapter 10, Web Services Security.

e Web application is config plication to the
iginal caller's security context and allow the Web service to authenticate (and
aller.

• .NET roles are used within the Web service to authorize the users based on the Windows group to which
ept, PayrollDept and Employees). Members of HRDept and PayrollDept can retrieve employee

ils for any employee, while me es group are authorized to retrieve only their own
tails.

• Th ured for impersonation. As a result, calls from the Web ap
Web service flow the or
authorize) the original c

they belong (HRD
deta
de

mbers of the Employe

Web methods can be anno
membership, as shown in
PrincipalPermissionAttr

tated w ecific role
the follo e used instead of
ibute. Th te types.

ith the PrincipalPermissionAttribute class to demand sp
wing code sample. Notice that PrincipalPermission can b

is is a common feature of all .NET attribu

 [WebMethod]

[PrincipalPermission(SecurityAction.Demand,

 Role= DomainName\HRDept)] @"

public DataSet Retrieve s() EmployeeDetail

{

}

The attribute shown in the preceding code means that only members of the DomainName\HRDept Windows
group are allowed to call the RetrieveEmployeeDetails method. If any nonmember attempts to call the

exception is thrown.

ASP.NET File Authorization (within the Web application and Web service) performs ACL checks against the
 a

es (ich an ISAPI mapping does not
ecked by IIS (again using the ACL attached to the file).

• Because the Web application i by the application itself
must be configured with an ACL that grants at least read access to the original caller.

mp
ing the ASP.NET proce .

This enables database connection
SQL Server 7.0 or earlier), this sc

• Windows authentication to SQL Server means you avoid storing credentials on the Web server and it also
means that credentials are not se

• SSL between the original calle .

• IPSec between the downstream Web server and database protects the data passed to and from the
database.

Pitfalls

• The use of a duplicated Windo t on the database server (one that matches the ASP.NET process
account) results in increased administration. Passwords should be manually updated and synchronized on a
periodic basis.

As an alternative, consider using least-privileged domain accounts. For more information about choosing an
ASP.NET process identity, see Cha

method, a security

•
caller for any file type for which
Aspnet_isapi.dll. Static file typ
exist are ch

 mapping exists in the IIS Metabase that maps the file type to
such as .jpg, .gif, .htm, and so on), for wh

s configured for impersonation, resources accessed

• The Web service does not i
database us

ersonate or delegate; therefore, it accesses local system resources and the
ss identity. As a result, all calls are made using the single process account

 pooling to be used. If the database doesn't support delegations (such as
enario is a good option.

nt across the network to the SQL Server computer.

r and Web server protects the data passed to and from the Web application

ws accoun

pter 9, ASP.NET Security.

• Because .NET role-based se
groups being set up at the c

cu
orrect

security privileges) who will acces

• Kerberos delegation is unrestr hich applications identities
run on the Web server. To raise th ccount's reach by
removing the account from Doma
more information, see Default Acce

rity is based on Windows group membership, this solution relies on Windows
 level of granularity to match the categories of users (sharing the same
s the application.

icted and as a result you must carefully control w
e bar on security, limit the scope of the domain a

in Users group and provide access only from appropriate computers. For
ss Control Settings white paper.

Q&A

• The database doesn't know ller is. How can I create an audit trail?

b

If you need to connect to non-SQL Ser ation, you must pass
database account credentials explicitly ing th f you do so, make sure that you securely store
the connection string.

For more information, see Storing Database Connection Strings Securely

 who the original ca

Audit end user activity within the We
access call.

Related scenarios

service or pass the identity of the user explicitly as a parameter of the data

ver databases, or you currently use SQL authentic
us e connection string. I

 within Chapter 12, "Data Access

ASP.NET to Remoting to SQL Server

ver that runs ASP.NET pages makes secure connections to a remote component on a
remote application server. The Web server communicates with the component by using .NET Remoting over the

nent .7.

Security."

In this scenario, a Web ser

HTTP channel. The remote compo is hosted by ASP.NET. This is shown in Figure 5

Figure 5.7. ASP.NET to remoting u to SQL Server

es of W

s

commun P channel.

• P.NET application calls the .NET remote component and passes the original caller's credentials for
cation. These are available from Basic authentication.

Secure the Scenario

In th
appli er name and password) from HTTP server
variables. It can then use them to connect to the application server that hosts the remote component, by

uring the remote component proxy. The database uses Windows authentication to authenticate against the
P.

the stored procedure parameters.

Tabl

sing .NET Remoting

Characteristics

• Users have various typ eb browser.

• The remote component is ho

• The Web application

ted by ASP.NET.

icates with the remote component using the HTT

 The AS
authenti

• The data is sensitive and therefore must be secured between processes and computers.

is scenario, the Web server that hosts the ASP.NET Web application authenticates the original callers. The Web
cation is able to retrieve the caller's authentication credentials (us

config
AS NET process identity (that is, the database trusts the remote component). The remote component in turn calls

database and passes the original caller's identity at the application level using

e 5.4. Security measures

Category Detail

Auth n from IIS (in addition to SSL).

Use Windows authentication from remote component (ASP.NET/IIS).

uthentication to connect to the database using a least

entication Authenticate users using Basic authenticatio

Use Windows a

privileged ASP.NET account.

Auth he Web server.

inal caller.

SP.NET (remote component) identity.

orization ACL checks against original caller on t

Role checks within the remote component against orig

Database permissions against the A

Secu and the Web application and

server and the database using

re Communication Secure sensitive data sent between the users
remote objects hosted in IIS using SSL.

Secure sensitive data sent between the Web
IPSec.

The Result

Figure 5.8 shows the recommended security configuration for this scenario.

Figure .8. The recommended security configuration for the ASP.NET to remote Web Service to SQL
er intranet scenario

5
Serv

 Configuration Steps

Before you begin, you'll want to see the following:

•

Security

Creating a least privileged database account (see Chapter 12, Data Access Security)

• Configuring SSL on a Web server (see How To: Set Up SSL on a Web Server in the Reference section of
this guide)

Configuring IPSec (see • vide Secure Communication Between Two ServersHow To: Use IPSec to Pro in the
Reference section of this guide)

Configuring the Web server

Configure IIS

Step More Information

Disable Anonymous access for your
Web application's virtual root

directory

Enable Basic authentication
 Basic authentication credentials. Use SSL to protect the

Configure ASP.NET

Step More Information

Configure your ASP.NET Web
application to use Windows

Edit Web.config in your application's virtual direc
Set the <authentication> element to:

authentication

tory root

<authentication mode="Windows" />

Configure the application server

Co re IIS nfigu

Step More Information

Disable Anonymous access for your
Web application's virtual root
directory

Enable Integ

rated Windows
authentication

Configure ASP.NET

Step More Information

Co e your remote component Edit Web.config innfigur your remote component's virtual directory root
(within ASP.NET) to use Windows
authentication

Set the <authentication> element to:

<authentication mode="Windows" />

Change the ASPNET password to a
known value

ASPNET is a least privileged local account used by default to run ASP.NET
Web applications (and in this case the remote component host process)

Set the ASPNET account's password to a know value by u

.

sing Local Users
and Groups.

and reconfigure the password attribute on the <processModel> element
Default

Edit Machine.config located in %windir%\Microsoft.NET\Framework\
v1.0.3705\CONFIG

<!-- userName="machine" password="AutoGenerate"

 -- >

Becomes

<!-- userName="machine"

 password="YourNewStrongPassword" -- >

Make sure impersonation is off Impersonation is off by default; however, double check to ensure that its
turned off in web.config, as shown below:

<identity impersonate="false" />

t. The same effect can be achieved by removing the <identity> elemen

Configure SQL Server

Step More Information

Create a Windows account on your

 A
to ru

The user name and password must match your custom ASP.NET account.

b

SQL Server computer that matches
the SP.NET process account used

n the Web service

Give the account the following privileges:

• Access this computer from the network

• Deny logon locally

• Log on as a batch jo

Configure SQL Server for Windows
authentication

Create a SQL Server Login for your
custom ASP.NET account

This grants access to the SQL Server

Create a new database user and This grants access to the specified database
map the login name to the database
user

Create a new database user role and
add the database user to the role

Esta
the

blish database permissions for
database user role

Grant minimum permissions

Configuring secure communication

Step More Information

Configure the Web site on the Web
server for SSL

See How To: Set Up SSL on a Web Server in the Reference section of this
guide.

Co e the Web site on the See nfigur
licatio

Set Up SSL on a Web Server
app n server for SSL

How To: in the Reference section of this
guide.

Configur
server and database server

e IPSec between application See How To: Use IPSec to Provide Secure Communication Between Two
Servers in the Reference section of this guide."

Ana

Use of the ASPNET local account (duplicated on the SQL Server computer) further reduces the potential
licated Windows account on the database server allows the remote component to run with

 on the application server.

ion to

To call the remote component using the caller's credentials, the Web application configures the remote
 the following code fragment.

lysis

• ASP.NET on the Web server and application sever is running as a least privileged local account, so
potential damage from compromise is mitigated. The default ASPNET account is used in both cases.

security risk. A dup
a least privilege ASP.NET account

• Basic authentication at the Web server allows the user's credentials to be used by the Web applicat
respond to Windows authentication challenges from the application server.

component proxy as shown in

string pwd = Request.S ariables["AUTH_PASSWORD"]; erverV

string uid = Request.ServerVariables["AUTH_USER"];

IDictionary channelProperties =

 ChannelServices.GetChannelSinkProperties(proxy);

NetworkCredential credentials;

credentials = new NetworkCredential(uid, pwd);

ObjRef objectReference = RemotingServices.Marshal(proxy);

Uri objectUri = new Uri(objectReference.URI);

CredentialCache credCache = new CredentialCache();

credCache.Add(objectUri, "Negotiate", credentials);

channelProperties["credentials"] = credCache;

channelProperties["preauthenticate"] = true;

For more information about flowing security credentials to a remote component, see Chapter 11, .NET
Remoting Security.

• Impersonation is not enabled within the ASP.NET Web application, because the remoting proxy is
specifically configured using the user's credentials obtained by Basic authentication. Any other resource
accessed by the Web application uses the security context provided by the ASP.NET process account.

• SSL between the user and Web server protects the data passed to and from the Web server and also
protects the Basic credentials passed in clear text during the authentication process.

• Integrated Windows authentication at the application server provides .NET role checks against the original
caller. The roles correspond to Windows groups.

Role-based checks can be performed, even without impersonation.

• ASP.NET File Authorization performs ACL checks against the caller for any file type for which a mapping
ic files

• Because impersonation is not enabled on the application server, any local or remote resource access
mponent does so using the ASPNET security context. ACLs should be set

• Windows authentication to SQL Server means you avoid storing credentials on the application server and
it al

Pitf

• se of a duplicated Windows account on the database server (one that matches the ASP.NET process
accou d synchronized on a
peri

indows
groups being

exists in the IIS Metabase that maps the file type to aspnet_isapi.dll. IIS performs access checks for stat
(not mapped to an ISAPI extension within IIS).

performed by the remote co
accordingly.

so means that credentials are not sent across the network to the SQL Server computer.

alls

The u
nt) results in increased administration. Passwords should be manually updated an

odic basis.

• Because .NET role-based security is based on Windows group membership, this solution relies on W
set up at the correct level of granularity to match the categories of users (sharing the same

security privileges) who will access the application.

Related scenarios

The Web server uses
securit

Kerberos to authen egation is used to flow the original caller's
y context across to the remote cation server.

 user accounts be configured for delegation. The Web application would also be
for impersonation and would use DefaultCredentials to configure the remote component proxy. This

technique is discussed further in the Flowing the Original Caller

ticate callers. Kerberos del
component on the appli

This approach requires that all
configured

 section of Chapter 11, ".NET Remoting Security."

nal Caller to the Database

The scenarios discussed earlier have used the trusted subsystem model and in all cases the database has trusted
to orrectly authenticate and authorize users. While the trusted subsystem

many advantages, some scenarios (perhaps for auditing reasons) may require you to use the
tion/delegation model and fl 's security context across computer boundaries all the

 the database.

 need to flow the original caller to the database include:

• You need granular access in t t. Specific users or
groups can read, while others can

This is in contrast to less granular task-based authorization, where role membership determines read and
ic objec

• You may want to use the auditing capabilities of the platform, rather than flow identity and perform
auditing at the application level.

If you do choose an impersonation/delegation model (or are required to do so due to corporate security policy) and
ugh
d

ase co

This section shows you how to implem ication
scenarios:

• ASP.NET to SQL Server

ce

on about the trusted sub tion models and their relative merits,
see Chapter 3, Authentication and Aut

Flowing the Origi

the application server or Web server
model offers

 c

impersona
way to

ow the original caller

Typical reasons why you may

he database and permissions are restricted by objec
 write to individual objects.

write capabilities for specif ts.

flow the original caller's context thro
delegation and network access in min
shared resources (such as datab
scalability.

the tiers of your application to the back end, you must design with
 (which is nontrivial when spanning multiple computers). The pooling of
nnections) also becomes a key issue and can significantly reduce application

ent the impersonation/delegation for two of the most common appl

• ASP.NET to Enterprise Servi

For more informati

s to SQL Server

system and impersonation/delega
horization.

ASP.NET to SQL Server

In this scenario, calls to the database urity context of the original caller. Authentication
options described in this section includ os delegation
scenario is described within the "ASP.N

 W b server

gs for Basic authentication enable you to flow the original caller all the way to the
se.

are made using the sec
e Basic and Integrated Windows authentication. A Kerber
ET to Enterprise Services to SQL Server" section.

Using basic authentication at the

The following configuration settin

e

databa

Table 5.5. Security measures

Category Detail

Authentication A using Basic authentication from IIS.

U tication within ASP.NET.

uthenticate users by

se Windows authen

Turn on impersonation in ASP.NET.

Use Windows authentication to communicate with SQL Server.

Authorization U

I he original callers are mapped to Windows groups (based on application
requirements, for example, Managers, Tellers, and so on) then you can use
.N

se ACL checks against the original caller on the Web server.

f t

ET role checks against the original caller to restrict access to methods.

Secure Communication S the
d

T cure all sensitive data sent between the Web application and database,
use IPSec.

ecure the clear text credentials sent between the Web server and
atabase by using SSL.

o se

With this approach, it's important to n

• Basic authentication prompts which they can type credentials (user
name and password).

• The database must recognize omains,
appropriate trust relationships must be enabled to allow it to authenticate the original caller.

ent

Integrated Windows authentication resu or Kerberos authentication and is dependent upon the
client and server computer configurati

NTLM authentication does not support llow you to flow the original caller's
security context from the Web server single network hop allowed for NTLM
authentication is used between the bro cation, the SQL Server must be
installed on the Web server, which is li tranet applications.

ces

 pag ise Services
 a databas ws all the way from the

browser to the database. This is s

ote the following points:

the user with a pop-up dialog box into

 the original caller. If the Web server and database are in different d

Using integrated Windows auth ication at the Web server

lts in either NTLM
ons.

 delegation and as a result does not a
to a physically remote database. The
wser and Web server. To use NTLM authenti
kely to be appropriate only for very small in

ASP.NET to Enterprise Servi

• In this scenario, ASP.NET
application that in turn talk to

 to SQL Server

es call business components hosted in a remote Enterpr
e. The original caller's security context flo

hown in Figure 5.9.

Figure 5.9. ASP.NET calls a com

Characteristics

• Users have Internet Explorer

• All computers are Windows 2

• User accounts are maintained

• The application flows the orig the
database.

ponent within Enterprise Services, which calls the database

5.x or later.

000 or later.

 in Active Directory within a single forest.

inal caller's security context (at the operating system level) all the way to

• All tiers use Windows authent

• Domain user accounts are configured for delegation and the account used to run the Enterprise Services

o, the Web server authen st then configure ASP.NET for impersonation in
r

ation, compo
CoImpersonateClient) in order to ensure the caller's context flows to the database.

rity measures

ication.

application must be marked as "T

Secure the scenario

In this scenari

rusted for delegation" within Active Directory.

ticates the caller. You mu
order to flow the original caller's secu
Enterprise Services applic

ity context to the remote Enterprise Services application. Within the
nent code must explicitly impersonate the caller (using

Table 5.6. Secu

Category Detail

Authentication All tiers support Kerberos authentication (the Web server, the application
server, and database server).

Authorization A
(
uthorization checks are performed in the middle tier with Enterprise Services
COM+) roles against the original caller's identity.

Secure Communication S server to secure sensitive
data.

R encryption) is used between ASP.NET and the
s lication.

IPSec is used between the serviced components and the database.

SL is used between the browser and the Web

PC Packet Privacy (providing
erviced components within the remote Enterprise Services app

Th Result

re 5.10 shows the recommended security configuration for this scenario.

e

Figu

Fig 0. ASPure 5.1 .NET calls a component within Enterprise Services, which calls the database. The
original caller's security context flows to the database.

Security c

fore you in, you should be aware of the following configuration issues:

onfiguration steps

Be beg

•

The Enterprise Services process account must be marked "Trusted for delegation" in Active Directory and
end user accounts must not be marked "Sensitive and cannot be delegated." For more information, see How
To: Implement Kerberos Delegation for Windows 2000 in the Reference section of this guide.

• ust be in the Active Directory and must be part of a single forest.

Th 2000 SP3.

• If you are using Internet Explorer 6.0 on Windows 2000, it defaults to NTLM authentication instead of the
requir Kerberos delegation, see article Q299838, Can't Negotiate

• Windows 2000 or later is required on all computers. This includes client (browser) computers and all
servers.

All computers m

• e application server that hosts Enterprise Services must be running Windows

ed Kerberos authentication. To enable
Kerbe ternet Explorer ros Authentication After Upgrading to In 6, in the Microsoft Knowledge Base.

Co igure the Web Server (IIS) nf

Step More Information

Disable Anonymous access for your
Web application's virtual root

Enab
auth

directory

le Windows Integrated
entication

Configure the Web Server
(ASP.NET)

Step More Information

Con
appl
authentication Set the <authentication> element to:

figure your ASP.NET Web
ication to use Windows

Edit Web.config in your Web application's virtual directory root

<authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application's virtual directory
application for impersonation

Set the <identity> element to:

<identity impersonate="true" />

Configure the DCOM impersonation
level used by the ASP.NET Web
application for outgoing calls

The ASP.NET Web application calls the remote serviced components over
DCOM. The default impersonation level used for outgoing calls from ASP.NET
is Impersonate. This must be changed to Delegate in Machine.config.

Edit Machine.config, locate the <processModel> element, and set the
comImpersonateLevel attribute to "Delegate" as shown below.

<processModel comImpersonationLevel="Delegate"

Configure the DCOM authentication
level at the client

DCOM authentication levels are determined by both client and server. The
DCOM client in this case is ASP.NET.

Edit Machine.config, locate the <processModel> element and set the
comAuthenitcationLevel attribute to "PktPrivacy" as shown below.

<processModel

 comAuthenticationLevel="PktPrivacy"

Configure Serviced Components
(and the Application Server)

Step More Information

Managed class(es) must inherit from
onent class

See article Q306296, HOW TO: Create a Serviced .NET Component in Visual
the ServicedComp C# .NET, in the Microsoft Knowledge Base.

Add code to the serviced component
ate the caller by calling

()and
CoRevertToSelf()APIs from

resources (for example, a database)

Add references to OLE32.DLL:
to imperson
the CoImpersonateClient

OLE32.DLL before accessing remote

in order for the caller's context to be
used. By default, the Enterprise
Services process context is used for
outgoing calls.

class COMSec

{

[DllImport("OLE32.DLL", CharSet=CharSet.Auto)]

public static extern long CoImpersonateClient();

[DllImport("OLE32.DLL", CharSet=CharSet.Auto)]

public static extern long CoRevertToSelf();

}

Call these external functions before calling remote resources:

COMSec.CoImpersonateClient();

COMSec.CoRevertToSelf();

For more information, see Chapter 9, Enterprise Services Security.

Configure the Enterprise Services This can be configured using the Component Services tool, or via the
following .NET attribute placed in the service component assembly. application as a server application

[assembly:

 ApplicationActivation

 (ActivationOption.Server)]

Configure the Enterprise Services
application to use packet privacy
authentication (to provide secure

Add the following .NET attribute to the serviced component assembly.

communication with encryption)
[assembly: ApplicationAccessControl(

 Authentication =

 AuthenticationOption.Privacy)]

Co e the Enterprise Services
appl n for component level role-

To configure role checks at the proce
interfaces and classes) use the follow

nfigur
icatio

ss and component level (including
ing attribute.

based security

[assembly:

 ApplicationAccessControl(AccessChecksLevel=

 AccessChecksLevelOption. ApplicationComponent)]

Decorate classes with the following attribute:

[ComponentAccessControl(true)]

 interface and method level role
checks, see Configuring Security
For more information about configuring

 in Chapter 9, "Enterprise Services
Security."

Create a custom account for running
Enterprise Services and mark it as
Trusted for de

The Enterprise Services application needs to run as domain account marke
as Trusted for Delegation in Active Directory. For more information, see

legation in Active
Directory

d
How

To: Implement Kerberos Delegation for Windows 2000 in the Reference
section of this guide.

Configure Enterprise Services to run
as your custom account

This must be configured using the Component Services tool or script. You
cannot use .NET attributes within the serviced component assembly.

Configure the Database Server
(SQL Server)

Step More Information

Configure SQL Server for Windows
ion

authenticat

Create SQL Ser
Windows groups t

ver Logins for th
hat the users

belong to.
u

e This grants access to the SQL Server.
The access control policy treats Windows groups as roles. For example, yo
may have groups such as Employees, HRDept and PayrollDept.

Create new database users for each
SQL Server login

This grants access to the specified database.

Establish database permissions
the database users For more information, see Chapter 12, Data Access Security

 for Grant minimum permissions
.

Analysis

• The key to flowing the ntext is Kerberos authentication, which generates a
delegate-level token. After y
other process, running und
does not matter whether th s is running as a local or domain account. It does matter what IIS
is running as. If it's running as something other than LocalSystem, the account it is running under needs to
be marked as "Trusted for delegation" in Active Directory.

nning as LocalSystem, the computer account must be marked as "Trusted for delegation". For
 2000

 original caller's security co
 the server process (IIS) receives the delegate-level token, it can pass it to an
er any account on the same computer, without changing its delegation level. It
e worker proces

If IIS is ru
more information, see How To: Implement Kerberos Delegation for Windows in the Reference section of

• Integrated Windows authentication (with Kerberos) in IIS is ideal in this scenario because all users have
Windows accounts and they are using Internet Explorer 5.x or later. The benefit of Integrated Windows
authentication is that the user's password is never sent over the wire. Additionally, the logon will be
transparent because Windows will use the current interactive user's logon session.

• ASP.NET constructs a WindowsPrincipal object and attaches it to the current Web request context
(HttpContext.User). If you need to perform authorization checks within the Web application you can use the
following code.

this guide.

• WindowsPrincipal wp = (HttpContext.Current.User as

• WindowsPrincipal);

• if (wp.IsInRole("Manager"))

• {

• // User is authorized to perform manager-specific functionality

• }

The ASP.NET FileAuthorizationModule provides ACL checks against the original caller for ASP.NET file types
that are mapped within IIS to the Aspnet_isapi.dll. For static file types such as .jpg, .gif and .htm files, IIS
acts as the gatekeeper and performs access checks using the original caller's identity.

• By using Windows authentication to SQL, you avoid storing credentials in files on the application server
and avoid passing them across the network. For example include the Trusted_Connection attribute in the
connection string:

• ConStr="server=YourServer; database=yourdatabase;

• Trusted_Connection=Yes;"

tiers, which makes auditing extremely easy. You can use
platform-level auditing (for example, auditing features provided by Windows and SQL Server).

Pitf

neg

• The original caller's context flows across all

alls

• If you are using Internet Explorer 6.0 on Windows 2000, the default authentication mechanism that is
otiated is NTLM (and not Kerberos). For more information, see article Q299838, Can't Negotiate Kerberos

Authentication After Upgrading to Internet Explorer 6, in the Microsoft Knowledge Base.

el. You cannot take advantage of connection pooling to the database,
becau

.

Sum

This chapter has described how to secure a set of common intranet application scenarios.

• Delegating users across tiers is expensive in terms of performance and application scalability compared to
using the trusted subsystem mod

se connections to the database are tied to original caller's security context and therefore cannot be
efficiently pooled.

• This approach also relies on the granularity of Windows groups matching your application's security needs
That is, Windows groups must be set up at the correct level of granularity to match the categories of users
(sharing the same security privileges) who access the application.

mary

For Extranet and Internet application scenarios, see Chapter 6, Extranet Security and Chapter 7, Internet Security.

Ext

J.D.
Micr

November 2002

 Microsoft® ASP.NET

ranet Security

Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
osoft Corporation

Applies to:

See the Landing Page for the starting

e
e ns are also

ation

Contents

Exposing a Web Service

point and a complete overview of Building Secure ASP.NET Applications.

Summary: This chapter describes how to secure co
characteristics of each scenario and d
included to provide further inform

mmon extranet application scenarios. It presents th
scribes the steps necessary to secure the scenario. Analysis sectio
. (14 printed pages)

Exposing a Web Application
Summary

Extranet applications are those that share resources or applications across two different companies or divisions.
ed over the Internet. One of the main challenges associated with extranet

s developing an authentication approach that both parties agree to. Your choices may be limited in
this respect because you may need to interoperate with existing authentication mechanisms.

 s

l over user ac

• You may have a higher level ccounts, compared to applications that have Internet
users.

The scenarios presented in this chapte uthentication, authorization, and
secure communication techniques include:

xposing a Web Service

Exposing a Web Application

Consider a business-to-business partner exchange scenario where a publisher company publishes and sells its
services over the Internet. It exposes eb service. Users within
each partner company access the Web cation. This scenario is
shown in Figure 6.1.

The applications and resources are expos
applications i

Extranet applications generally share ome common characteristics:

• You have tighter contro counts, compared to Internet scenarios.

of trust for the user a

r that are used to illustrate recommended a

• E

•

Exposing a Web Service

information to selected partner companies using a W
 service using an Intranet-based internal Web appli

Figure 6.1. Extranet Web service business-to-business partner exchange

Characteristics

This scenario has the following characteristics:

• The publisher company expos

• Partner company (not individu her
to authorize access to resources. t need to know about the user's individual logins in the
partner company.

• Client certificates are mapped Directory® directory service accounts within the publisher
company.

• The extranet contains a separ al) corporate Active Directory. The
extranet Active Directory is in a s

• Web service authorization is b te
authorization decisions based on partner company identity (represented by separate Active Directory accounts
per company).

The database is accessed by a sing ction that corresponds to the ASP.NET Web service
ocess identity.

e W
n

In this scenario, each partner company intern trieves data from the publisher company
through the Web service and then pres ts the re users. The publisher requires a secure
mechanism to authenticate partner companies, individual users within partner companies is
not relevant.

ta sent between the two companies over the Internet, it must be secured
 in transit.

mits only inbound connections from the IP address of extranet partner companies is used to
prevent other unauthorized Internet users from opening network connections to the Web service server.

es a Web service over the Internet.

al user) credentials (X.509 client certificates) are validated by the publis
The publisher does no

 to Active

ate Active Directory from the (intern
eparate forest, which provides a separate trust boundary.

ased on the mapped Active Directory account. You can use separa

•
pr

le trusted conne

• The data retrieved from th
the publisher company and exter

Secure the Scenario

eb service is sensitive and must be secured while in transit (internally within
ally while flowing over the Internet).

's al Web application re
en trieved data to its

 although the identity of

Due to the sensitive nature of the da
using SSL while

A firewall that per

Table 6.1. Security measures

Category Detail

Authentication Partner applications use client certificates with each request to the Web service.

t anies are mapped to individual Active Directory
accoun

t® Windows® authentication is used at the database. The ASP.NET Web
rocess identity is used to connect. The database trusts the Web service.

Clien certificates from partner comp
ts.

Microsof
service p

Authorization The W
Active y accounts are members of a Partner group.

eb service uses .NET role-based authorization to check that authenticated
Director

Secure Communication SSL is nd
publish

IPSec is used to secure all communication between the Web service and the
database.

used to secure the communication between the partner Web application a
er's Web service.

The

Figure 6.2 shows the recommended security configuration for this scenario.

 Result

Figure 6.2
exchange

. The recommended security configuration for the Web service business-to-business partner
 scenario

Befo following:

Security Configuration Steps

re you begin, you'll want to see the

• Creating custom ASP.NET accounts (see How To: Create a Custom Account to Run ASP.NET in the
Reference section of this guide)

Creating a least privileged da• tabase account (see Chapter 12, Data Access Security)

Configuring SSL on a Web server (see How To: Set Up SSL on a Web Server• in the Reference section of
this guide)

rs• Configuring IPSec (see How To: Use IPSec to Provide Secure Communication Between Two Serve in the

• nable IPSec Traffic Through a Firewall

Reference section of this guide)

Configuring IPSec through firewalls (see article Q233256, How to E ,
in the Microsoft Knowledge Base).

Calling a Web service using SSL (see How To: Call a Web Service Using SSL• in the Reference section of

ment and the infrastructure is beyond the scope of this topic, for more
information search for Certificates and Authenticode

this guide); this solution technique is required within the partner company

• The discussion of certificate manage
 on Microsoft TechNet.

t go into details about the partner application and its security configuration. However, the
s to be considered to facilitate communication between the partner application and Web

plication can choose an authentication mechanism that allows it to
authenticate and authorize its internal users. Those users are not passed to the Web service for further

ervice. Users cannot
directly call the Web service.

• The partner company's Web application uses a client certificate to prove its identity to the Web service.

Configuring the partner application

This chapter does no
following points need
service:

• The partner company's Web ap

authentication.

• The partner company's Web application makes calls on behalf of its user to the Web s

• If the partner application is an ASP.NET Web application, then it must use an intermediate out of process
component (an Enterprise Services application or Windows service) to load the certificate and forward it to the

ssary and the steps to achieve this, see How to call a Web service

Web service.

For more information about why this is nece
using client certificates from ASP.NET in the Reference section of this guide.

nfCo iguring the extranet Web server

Configure IIS

St ep More Information

Disab

Enab ntication for

v

entication settings, use the IIS MMC snap-in. Select

Click the Directory Security tab, and then click Edit within the

See How To: Set Up SSL on a Web Server

le Anonymous access for the To work with IIS auth
Web service's virtual root directory.

le certificate Authe

your application's virtual directory, right-click and then click Properties.

your Web application's and Web
ser ice's virtual root.

Anonymous access and authentication control group.

 in the Reference section of this

See How To: Call a Web Service Using Client Certificates from ASP.NET

guide.

 in
the Reference section of this guide.

Configure Active Directory
(Extranet)

Step More Information

Set up Active Directory accounts t
represent partner companies

o A separate extranet Active Directory is used. This is located in its own
forest, and is completely separate from the corporate Active Directory.

Configure certificate mapping he Step-by-Step Guide to Mapping Certificates to User AccountsSee t on
soft TechNet.

in

Micro

Also see article Q313070, HOW TO: Configure Client Certificate Mappings
IIS 5.0, in the Microsoft Knowledge Base.

Configure ASP.NET (Web
service)

Step More Information

Configure the ASP.NET Web ser
to use Windows authentication ion> element to:

vice Edit Web.config in the Web service's virtual root directory
Set the <authenticat

<authentication mode="Windows" />

Reset the password of the ASPN
account (used to run ASP.NET) to a
known strong password

 allows you to create a duplicate local account (with the same username
and password) on the database server. This is required to allow the ASPNET
account to respond to network authentication challenges from the database
server when it connects using Windows authentication.

ivileged domain account (if Windows
e firewall).

For more information, see Process Identity for ASP.NET

ET This

An alternative here is to use a least pr
authentication is permitted through th

 in Chapter 8,
"ASP.NET Security."

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes on the

<processModel> element

Default

<!-- userName="machine" password="AutoGenerate"

 -- >

Becomes

<!-- userName="machine"

 password="YourStrongPassword" -- >

Configuring SQL Server

Step More Information

Create a Windows account on the
computer running Microsoft SQL
Server™ that matches the ASP.NET
process account used to run the

The user name and password must match your ASP.NET process account.

Give the account the following privileges

Deny logon locally

Log on as a batch job

Web service (by default ASPNET) • Access this computer from the network

:

•

•

Configure SQL Server for Windows
authentication

Create a SQL Server Login for the
ASPNET account

This grants access to the SQL Server.

Create a new database user and
map the login name to the database
user

This grants access to the specified database.

Create a new user-defined data
role within th

base
e database and place

the database user into the role

Establish database permissions for Grant minimum permissions
the database role See Chapter 12, Data Access Security.

Configuring secure communication

Step More Information

Configure the Web site on the W
server for SSL

eb See How To: Set Up SSL on a Web Server in the Reference section of this
guide.

Configure IPSec between Web
server and database server

See How To: Use IPSec to Provide Secure Communication Between Two
Servers in the Reference section of this guide.

Analysis

• ASP.NET on the Web server is running as a least privileged local account (the default ASPNET account), so
potential damage from compromise is mitigated.

• The ASP.NET Web application ion and
perform authorization to determin

• The ASP.NET Web application prise Services
application to retrieve client certificates and make calls to the Web service.

• The publisher company uses
certificate mapping within IIS.

• The Web service uses the ma o perform authorization, using
PrincipalPermission demands a

• Windows authentication to SQ it also
means that credentials are not se e SQL
authentication, it is important to s connection string (containing a user name and password) within
the application and as it is passed a e network. Use DPAPI or one of the alternative secure storage
strategies discussed in Chapter 12

s within the partner companies use Windows Integrated authenticat
e who can access the Web service.

 within the partner company uses an intermediate Enter

the partner organization name (contained in the certificate) to perform

pped Active Directory account t
nd .NET role checks.

L Server means you avoid storing credentials on the Web server and
nt across the internal network to the SQL Server computer. If you us
ecure the

cross th
, Data Access Security, to store connection strings and use IPSec to prote

ve application data) as it is passed between the Web service and database
ct

the connection string (and sensiti .

• SSL between partner compan eb service protects the data passed across the Internet.

• IPSec between the Web service and da se protects the data passed to and from the database on the
corporate network. In some scena the partner and publisher communicate over a private network, it
may be possible to use IPSec for machi mmunication.

Pitfalls

• The use of a duplicated local Windows account on the database server (one that matches the ASP.NET
process account local to IIS) results in increased administration. Passwords must be manually updated and

odic basis.

Because .NET role-based secu ows group membership, this solution relies on Windows
groups being set up at the correct level of granularity to match the categories of users (sharing the same

ces

• The database doesn't know ho th . How can I create an audit trail?

Audit end user (partner company) tivity Pass the partner company identity at the
application level to the database using stored procedure parameters.

rios

sh f magazines, newspapers, and so on.
he publisher can provide a unique username and password for each partner to connect with to

's Web site is configured to authenticate users with Basic authentication. The
r application uses the username and password to explicitly set the credentials for the Web service proxy.

For more information about configuring Web service proxies, see Chapter 10, Web Services Security

ies and W

taba
rios where

ne authentication in addition to secure co

synchronized on a peri

• rity is based on Wind

security privileges) who will ac
member of a Partner group.

Q&A

s the application. In this scenario, Active Directory accounts must be a

 w e original caller is

 ac within the Web service.

Related scena

The publisher company might publi
In this scenario, t

non-sensitive data such as soft copies o

retrieve the data from the Web service.

In this related scenario, the publisher
partne

More information

.

eb Application

In this scenario the publisher company gives its partners exclusive access to its application over the Internet and
r example, to sell services, keep partners updated with product

ation, and provide online collabo scenario is shown in Figure 6.3.

Exposing a W

provides a partner-portal application; fo
inform ration and so on. This

Fig l scenario ure 6.3. Partner porta

s

This

• in

Th Active Directory within the extranet perimeter network
(also k subnet). The extranet Active Directory is in a separate
forest,

• Th ection that corresponds to the ASP.NET Web application
proces

• Web application authorization is based on either a GenericPrincipal object (created as part of the Forms
authen cipal object (if Basic authentication is used).

• The data retrieved from the Web application is sensitive and must be secured while in transit (internally
within rnally while flowing over the Internet).

cure th

e to the s the data sent between the two companies over the Internet, it must be secured
ng SSL

A bound connections from the IP address of extranet partner companies is
used to ternet users from opening network connections to the Web server.

Tabl

Scenario Characteristic

 scenario has the following characteristics:

The partner Web application accepts credentials either by using a Forms login page or it presents a log
dialog using Basic authentication in IIS.

• e credentials are validated against a separate
nown as DMZ, demilitarized zone, and screened
 which provides a separate trust boundary.

e database is accessed by a single trusted conn
s identity.

tication process) or a WindowsPrin

 the publisher company and exte

Se e Scenario

Du ensitive nature of
usi while in transit.

• firewall that permits only in
 prevent other unauthorized In

e 6.2. Security measures

Category Detail

Auth n using
either Basic or Forms authentication against the extranet Active Directory.

Windows authentication is used at the database. The ASP.NET Web application
process identity is used to connect. The database trusts the Web application.

entication Users within partner companies are authenticated by the Web applicatio

Au The Web application uses .NET role-based authorization to check that the
authenticated user (represented by either a GenericPrincipal object or a
WindowsPrincipal object, for Forms and Basic authentication respectively) is a
member of a Partner group.

thorization

Se re Communication SSL is used to secure the communication between the partner Web browser an
publisher's Web application.

cu d

IPSec is used to secure all communication between the Web application and the
database.

The Result

re 6.4 shows the recoFigu mmended security configuration for this scenario.

Figure 6.4. The recommended security configuration for the partner portal scenario

Configuring the extranet Web server

Co re IIS nfigu

Step More Information

To orms authentication, enable
nymous access for the Web

 use F
Ano
application's virtual root directory

uthentication, disable

authentication

—or—
To use Basic a
Anonymous access and select Basic

Configure Active Directory
(Extranet)

Step More Information

Set up Active Directory accounts to
represent partner users

A separate extranet Active Directory is used. This is located in its own forest
and is completely separate from the corporate Active Directory.

Configure ASP.NET

Step More Information

Configure the ASP.NET Web
application to use Windows
authentication (for IIS Basic)
—or—
Configure ASP.NET to use Forms
authentication

Edit Web.config in the Web service's virtual root directory

Set the <authentication> element to either:

<authentication mode="Windows" />

—or—
<authentication mode="Forms" />

Reset the password of the ASPNET
SP.NET) to a

known strong password

This allows you to create a duplicate local account (with the same user name
and password) on the database server. This is required to enable the
ASPNET account to respond to network authentication challenges from the

nects using Windows authentication.

An alternative here is to use a least privileged domain account (if Windows
authentication is permitted through the firewall).

For more information, see "Process Identity for ASP.NET

account (used to run A

database server, when it con

" in Chapter 8,
ASP.NET Security.

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set your custom account username and password attributes on the
<processModel> element
Default

<!-- userName="machine" password="AutoGenerate"

 -->

Becomes

<!-- userName="machine"

 password="YourStrongPassword" -->

Configuring SQL Server

Step More Information

Create a W

P.NET process account used

The user name and password must match your ASP.NET process account.

e following privileges:

• Access this computer from the network

batch job

indows account on the
SQL Server computer that matches

Give the account ththe AS
to run the Web service (by default
ASPNET)

• Deny logon locally

• Log on as a

Co e SQL Server for Windows nfigur
entication auth

Create a SQL Server Login for the
ASPNET account

This grants access to the SQL Server.

Create a new database user and
p the se
r

This grants access to the specified database.
ma login name to the databa
use

Cre new user-defined database ate a
role within the database and place
the database user into the role

Establish database permissions for
the database role

Grant minimum permissions
See Chapter 12, Data Access Security.

Configuring secure communication

St p e More Information

Configure the Web site on the Web See
server for SSL

How To: Set Up SSL on a Web Server in the Reference section of this
guide.

Configure IPSec between Web See How To: Use IPSec to Provide Secure Communication Between Two
server and database server Servers in the Reference section of this guide.

An is alys

, so
pote

Forms or Basic authentication credentials
(bot

n

• ial logon page to encrypt the credentials passed for authentication, you
shou cause it is
passe entication
ticke

lass to encrypt the ticket.

• ASP.NET on the Web server is running as a least privileged local account (the default ASPNET account)
ntial damage from compromise is mitigated.

• SSL is used between browser and Web application to protect the
h passed in clear text, although Basic uses Base64 encoding). SSL also protects the application-specific

data returned from the Web application.

• For Forms authentication, SSL is used on all pages (not just the logon page) to protect the authenticatio
cookie passed on all subsequent Web requests after the initial authentication.

If SSL is used only on the init
ld ensure that the Forms authentication ticket (contained within a cookie) is protected, be
d between client and server on each subsequent Web request. To encrypt the Forms auth

t, configure the protection attribute of the <forms> element as shown below and use the Encrypt
method of the FormsAuthentication c

• <authentication mode="Forms">

• <forms name="MyAppFormsAuth"

• loginUrl="login.aspx"

• protection="All"

• timeout="20"

• path="/" >

• </forms>

• </authentication>

The protection="All" attribute he application calls FormsAuthentication.Encrypt, the
ticket should be validated (integrit
authentication ticket, typically w

specifies that when t
y checked) and encrypted. Call this method when you create the

ithin the application's Login button event handler.

string encryptedTicket = FormsAuthentication.Encrypt(authTicket);

information about FormFor more s authentication and ticket encryption, see Chapter 8, ASP.NET Security.

• Similarly, SSL is used on all
Web page requests and not just the initial one where the Basic credentials are supplied by the user.

ntication, AS
ssociat

.NET authorization including PrincipalPer demands and .NET roles.

• For Forms authentication, yo validate the supplied credentials against Active
Directory and construct a GenericPrincipal to represent the authenticated user.

pages for Basic authentication because the Basic credentials are passed on all

• For Basic authe
authenticated caller and a

P.NET automatically creates a WindowsPrincipal object to represent the
es it with the current Web request (HttpContext.User) where it is used by

mission

u must develop code to

• Windows authentication to SQL Server means you avoid storing credentials on the Web server and it also
QL Server computer.

• IPSec between the Web service and database protects the data passed to and from the database on the
corporate network.

Pitfalls

• The use of a duplicated local Windows account on the database server (one that matches the ASP.NET
process account local to IIS) results in increased administration. Passwords must be manually updated and
synchronized on a periodic basis.

• Basic authentication results in a pop-up dialog within the browser. To provide a more seamless logon
experience, use Forms authentication.

Related scenarios

pplication can be built to require no connectivity back into the corporate

• A separate SQL Server database is located in the extranet and replication of data occurs from the internal
data

• Routers are used to refuse connections from the extranet to the corporate network. Connections can be
esta

as strong auditing and logging and through which users must authenticate before accessing the

extranet.

Mor

lowing Microsoft Te et

means that credentials are not sent across the internal network to the S

No connectivity from extranet to corporate network

For additional security, the extranet a
network. In this scenario:

base to the extranet database.

blished the other way using specific high ports.

• Connections from the corporate network to the extranet should always be performed through a dedicated
server that h

e information

• See the fol chN articles:

 Deploying SharePoint ironment• Portal Server in an Extranet Env

 u• For more information about sing Forms authentication with Active Directory, see How To: Use Forms
Authentication with Active Directory in the Reference section of this guide.

Summary

This chapter has described how to secure two common extranet application scenarios.

et application sc arios, see Chapter 5, Intranet SecurityFor intranet and Intern en , and Chapter 7, Internet Security.

Internet Security

J.D. Meier, Alex Mackman, Michael Dunner, nath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

See the Landing Page

and Sri

 for the starting ing Secure ASP.NET Applications.

Summary: This chapter describes how the
characteristics of each scenario and de ections are also
included to provide further information. (17 printed pages)

ASP.NET to SQL Server

point and a complete overview of Build

 to secure common Internet application scenarios. It presents
scribes the steps necessary to secure the scenario. Analysis s

Contents

ASP.NET to Remote Enterprise Services to SQL Server
Summary

Internet applications have large audien quirements. They range
from portal applications that require n hat provide content for
registered users, to large-scale e-com , authorization, credit card
validation and secure communication o networks.

As Internet application developers, you face a challenge to ensure that your application uses appropriate defense
mechanisms and is designed to be scal . Some of the challenges you face
include:

• Choosing an appropriate user credenti a custom database or Microsoft® Active
Directory® directory service

• Making your application work through f

• Flowing security credentials a ur application

• Performing authorization

• Ensuring the integrity and pri rnal networks

• Securing your application's state with a database

rity of your application's data

Implementing a solution that ly huge numbers of users

n
iz

ET to Remote Enterprise Services to SQL Server

tiers sed application using a Web
lication makes secure connections to a Microsoft® SQL Server™ database to

ge predominantly data retrieval tasks. An example is a portal application that provides news content to
i igure 7.1.

ces, many potential uses, and varied security re
o user authentication, through Web applications t
merce applications that require full authentication
f sensitive data over public and internal

able, high performance, and secure

al store, for example,

irewalls

cross the multiple tiers of yo

vacy of data as it flows across public and inte

• Ensuring the integ

• can scale to potential

The two common Internet applicatio
recommended authentication, author

scenarios presented in this chapter, which are used to illustrate
ation and secure communication techniques are:

• ASP.NET to SQL Server

• ASP.N

ASP.NET to SQL Server

In this scenario with two physical
browser. The ASP.NET-based Web app
mana

, registered users securely log in to the Web-ba

registered subscribers. This is shown n F

Figure 7.1. An ASP.NET Web applic SQL Server Internet scenario

This scenario has the following characteristics:

• Users have a number of different browser types.

•

• st a SQL Server database.

at

•
ork

• uditing.

• es calls to

•

• A single user-defined database role is used within SQL Server for database authorization.

Sec enario

th
allow e database authenticates against the ASP.NET default process

ntity,

Tabl

ation to

Characteristics

• Anonymous users can browse the application's unrestricted pages.

Users must register or log on (through an HTML form) before being allowed to view restricted pages.

User credentials are validated again

• All user input (such as user credentials) that is used in database queries is validated to mitigate the thre
of SQL injection attacks.

The front-end Web application is located within a perimeter network (also known as DMZ, demilitarized
zone, and screened subnet), with firewalls separating it from the Internet and the internal corporate netw
(and the SQL Server database).

The application requires strong security, high levels of scalability, and detailed a

The database trusts the application to authenticate users properly (that is, the application mak
the database on behalf of the users).

The Web application connects to the database by using the ASP.NET process account.

ure the Sc

In is scenario, the Web application presents a logon page to accept credentials. Successfully validated users are
ed to proceed, all others are denied access. Th

ide which is a least privileged account (that is, the database trusts the ASP.NET application).

e 7.1. Security summary

Ca gory te Detail

Auth IIS is configured to allow anonymous access; the ASP.NET Web application entication
authenticates users with Forms authentication to acquire credentials.
Validation is against a SQL Server database.

Users' passwords are not stored in the database. Instead password hashes
with salt values are stored. The salt mitigates the threat associated with
dictionary attacks.

Microsoft® Windows® authentication is used to connect to the database
using the least privileged Windows account used to run the ASP.NET Web
application.

Au ation The ASP.NET process account is authorized to access system resources on the thoriz
Web server. Resources are protected with Windows ACLs.

Access to the database is authorized using the ASP.NET application identity.

Secu

Secure sensitive data sent between the Web server and the database server
by using IPSec.

re Communication Secure sensitive data sent between the users and the Web application by
using SSL.

The Result

Figure 7.2 shows the recommended security configuration for this scenario.

Figure 7.2. The recommended security configuration for the ASP.NET to SQL Server Internet scenario

• Creating custom ASP.NET accounts (see How To: Create a Custom Account to Run ASP.NET

Security Configuration Steps

Before you begin, you'll want to see the following:

 in the
n of this guide) Reference sectio

• Creating a least privileged database account (see Chapter 12, Data Access Security)

Configuring SSL on a Web server (see • How To: Set Up SSL on a Web Server in the Reference section of
this gu

• (see How To: Use IPSec to Provide Secure Communication Between Two Servers

ide)

Configuring IPSec in the
Reference section of this guide)

Configure the Web server

Configure IIS

Step More Information

Enable Anonymous access for your
Web application's virtual root
directory

To work with IIS authentication settings, use the IIS MMC snap-in. Right-
click your application's virtual directory, and then click Properties.

Click the Directory Security tab, and then click Edit within the
ous access and authentication control group. Anonym

Configure ASP.NET

Step More Information

Reset the password of the ASPNET
account (used to run ASP.NET) to a
known strong password

This allows you to create a duplicate local account (with the same user name
and password) on the database server. This is required to allow the ASPNET
account to respond to network authentication challenges from the database

server when it connects using Windows authentication.

An alternative here is to use a least privileged domain account (if Windows
authentication is permitted through the firewall).

For more information, see Process Identity for ASP.NET in Chapter 8,

Edit Machine.config located in

Set your custom account user name and password attributes on the

"ASP.NET Security."

%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

<processModel> element
Default

<!-- userName="machine" password="AutoGenerate"

 -- >

Becomes

<!-- userName="machine"

 password="YourStrongPassword" -- >

Configure your ASP.NET Web Edit Web.config in your application's virtual directory root
application to use Forms

 SSL)

Set the <authentication> element to: authentication (with

<authentication mode="Forms" >

 <forms name="MyAppFormsAuth"

 loginUrl="login.aspx"

 protection="All"

 timeout="20"

 path="/" >

 </forms>

</authentication>

For more information about using Forms authen
Server database, see How To: Use Forms Authe

tication against a SQL
ntication with SQL Server

2000 in the Reference section of this guide.

Configuring SQL Server

Step More Information

Create a Windows account on your
SQL Server computer that matches
the ASP.NET process account

The user name and password must match your custom ASP.NET application
account or must be ASPNET if you are using the default account.

Configure SQL Server for Windows

authentication

Create a SQL Server Login for your
custom ASP.NET application account

This grants access to SQL Server.

Create a new database user and
map the login name to the database
user

This grants access to the specified database.

Create a new user-defined database
role within the database and place
the database user into the role

Establish database permissions for
the database role

ermissions. Grant minimum p

For more information, see Chapter 12, Data Access Security.

Configuring Secure Communication

Step More Information

Configure the Web site for SSL See How To: Setup SSL on a Web Server in the Reference section of this
guide.

Configure IPSec between application
server and database server

See How To: Use IPSec to Provide Secure Communication Between Two
Servers in the Reference section of this guide.

Analysis

• Forms authentication is idea rms
login page is used to acquire use code.
Any data store can be used. A SQL Server database is the most common solution, although Active Directory
provides an alternate credential store.

• With Forms authentication, y initial logon credentials with SSL. The Forms
authentication ticket (passed as a co
also be protected. You could use
encrypt the Forms authentication by configuring the protection attribute of the <forms> element (to
All or Encrypt) and use the Encrypt method of the FormsAuthentication class to encrypt the ticket.

The protection="All" attribute , the
ticket should be validated (integrit rypted. Call this method when you create the
authentication ticket, typically within the application's Login button event handler.

l in this scenario because the users do not have Windows accounts. The Fo
r credentials. Credential validation must be performed by application

ou must protect the
okie on subsequent Web requests from the authenticated client) must

 SSL for all pages in order to protect the ticket, or alternatively you can
 ticket

specifies that when the application calls FormsAuthentication.Encrypt
y checked) and enc

string encryptedTicket = FormsAuthentication.Encrypt(authTicket);

see Chapter 8, ASP.NET SecurityFor more information about Forms authentication and ticket encryption, .

• ASP.NET runs as the least privileged local ASPNET account, so potential damage from compromise is
mitigated.

• URL authorization on the Web server allows unauthenticated users to browse unrestricted Web pages and
forces authentication for restricted pages.

• Because impersonation is not enabled, any local or remote resource access performed by the Web-based
application is performed using the ASPNET account security context. Windows ACLs on secure resources
should be set accordingly.

• User credentials are validated against a custom SQL Server database. Password hashes (with salt) are
stored within the database. For more information, see Authenticating Users against a Database in Chapter 12,
"Data Access Security."

• By using Windows authentication to SQL Server, you avoid storing credentials in files on the Web server
and also passing them over the network.

• If your application currently uses SQL authentication, you must securely store the database connection
string as it contains user names and passwords. Consider using DPAPI. For more details, see Storing Database
Connection Strings Securely, in Chapter 12, "Data Access Security."

• The use of a duplicated Windows account on the database server (one that matches the ASP.NET process
account) results in increased administration. If a password is changed on one computer, it must be
synchronized and updated on all computers. In some scenarios, you may be able to use a least-privileged
domain account for easier administration.

• IPSec between the Web server and database server ensures the privacy of the data sent to and from the
database.

• SSL between browser and Web server protects credentials and any other security sensitive data such as
credit card numbers.

• If you use a Web farm, ensure that the encryption keys, for example those used to encrypt the Forms
authentication ticket (and specified by the <machineKey> element in Machine.config), are consistent across
all servers in the farm. See Chapter 8, ASP.NET Security, for further details about using ASP.NET in a Web
farm scenario.

Pitfalls

The application must flow the original caller's identity to the database to support auditing requirements. Caller
identity may be passed using stored procedure parameters.

Related Scenarios

ted from the Forms login page can be authenticated against various stores.
ng a SQL Server database.

For more information, see How To: Use Forms Authentication with Active Directory

Forms authentication against Active Directory

The user credentials that are accep
Active Directory is an alternate to usi

More information

 in the Reference section of this
de.

 preced
m

ole in
G n dentity information can be stored. After the GenericPrincipal is
created and added to the Web request context (using HttpContext.User), you can add programmatic role checks

corate methods and pages with PrincipalPermission attributes to demand role

ormation

 c ting GenericPrincipal objects that contain role lists, see How To: Create

gui

.NET roles for authorization

The ing scenario doesn't take into consideration the different types of users accessing the application. For
exa ple, a portal server could have different subscription levels such as Standard, Premier, and Enterprise.

If r formation is maintained in the user store (SQL Server database), the application can create a
e ericPrincipal object in which role and i

to method code or you can de
membership.

More inf

• For more information about rea
GenericPrincipal Objects with Forms Authentication in the Reference section of this guide.

mation about Pr mission demands and programmatic role checks, see Chapter
ity

• For more infor
8,

incipalPer
ASP.NET Secur .

Using a domain anonymous account at the Web server

) is
ount. The do

application (you can start with no priv lly add privileges). If you have multiple Web-based
applications, you can use different domain accounts (one for each Web-based application or virtual directory).

In this scenario variation, the default a
replaced by a domain acc

nonymous Internet user account (a local account called IUSR_MACHINE
main account is configured with the minimum privileges necessary to run the
ilege and incrementa

In order to flow the security context o ET, turn on impersonation
for the Web-based application by using

f the anonymous domain account from IIS to ASP.N
 the following web.config file setting:

<identity impersonate="tru

If the Web-based application commun ch as a database, the domain account must
be granted the necessary permissions remote file
system, ACLs must be configured appropria account. If the
application accesses a SQL Server data
login.

As the security context that flows throu ication is that of the anonymous account, the original caller's
identity (captured through Forms auth
example, through method and stored

More information

• For more information regarding this approach, see Using the Anonymous Internet User Account

e" />

icates with a remote resource su
to the resource. For example, if the application accesses a

tely to give (at minimum) read access to the domain
base, the domain account must be mapped using a SQL login to a database

gh the appl
entication) must be passed at the application level from tier to tier; for
procedure parameters.

 within
Chapter 8, "ASP.NET Security."

• Before implementing this scenario, see article Q259353, Must Enter Password Manually After You Set
Password Synchronization in the M

ASP.NET to Remote Enterprise Services to SQL Server

rver running to serviced components, located
rver that in turn connects to a SQL Server database. In common with many Internet

application infrastructures, the Web se firewall (and the Web server
is located within a perimeter network) s to SQL Server.

As an example, consider an Internet b for example, private
financial details) to users. All banking transactions from the client to the database must be secured and data
integrity is critical. Not only does the t t the traffic to and from the
database needs to be secured as well.

icrosoft Knowledge Base.

In this scenario, a Web se
on a remote application se

 ASP.NET pages makes secure connections

rver and application server are separated by a
. Serviced components make secure connection

anking application that provides sensitive data, (

raffic to and from the user need to be secured bu
 This is shown in Figure 7.3.

Figure 7.3. An ASP.NET to remote Enterprise Services to SQL Server Internet scenario

Characteristics

• Users have a number of different browser types.

e the application's unrestricted pages.

ust register or log on rough an HTML form) before being allowed to view restricted pages.

The front-end Web-based app hin a perimeter network, with firewalls separating it
he interna rporate network (and the application server).

s stron

-based application us ces layer, which provides an interface to
onents at run within an Enterprise Services application on the application server. SOAP is

to firewall restrictions.

• Anonymous users can brows

• Users m (th

• lication is located wit
from the Internet and t l co

• The application require

• The Web

g security, high levels of scalability, and detailed auditing.

es SOAP to connect to a Web servi
the serviced comp
preferred to DCOM due

 th

• SQL Server is using a atabase role for authorization.

ork and in all persistent
data stores.

• Enterprise Services (COM+) transactions are used to enforce data integrity.

Secure the Scenario

ccep edentials from a Forms login page and then authenticates the caller
e log ge uses SSL to protect the user's credentials passed over the Internet.

ica
ne
.N ty is passed through all tiers at the

od and stored procedure parameters. This information is used for auditing the users'

s

 single user-defined d

• Data is security sensitive and integrity and privacy must be secured over the netw

In this scenario, the Web service a
against a SQL Server database. Th

ts cr
in pa

The Web-based application commun
implemented within serviced compo
network) and authenticates the ASP
application level using meth

tes with a Web service, which provides an interface to the business services
nts. The Web service trusts the Web-based application (inside the perimeter
ET process identity. The user's identi

actions across the tiers.

Table 7.2. Security measure

Category Detail

Authentication

A

P

I
a s users with Forms authentication (against a SQL Server
database).

The Web service's virtual directory is configured for Integrated Windows
a ervices authenticate the Web-based application's
proces

W uthentication is used to connect to the database. The database
authenticates the least privileged Windows account used to run the Enterprise
Services application.

rovide strong authentication at the Web server.

uthenticate the Enterprise Services application identity at the database.

IS is configured for anonymous access and the Web-based application
uthenticate

uthentication. Web s
s identity.

indows a

Authorization The trusted subsystem model is used and per-user authorization occurs only
w

User access to pages on the Web server is controlled with URL authorization.

The AS ss system resources on the
Web server. Resources are protected with ACLs.

Permissions within the database are controlled by a user-defined role. The
Enterprise Services application identity is a member of the role.

T count is authorized to access system
r rotected ACLs.

ithin the Web application.

P.NET process account is authorized to acce

he Enterprise Services process ac
esources on the application server. Resources are p

Secure Communication Se
secured w

nsitive data sent between the users and the Web-based application is
ith SSL.

Sensitive data sent between the Web server and Web service is secured with
S

S
s

SL.

ensitive data sent between serviced components and the database is
ecured with IPSec.

The Result

Figure 7.4 shows the recommended security configuration for this scenario.

Figure 7.4. The recommended security configuration for the ASP.NET to remote Enterprise Servi
 Server Internet scenario

ces to
SQL

curity

Befo

• Creating a least privileged database account (see Chapter 12, Data Access Security

Se Configuration Steps

re you begin, you'll want to see the following:

)

• Configuring SSL on a Web server (see How To: Set Up SSL on a Web Server in the Reference section of
this guide)

• Configuring IPSec (see How To: Use IPSec to Provide Secure Communication Between Two Servers in
Reference secti

the
on of this guide)

• Configuring Enterprise Services security (see How To: Use Role-based Security with Enterprise Services in
of this guide)

nfigu

the Reference section

Co re the Web server

Configure IIS

Step More Information

Enable Anonymous access for your
Web-based application's virtual root
directory

Configure ASP.NET

Step More Information

Reset the password of the ASPNET This allows you to create a
account (used to run ASP.NET) to a

ord

 duplicate local account (with the same user name
and password) on the application server. This is required to enable the
ASPNET account to respond to network authentication challenges from the known strong passw

application server.

An alternative is to use a least privileged domain account (if Windows
authentication is permitted through the firewall).

For more information, see Process Identity for ASP.NET in Chapter 8,
"ASP.NET Security."

Edit Machine.config located in
%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

name and password attributes on the Set your custom account user
<processModel> element.
Default

<!-- userName="machine" password="AutoGenerate"

 -- >

Becomes

<!-- userName="machine"

 password="YourStrongPassword" -- >

Co igure your Web-based
ication to use Forms
entication (with SSL)

Edit Web.config in your application's virtual directory root
Set the <authentication> element to:

nf
appl
auth

<authentication mode="Forms" >

 <forms name="MyAppFormsAuth"

 loginUrl="login.aspx"

 protection="All"

 timeout="20"

 path="/" >

 </forms>

</authentication>

For more information about using Forms authentication against a SQL
Server database, see How To: Use Forms Authentication with SQL Server
2000 in the Reference section of this guide.

Configure the application server

Configure IIS

Step More Information

Disable anonymous access

Configure Integrated Windows
authentication

IIS authenticates the ASP.NET process identity from the Web-based
application on the Web server.

Configure ASP.NET

Step More Information

Use Windows authentication Edit Web.config in your Web service's virtual directory root.

Set the <authentication> element to:

<authentication mode="Windows" />

Configure Enterprise Services

Step More Information

Create a least privileged custom
account for running the Enterprise
Services server application

Note: If you use a local account, you must also create a duplicate account
on the database server computer.

Configure the Enterprise Services Refer to Configuring Security
application to use the custom
account

 within Chapter 9, "Enterprise Services
Security."

Enable role-based access checking Refer to Configuring Security within Chapter 9, "Enterprise Services
Security."

Add a single Enterprise
(COM+) role to the applic
(for example Trusted We

 Services
ation called

b Service)

Full end-user authorization is performed by the Web-based application. The
Web service (and serviced components) only allows access to members of
the Trusted Web Service role.

Add the local ASPNET account
Trusted Web Service role

 to the Refer to Configuring Security within Chapter 9, "Enterprise Services
Security."

Configuring SQL Server

Step More Information

Create a Windows account on your
SQL Server
the Enterprise Servi

 computer that matches

ces application

The user name and password must match your custom Enterprise Services
account.

account

Configure SQL Server for Windows
authentication

Create a SQL Server Login for your
custom Enterprise Services account

This grants access to the SQL Server.

Create a new database user and
map the login name to the database

This grants access to the specified database.

user

Create a new user-defined database
role and add the database user to
the role

Est database permissions for
database role

Grant minimum permissions
For details, see Chapter 12,

ablish
the Data Access Security.

Configuring secure communication

Step More Information

Con e the Web site for SSL See figur How To: Setup SSL on a Web Server in the Reference section o
guide.

f this

Con
serv

figure SSL between the Web
er and application server.

See How To: Call a Web Service Using SSL in the Reference section of this
guide.

Configure IPSec between application
er and database server

See
serv

How To: Use IPSec to Provide Secure Communication Between Two
Servers in the Reference section of this guide.

Analysis

• Forms authentication is ideal in this scenario because the users do not have Windows accounts. The Forms

•

• se unrestricted Web pages and
forces authentication for restricted pages.

cess performed by the Web-based

•
in the database. For more information, see Authenticating Users against a Database

login page is used to acquire user credentials. Credential validation must be performed by application code.
Any data store can be used. A SQL Server database is the most common solution, although Active Directory
provides an alternate credential store.

The Web-based application is running as the least privileged local ASPNET account, so potential damage
from compromise is mitigated.

URL authorization on the Web server allows unauthenticated users to brow

• Because impersonation is not enabled, any local or remote resource ac
application does so using the ASPNET account security context. ACLs should be configured accordingly.

User credentials are validated against a custom SQL Server database. Password hashes (with salt) are
stored with in Chapter 12,
"Data Access Security."

•
 the network.

•

ios, you may be able to use a least-
privileged domain account for easier administration.

•

Windows authentication to SQL Server means you avoid storing credentials in files on the application
server and avoid passing them across

The use of a duplicated Windows account on the database server (one that matches the Enterprise
Services process account) results in increased administration. If a password is changed on one computer, it
must be synchronized and updated on all computers. In some scenar

When the Web application calls the Web service, it must configure the Web service proxy using
DefaultCredentials (that is, the ASP.NET process account; ASPNET).

• proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

For more information, see Passing Credentials For Authentication to Web Services in Chapter 10, "Web
Services Security."

• SSL between the Web server and Web service layer (that fronts the serviced components on the

• The Enterprise Services application is configured for application-level role-based security. The

• IPSec between the application server and database server ensures the privacy of the data sent to and
he database.

Related Scenarios

 SQL Server database.

application server) ensures the privacy of the data sent between the two servers.

configuration permits only the local ASPNET account (used to run the Web service) to access the serviced
components.

from t

• SSL between browser and Web server protects credentials and bank account details.

Pitfalls

The application must flow the original caller's identity to the database to support auditing requirements. Caller
identity may be passed using stored procedure parameters.

Forms authentication against Active Directory

The user credentials that are accepted from the Forms login page can be authenticated against various stores.
Active Directory is an alternate to using a

More information

For more information, see How To: Use Forms Authentication with Active Directory in the Reference section of th
guide.

is

applications to use a static endpoint. If a firewall separates the client from the server, this means that you need to

This enhancement to DCOM makes it a valid choice of communication protocol between Web server and application
to have a Web services layer.

More information

For more information, see Chapter 9, Enterprise Services Security

Using DCOM

Windows 2000 (SP3 or SP2 with QFE 18.1) or Windows Server allows you to configure Enterprise Services

open only two ports in the firewall. Specifically, you must open port 135 for RPC and a port for your Enterprise
Services application.

server and removes the requirement

Important If your application requires distributed transactions to flow between the two servers, DCOM must be
used. Transactions cannot flow over SOAP. In the SOAP scenario, transactions must be initiated by the serviced
components on the application server.

.

Using .NET Remoting

Remoting can be a valid choice when you don't need services provided by Enterprise Services such as transactions,
queued components, object pooling, and so on. .NET Remoting solutions also support network load balancing at the
middle tier. Note the following when you use .NET Remoting:

• For ultimate performance, use the TCP channel and host in a Windows service. Note that this channel
provides no authentication and authorization mechanism by default. The TCP channel is designed for trusted
subsystem scenarios. You can use an IPSec policy to establish a secure channel and to ensure that only the
Web server communicates with the application server.

• If you need authentication and authorization checks using IPrincipal objects, you should host the remote
objects in ASP.NET and use the HTTP channel. This allows you use the IIS and ASP.NET security features.

ows authentication and can use the host

For more information about .NET Remoting security, see Chapter 11, .NET Remoting Security

• The remote object can connect to the database using Wind
process identity (either ASP.NET or a Windows service identity).

More information

.

 Chapter 5, "Intranet Security," and Chapter 6, Extranet

Summary

This chapter has described how to secure a set of common Internet application scenarios.

For Intranet and extranet application scenarios, see
Security.

ASP

dy

 Microsoft® ASP.NET

.NET Security

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasired
Microsoft Corporation

November 2002

Applies to:

See the Landing Page for the starting point and a complete overview of Building Secure ASP.NET Applications.

ons that will help you build secure ASP.NET Web
applications. Much of the guidance and many of the recommendations presented in this chapter also apply to the

elopm ting objects hosted by ASP.NET.

nten

Summary: This chapter presents guidance and recommendati

dev ent of ASP.NET Web services and .NET Remo

Co ts

ASP.NET Security Architecture
Au and Authorization Strategiesthentication

nfigurCo ing Security
Pro ming Securitygram
Wi Authenticationndows
Forms Authentication
Passport Authentication
Custom Authentication
Process Identity for ASP.NET
Impersonation
Accessing System Resources
Accessing COM Objects
Accessing Network Resources
Secure Communication
Storing Secrets
Securing Session and View State

sWeb Farm Consideration
Summary

ASP.NET Security Architecture

ASP.NET works in conjunction with IIS, the .NET Framework, and the underlying security services provided by the
range o thentication and authorization mec . These are summarized in operating system, to provide a f au hanisms

Figure 8.1.

Figure 8.1. ASP.NET security services

Figure 8.1 illustrates the authentication and authorization mechanisms provided by IIS and ASP.NET. When a client
uthentication and authorization events occurs:

the server identity

nt and server (and
vice-versa).

2. , Integrated (NTLM or Kerberos), or Certificate
authentication. If all or part of your site does not require authenticated access, IIS can be configured for
ano authenticated user. If anonymous

rnet user account (which, by

resource. NTFS permissions defined by ACLs attached to
can also be configured to accept requests only from

4. IIS passes the authenticated caller's Windows access token to ASP.NET (this may be the anonymous

tion, no additional authentication occurs at this point. ASP.NET

 an HTML form)
soft Active

 service. If ASP.NET is configured for Passport authentication, the user is redirected to a
 Passport authentication service authenticates the user.

uthorizes access to the requested resource or operation.

The UrlAuthorizationModule (a system provided HTTP module) uses authorization rules configured in
Web the <authorization> element) to ensure that the caller can access the requested file

folder.

With
has th token is compared against
the

.NET roles can also be used (either declaratively or programmatically) to ensure that the caller is authorized to
ess the re

7. application accesses local and/or remote resources by using a particular identity. By
default, A

 author plication are provided by IIS and ASP.NET:

With anony ers that it can authenticate either in
domain

For static file types (for example .jpg, .gif and .htm files—files that are not mapped to an ISAPI extension), IIS
uses the NTFS permissions associated with the requested file to perform access control.

issues a Web request, the following sequence of a

1. The HTTP(S) Web request is received from the network. SSL can be used to ensure
(using server certificates) and, optionally, the client identity.

Note SSL also provides a secure channel to protect sensitive data passed between clie

IIS authenticates the caller by using Basic, Digest

nymous authentication. IIS creates a Windows access token for each
authentication is selected, IIS creates an access token for the anonymous Inte
default, is IUSR_MACHINE).

3. IIS authorizes the caller to access the requested
the requested resource are used to authorize access. IIS
client computers with specific IP addresses.

Internet user's access token, if anonymous authentication is being used).

5. ASP.NET authenticates the caller.

If ASP.NET is configured for Windows authentica
will accept any token it receives from IIS.

If ASP.NET is configured for Forms authentication, the credentials supplied by the caller (using
are authenticated against a data store; typically a Microsoft® SQL Server™ database or Micro
Directory® directory
Passport site and the

6. ASP.NET a

.config (specifically,
or

 Windows authentication, the FileAuthorizationModule (another HTTP module) checks that the caller
e necessary permission to access the requested resource. The caller's access

ACL that protects the resource.

acc quested resource or perform the requested operation.

Code within your
SP.NET performs no impersonation and as a result, the configured ASP.NET process account provides

the identity. Alternate options include the original caller's identity (if impersonation is enabled), or a
configured service identity.

Gatekeepers

The ization points (or gatekeepers) within an ASP.NET Web ap

IIS

mous authentication turned off, IIS permits requests only from us
its or in a trusted domain.

AS

ASP.NET gatekeepers include the UrlAuthorizationModule,

P.NET

The FileAuthorizationModule and Principal
permission demands and role checks.

sers and
groups of users should have access to the application. Authorization is based on the IPrincipal object stored in

tpCon

FileA horizatio

For f p ks are
performed st the ACL
attached to the requested ASP.NET file.

Note Imp

The Au and not for files
accessed by th

For examp ascx), which in
turn lud if), the FileAuthorizationModule performs an access check for
Default.asp se file types are mapped by IIS to the ASP.NET ISAPI extension.

The Authoriz s a static file handled
internally by IIS. However, as access checks for static files are performed by IIS, the authenticated user must still
be g ted

This scenar

Note to system administrators: The authenticated user requires NTFS read permissions to all of the files involved
sc l. The ASP.NET

process account only requires read access to the ASP.NET registered file types.

UrlAuthorizationModule

You can configure <authorization> elements within your application's Web.config file to control which u

Ht text.User.

ut nModule

ile ty es mapped by IIS to the ASP.NET ISAPI extension (Aspnet_isapi.dll), automatic access chec
using the authenticated user's Windows access token (which may be IUSR_MACHINE) again

ersonation is not required for file authorization to work.

File thorizationModule class only performs access checks against the requested file,
e code in the requested page, although these are access checked by IIS.

le, if you request Default.aspx and it contains an embedded user control (Usercontrol.
inc es an image tag (pointing to Image.g

x and Usercontrol.ascx, because the

File ationModule does not perform a check for Image.gif, because this i

ran read permission to the file with an appropriately configured ACL.

io is shown in Figure 8.2.

in the enario. The only variable is regarding which gatekeeper is used to enforce access contro

Fig re 8.2. IIS and ASP.NET gatekeepers working together u

 deny
client

orms the access checks itself.

 role checks

In addition to the IIS and ASP.NET configurable gatekeepers, you can also use principal permission demands
clarat rmission

(performed by the PrincipalPermissionAttribute class) allow you to control access to classes, methods,

In this scenario you can prevent access at the file gate. If you configure the ACL attached to Default.aspx and
access to a particular user, the user control or any embedded images will not get a chance to be sent to the
by the code in Default.aspx. If the user requests the images directly, IIS perf

Principal permission demands and explicit

(de ively or programmatically) as an additional fine-grained access control mechanism. Principal pe
checks

or ual code blocks based on the identity and group membership of individual users, as d
IP

individ efined by the
rincipal object attached to the current thread.

ission demands used to demand role membership are different from calling
IPrincipal.IsInRole to test role membership; the former results in an exception if the caller is not a member of

 spec

th Win represents the
enticated user to the current Web request (using HttpContext.User). Forms and Passport authentication

ate a
ntext.User.

Mor ion

• security, see Configuring Security

Note Principal perm

the ified role, while the latter simply returns a Boolean value to confirm role membership.

Wi dows authentication, ASP.NET automatically attaches a WindowsPrincipal object that
auth
cre GenericPrincipal object with the appropriate identity and no roles and attaches it to the
HttpCo

e informat

For more information about configuring later in this chapter.

nd IPrincipal objects), see Programming Security• For more information about programming security (a

uthorization Strategies

rammatic authorization mechanisms that can be used in
s. This allows you to develop an in depth authorization strategy

 or per-user group

u which authorization options (both configurable and programmatic) are available for a set of
commonly used authentication options.

rized here:

Windows authentication without impersonation

tion using a fixed identity

• Forms au

•

Available Authorization Options

The follo horization options. For each one the table indicates whether
or not Windows authentication and/or impersonation are required. If Windows authentication is not required, the
part ar authorizat
auth

Table 8. s authentication and impersonation requirements

later in this chapter.

Authentication and A

ASP.NET provides a number of declarative and prog
conjunction with a variety of authentication scheme
and one that can be configured to provide varying degrees of granularity; for example, per-user
(role-based).

This section shows yo

The authentication options that follow are summa

• Windows authentication with impersonation

•

• Windows authentica

thentication

Passport authentication

wing table shows you the set of available aut

icul ion option is available for all other authentication types. Use the table to help refine your
entication/authorization strategy.

1. Window

Authorization Option Requires Windows
Authentication

Requires Impersonation

FileA zationModule uthori Yes No

UrlA ationModule No uthoriz No

Pr rmission Demands No incipal Pe No

.NET Roles No No

En Services Roles terprise Yes Yes (within the ASP.NET Web
application)

NTFS Permissions (for directly N/A–These files are not handled by No (IIS performs the access check.)

requested static files types; not ASP.NET.
mapped to an ISAPI extension) With any (non-Anonymous) IIS

tication mechanism,
permissions should be configured for
individual authenticated users.

authen

With Anonymous authentication,
permissions should be configured for
IUSR_MACHINE.

NTFS Permissions (for files accessed
by W ap

No No
If impersonating, configure ACLs
against the impersonated Windows
identity, which is either the original
caller or the identity specified on the
<identity> element in Web.config*.

eb plication code)

* The impersonated identity may be the original caller or the identity specified on the <identity> element in
Web.config. Consider the following two <identity> elements.

<id titen y impersonate="true" />

<identity impersonate="true" userName="Bob" password="pwd" />

The first configuration results in the impersonation of the original caller (as authenticated by IIS), while the second
ults in t sons:

ires that you grant the ASP.NET process identity the "Act as part of the operating system" privilege

• It also requires you to include a plain text password in Web.config.

th of t

Win th Impersonation

The following configuration elements show you how to enable Windows (IIS) authentication and impersonation
config or Machine.config.

te Y

res he identity Bob. The second configuration is not recommended for two rea

• It requ
on the Microsoft Windows® 2000 operating system.

Bo hese restrictions will be lifted in the next release of the .NET Framework.

dows Authentication wi

declaratively in Web.

No ou should configure authentication on a per-application basis in each application's Web.config file.

<authentication mode="Windows" />

< d

tes the IIS-authenticated caller.

Windows authentication together with impersonation, the following authorization options are
available to you:

 Windows ACLs

 performs access checks
for requested file types that are mapped to the ASP.NET ISAPI. It uses the original caller's access token

CL attached to requested resources in order to perform access checks.

 caller's
ttached to the file.

i entity impersonate="true" />

With this configuration, your ASP.NET application code impersona

Configurable security

When you use

•

• Client Requested Resources. The ASP.NET FileAuthorizationModule

and A

For static files types (not mapped to an ISAPI extension), IIS performs access checks using the
access token and ACL a

• urces
registry keys, Active Directory objects, and so on) against the

original caller.

•
map one-to-one with Windows groups.

Resources Accessed by Your Application. You can configure Windows ACLs on reso
accessed by your application (files, folders,

URL Authorization. Configure URL authorization in Web.config. With Windows authentication, user
names take the form DomainName\UserName and roles

• <authorization>

• <deny user="DomainName\UserName" />

• <allow roles="DomainName\WindowsGroup" />

• </authorization>

• Enterprise Services (COM+) Role
with the Component Services administra

s. Roles are maintained in the COM+ catalog. You can configure roles
tion tool or script.

y refers to security checks located within your Web application code. The following
y options are available when you use Windows authentication and impersonation:

alPermission Demands

e (in-line within a method's code)

Programmatic security

Programmatic securit
programmatic securit

• Princip

• Imperativ

• PrincipalPermission permCheck = new PrincipalPermission(

• null,

• @"DomainName\

• WindowsGroup");

• permCheck.Demand();

• Declarative (attributes preceding interfaces, classes and methods)

• [PrincipalPermission(SecurityAction.Demand,

• Role=@"DomainName\WindowsGroup)]

• Explicit Role Checks. You can perform role checking using the IPrincipal interface.

•

• Enterprise Services (COM+) Roles. You can perform role checking programmatically using the

IPrincipal.IsInRole(@"DomainName\WindowsGroup");

ContextUtil class.

•

Whe to u

Use Windows authentication and impersonation when:

ContextUtil.IsCallerInRole("Manager")

n se

• Your app

• You need to flow the original caller's security context to the middle tier and/or data tier of your Web
plic ned (per-user) authorization.

• You need al caller's security context to the downstream tiers to support operating system
el a

Before using im s of this
appr an

lication's users have Windows accounts that can be authenticated by the server.

ap ation to support fine-grai

to flow the origin
lev uditing.

personation within your application, make sure you understand the relative trade-off
oach in comparison to using the trusted subsystem model. These were elaborated upon in Choosing

Auth ticaten ion Mechanism in Chapter 3, "Authentication and Authorization."

The adv

• Re ty due to the inability to effectively pool database connections.

on effort as ACLs on back-end resources need to be configured for individual users.

uitably configured environment.

re inf

• For more about Windows authentication, see "Windows Authentication" later in this chapter.

• Fo

• Fo hapter.

• Fo ervices

dis antages of impersonation include:

duced application scalabili

• Increased administrati

• Delegation requires Kerberos authentication and a s

Mo ormation

 information

r more information about impersonation, see "Impersonation" later in this chapter.

r more information about URL authorization, see "URL Authorization Notes" later in this c

r more information about Enterprise Services (COM+) roles, see Chapter 9, Enterprise S
Se tycuri .

r more information about PrincipalPer• Fo mission demands, see Identities and Principals in Chapter 2,
curity Mo T Application."

Win ws

The following configuration elements show how you enable Windows (IIS) authentication with no impersonation
decl tive

"Se del for ASP.NE

do Authentication without Impersonation

ara ly in Web.config.

<authentication mode="Windows" />

<! following setting is equivalent-- The to having no identity

 element -->

<identity impersonate="false" />

Co rable security nfigu

en yo e available to

• Windows ACLs

• ecks
n

required.

ot mapped to an ISAPI extension) IIS performs access checks using the caller's

Wh u use Windows authentication without impersonation, the following authorization options ar
you:

Client Requested Resources. The ASP.NET FileAuthorizationModule performs access ch
for requested file types that are mapped to the ASP.NET ISAPI. It uses the original caller's access toke
and ACL attached to requested resources in order to perform access checks. Impersonation is not

For static files types (n
access token and ACL attached to the file.

• Resources accessed by your application. Configure Windows ACLs on resources accessed by

, user
names take the form DomainName\UserName and roles map one-to-one with Windows groups.

your application (files, folders, registry keys, Active Directory objects) against the ASP.NET process
identity.

• URL Authorization. Configure URL Authorization in Web.config. With Windows authentication

• <authorization>

• <deny user="DomainName\UserName" />

• <allow roles="DomainName\WindowsGroup" />

•

The following programmatic security options are available:

•

•

</authorization>

Programmatic security

Principal Permission Demands

Imperative

• sion(PrincipalPermission permCheck = new PrincipalPermis

• null,

• @"DomainName\WindowsGroup");

• permCheck.Demand();

• Declarative

• [PrincipalPermission(SecurityAction.Demand,

•

• Explicit Role Checks. You can perform role checking using the IPrincipal interface.

 Role=@"DomainName\WindowsGroup")]

• IPrincipal.IsInRole(@"DomainName\WindowsGroup");

Whe

Use Windows authentication without impersonation when:

• ated by the server.

• You wan
supp

Mor formatio

• For more information about Windows authentication, see "Windows Authentication" later in this chapter.

• thorization Notes", later in this chapter.

n to use

Your application's users have Windows accounts that can be authentic

t to use a fixed identity to access downstream resources (for example, databases) in order to
ort connection pooling.

e in n

For more information about URL authorization, see "URL Au

• ission demands, see Identities and PrincipalsFor more information about PrincipalPerm in Chapter 2,

Win

The <identity> element in Web.config supports optional user name and password attributes, which allows you to
conf ration
file fragm

"Security Model for ASP.NET Application."

dows Authentication Using a Fixed Identity

igure a specific fixed identity for your application to impersonate. This is shown in the following configu
ent.

<identity impersonate="true" userName="DomainName\UserName"

 password="ClearTextPassword" />

Whe

This approach n secure
envi e

• Us should not be stored in plain text in configuration files, particularly
ig al directories.

• On Wind
operating sys at should
an attacker compromise the Web application process.

1.1 will provide an enhancement for this scenario on Windows 2000:

• The credentials will be encrypted.

 by the IIS process, so that ASP.NET does not required the "Act as part of the
ope

rms

 follo .

n to use

is not recommended for the current version (version 1) of the .NET Framework i
ronm nts for two reasons:

er names and passwords
conf uration files stored in virtu

ows 2000, this approach forces you to grant the ASP.NET process account the "Act as part of the
tem" privilege. This reduces the security of your Web application and increases the thre

The .NET Framework version

• The log on will be performed
rating system" privilege.

Fo Authentication

The wing configuration elements show how you enable Forms authentication declaratively in Web.config

<authentication mode="Forms">

 <forms loginUrl="logon.aspx" name="AuthCookie" timeout="60"

 path="/">

 </forms>

</a

Con

Whe you:

• Windows ACLs

Resources. Requested resources require ACLs that allow read access to the
ternet user account. (IIS should be configured to allow anonymous access when you use
tication).

rs, registry keys, and Active Directory objects) against the ASP.NET process

uthentication>

figurable security

n you use Forms authentication, the following authorization options are available to

• Client Requested
anonymous In
Forms authen

ASP.NET File authorization is not available because it requires Windows authentication.

• Resources Accessed by Your Application. Configure Windows ACLs on resources accessed by
your application (files, folde
identity.

•
Configure URL Author
determined b

If you are using a SQL Server data store:

URL Authorization

ization in Web.config. With Forms authentication, the format of user names is
y your custom data store; a SQL Server database, or Active Directory.

•

• <authorization>

• y users="?" /> <den

• ,Sales" /> <allow users="Mary,Bob,Joe" roles="Manager

• </authorization>

• If you are using Active Directory as your data store, user names, and group names appear in
X.500 format:

• <authorization>

• <deny users="someAccount@domain.corp.yourCompany.com" />

• <allow roles ="CN=Smith James,CN=FTE_northamerica,CN=Users,

• DC=domain,DC=corp,DC=yourCompany,DC=com" />

•

Programmatic security

owing p ty options are available:

Pr nds

•

</authorization>

The foll rogrammatic securi

• incipal Permission Dema

Imperative

• ermCheck = new PrincipalPermission(PrincipalPermission p

• null, "Manager");

• and();

•

 permCheck.Dem

Declarative

• Demand, [PrincipalPermission(SecurityAction.

•

Ex g the IPrincipal interface.

 Role="Manager")]

• plicit Role Checks. You can perform role checking usin

• IPrincipal.IsInRole("Manager");

Wh se en to u

Forms authentication is most ideally suited to Internet applications. Use Forms authentication when:

• ur application's users do not haveYo Windows accounts.

You want using an HTML form.

e informa

Fo thentication, see "Forms Authentication" later in this chapter.

• Fo orization, see "URL Authorization Notes" later in this chapter.

Passport

 followi how how you enable Passport authentication declaratively in Web.config.

• users to log on to your application by entering credentials

Mor tion

• r more information about Forms au

r more information about URL auth

 Authentication

The ng configuration elements s

<authentication mode="Passport" />

Passport authentication is used on the Internet when application users do not have Windows accounts and you
le-sign-on solution. Users who have previously logged on with a Passport account at a

te will not have to log on to your site configured with Passport authentication.

Configuring Security

to configure security for an ASP.NET Web application. These are
summarized in Figure 8.3.

When to use

want to implement a sing
participating Passport si

This section shows you the practical steps required

Figu .3. Configuring ASP.NET application security (click thumbnail for larger image) re 8

Configure IIS

To configure IIS s following steps:

1. Optional (if you need SSL).

r more info t Up SSL on a Web Server

Settings

ecurity, you must perform the

ly install a Web server certificate

Fo rmation, see How To: Se in the Reference section of this guide.

2. Configure IIS authentication.

3. Optionally configure client certificate mapping (if using certificate authentication).

For more information about client certificate mapping, see article Q313070, How to Configure Client Certificate
Mappings in Internet Information Services (IIS) 5.0 in the Microsoft Knowledge Base.

e check that the authenticated user (or the anonymous Internet user account) has
the necessary access rights (based on ACL settings) to access the requested file.

h are located in your application's
virtual root directory and optionally within additional subfolders (these settings can sometimes override the parent

sis (not in Machine.config) in the

4. Set NTFS permissions on files and folders. Between them, IIS and the ASP.NET
FileAuthorizationModul

Configure ASP.NET Settings

Application level configuration settings are maintained in Web.config files, whic

folder settings).

1. Configure authentication. This should be set on a per-application ba
Web.config file located in the application's virtual root directory.

2. <authentication mode="Windows|Forms|Passport|None" />

e Impersonation. By default, ASP.NET applications do not impersonate. The applications run
gured ASP.NET process identity (usually ASPNET) and all resource access performed by your

onents.

ous authentication and you want to use the anonymous Internet
r details about this approach, see "Accessing Network Resources

3. Configur
using the confi
application uses this identity. You only need impersonation in the following circumstances:

• You are using Enterprise Services and you want to use Enterprise Services (COM+) roles to
authorize access to functionality provided by serviced comp

• IIS is configured for Anonym
user account for resource access. Fo "

le, the

later in this chapter.

• You need to flow the authenticated user's security context to the next tier (for examp
database).

• You have ported a classic ASP application to ASP.NET and want the same impersonation
behavior. Classic ASP impersonates the caller by default.

To configure ASP.NET impersonation use the following <identity> element in your application's Web.config.

<identity impersonate="true" />

4. Configure Authorization. URL authorization determines whether a user or role can issue specific HTTP
verb perform the

owing tasks.

a. e Web.config file located in your application's virtual root
directory.

Restrict ac ibutes. The following example from
Web.con ary access but denies everyone else.

s (for example, GET, HEAD, and POST) to a specific file. To implement URL authorization, you
foll

Add an <authorization> element to th

b. cess to users and roles by using allow and deny attr
fig uses Windows authentication and allows Bob and M

c. <authorization>

d. llow users="DomainName\Bob, DomainName\Mary" /> <a

e. <deny users="*" />

f. thorization> </au

e
ent, otherwise access is granted to all authenticated identities.

URL authorization notes

Important You need to add either <deny users="?"/> or <deny users="*"/> at the end of th
<authorization> elem

Take orization:

• es.

• hat is, the anonymous identity).

•

• les in the current directory and all
subdirectory contains its own Web.config with an <authorization> element. In this
ubdirectory override the parent directory settings).

only applies to file types that are mapped by IIS to the ASP.NET ISAPI extension,

You can use the <location> tag to apply authorization settings to an individual file or directory. The following
how you can apply authorization to a specific file (Page.aspx).

 note of the following when you configure URL auth

"*" refers to all identiti

"?" refers to unauthenticated identities (t

You don't need to impersonate for URL authorization to work.

Authorization settings in Web.config usually refer to all of the fi
subdirectories (unless a
case the settings in the s

Note URL authorization
aspnet_isapi.dll.

example shows

<location path="page.aspx" />

 <authorization>

 <allow users="DomainName\Bob, DomainName\Mary" />

 <deny users="*" />

 </authorization>

</location>

• Users and roles for URL authorization are determined by your authentication settings:

 <authentication mode="Windows" /> you are authorizing access to Windows

User names take the form "DomainName\WindowsUserName"

DomainName\WindowsGroupName"

e local administrators group is referred to as "BUILTIN\Administrators". The local users
group is referred to as "BUILTIN\Users".

• " /> you are authorizing against the user and
roles for the IPrincipal object that was stored in the current HTTP context. For example, if you used

be authorizing against the roles retrieved from

rom a store. For example, you can map a PUID to a particular account and

set of roles stored in a SQL Server database or Active Directory.

you have <authentication mode="None" /> you may not be performing authorization.
"None" specifies that you don't want to perform any authentication or that you don't want to use any of

ntication modules and want to use your own custom mechanism.

ore it
er. When you subsequently perform URL authorization, it is performed against

the user and roles (no matter how they were retrieved) maintained in the IPrincipal object.

• When you have
user and group accounts.

Role names take the form "

Note Th

When you have <authentication mode="Forms

Forms to authenticate users against a database, you will
the database.

• When you have <authentication mode="Passport" /> you authorize against the Passport User
ID (PUID) or roles retrieved f

Note This functionality will be built into the Microsoft Windows Server 2003 operating system.

• When

the .NET authe

However, if you use custom authentication, you should create an IPrincipal object with roles and st
into the HttpContext.Us

URL authorization examples

The following list shows the syntax for some typical URL authorization examples:

• Deny access to the anonymous account

• <deny users="?" />

 to all users • Deny access

• <deny users="*"/>

• Deny access to Manager role

• <deny roles="Manager"/>

• Forms authentication example

• <configuration>

• <system.web>

• <authentication mode="Forms">

• <forms name=".ASPXUSERDEMO"

• loginUrl="login.aspx"

• protection="All" timeout="60" />

• </authentication>

• <authorization>

• <deny users="jdoe@somewhere.com" />

• <deny users="?" />

• </authorization>

• </system.web>

• </configuration>

tpContext.User and also
the HttpContext.Request.RequestType.

 not impersonating, any resource your application is required to access must have an ACL that grants at
least read access to the ASP.NET process account.

More information

The <authorization> element works against the current IPrincipal object stored in Ht

Secure Resources

Use Windows ACLs to secure resources that include files, folders, and registry keys.

If you are

If you are impersonating, files and registry keys
authenticated user (or the anonymous Internet

 must have an ACL that grants at least read access to the
user account, if anonymous authentication is in effect).

 impersonating, the impersonated identity requires read access.
Otherwise, the ASP.NET process identity requires read access. Use the following ACL on Web.config and
Machine.config.

If you are not impersonating the anonymous Internet user account (IUSR_MACHINE), you should deny access
to this account.

 is mapped to a UNC share then the UNC identity requires read access to the
configuration files as well.

Remove Unwanted HTTP Modules. Machine.config contains a set of default HTTP modules (within the
httpModules> element. These include:

FormsAuthenticationModule

PassportAuthenticationModule

• UrlAuthorizationModule

FileAuthorizationModule

• OutputCacheModule

• SessionStateModule

ture security issues
associated with a particular module from being exploited within your application.

Optionally, lock configuration settings by using the <location> element together with the allowOverride="false"
d below.

cking

Conf file settings in subdirectories override Web.config settings in
parent directories. Also, Web.config settings override Machine.config settings.

overridden at lower levels, by using the <location>

Secure Web.config and Machine.config:

• Use the Correct ACLs. If ASP.NET is

System: Full Control

Administrators: Full Control

Process Identity or Impersonated Identity : Read

Note If your application

•
<

• WindowsAuthenticationModule

•

•

•

If your application doesn't use a specific module, remove it to prevent any potential fu

attribute as describe

Lo configuration settings

iguration settings are hierarchical. Web.config

You can lock configuration settings to prevent them being
element coupled with the allowOverride attribute. For example:

<location path="somepath" allowOverride="false" />

 . . . arbitrary configuration settings . . .

</location>

No he path may refer to a Web site or virtual directory and it applies to the nominated di
sub ies. If you set allowOverride to false, you prevent any lower level configuration file from ov

cified in the <location> element. The ability to lock down configuration settings appl

te that t rectory and all
director erriding the

settings spe ies to all types of
ng andsetti not just security settings such as authentication modes.

Prev ing files from being downloaded

can use the

ent

You HttpForbiddenHandler class to prevent certain file types from being downloaded over the Web.
This class is used internally by ASP.NET to prevent the download of certain system level files (for example,

igurati restricted in this way, see the
<httpHan

inte

te You sers can access the files, when logged
 the W

 use the rom being downloaded

, click Programs, click Administrative Tools, and then

 directory, right-click, and then click Properties.

c.

d. Click Add to create a new application mapping.

e. 5\aspnet_isapi.dll.

ter the file extension for the file type you want to prevent being downloaded (for example,

re All Verbs and Script engine is selected and Check that file exists is not selected.

the Add/Edit Application Extension Mapping dialog box.

conf on files including web.config). For a complete list of file types
dlers> section in machine.config.

You should consider using the HttpForbiddenHandler for files that your application uses internally, but are not
nded for download.

No must also secure the files with Windows ACLs to control which u
on to eb server.

To HttpForbiddenHandler to prevent a particular file type f

1. Create an application mapping in IIS for the specified file type to map it to Aspnet_isapi.dll.

a. On the taskbar, click the Start button
select Internet Information Services.

b. Select your application's virtual

Select Application Settings, click Configuration..

Click Browse, and select c:\winnt\Microsoft.NET\Framework\v1.0.370

f. En
.abc) in the Extension field.

g. Ensu

h. Click OK to close

i. Click OK to close the Application Configuration dialog box, and then click OK again to close
the Properties dialog box.

2. Add an <HttpHandler> mapping in Web.config for the specified file type.

An example for the .abc file type is shown below.

<httpHandlers>

 <add verb="*" path="*.abc"

 type="System.Web.HttpForbiddenHandler"/>

</httpHandlers>

Secure Communication

Use a combination of SSL and Internet Protocol Security (IPSec) to secure communication links.

 Secure

More information

• For information about using SSL to secure the link to the database server, see How To: Use SSL to
Communication with SQL Server 2000.

• For information about using IPSec between two computers, see How To: Use IPSec to Provide Secure
Communication Between Two Servers.

Programming Security

After you establish your Web application's configurable security settings, you need to further enhance and fin
yo application's authorization policy programmatically. This includes using declarative .NET attributes within y

mblies and performing imperative authorizing checks within code.

e-tune
ur our

asse

This section highlights the key programming steps required to perform authorization within an ASP.NET Web

ur Web application:

2. Validate credentials

al object

Put the IPrincipal object into the current HTTP context

ship

SP.NET if you have configured Windows authentication.
orms, Passport and custom approaches), you must write code to perform

ust start by retrieving a set of credentials (user name and password) from the user. If your application does
e Windows authentication, you need to ensure that clear text credentials are properly secured on the

te credentials

nfigured Windows authentication, credentials are validated automatically using the underlying
ices of the operating system.

se an alternate authentication mechanism, you must write code to validate credentials against a data store
a SQL Server database or Active Directory.

more information about how to securely store user credentials in a SQL Server database, see Authenticating

application.

An Authorization Pattern

The following summarizes the basic pattern for authorizing users within yo

1. Retrieve credentials

3. Put users in roles

4. Create an IPrincip

5.

6. Authorize based on the user identity / role member

Important Steps 1 to 5 are performed automatically by A
For other authentication mechanisms (F
these steps, as discussed below.

Retrieve credentials

You m
not us
network by using SSL.

Valida

If you have co
serv

If you u
such as

For
Users Against a Database within Chapter 12, "Data Access Security."

Put u

Your u

sers in roles

ser data store should also contain a list of roles for each user. You must write code to retrieve the role list for

t (which flows in the context of the current Web request).

If you have configured Windows authentication, ASP.NET automatically constructs a WindowsPrincipal object.
This contains the authenticated user's identity together with a role list, which equates to the list of Windows groups

 code within the
Application_AuthenticateRequest event handler in Global.asax to create an IPrincipal object. The

nericP k, and should be used in most scenarios.

Put

the validated user.

Create an IPrincipal object

Authorization occurs against the authenticated user, whose identity and role list is maintained within an IPrincipal
objec

to which the user belongs.

If you are using Forms, Passport, or custom authentication, you must write

Ge rincipal class is provided by the .NET Framewor

 the IPrincipal object into the current HTTP context

Atta e IPrincipal object to the current HTTP context (using the HttpContext.User variable). ASP.NET
automatically when y
ch th does

this ou use Windows authentication. Otherwise, you must attach the object manually.

horiz

your

can

 follo he
method that follows the attribute will only be executed if the authenticated user is a member of the Manager

dows

Aut e based on the user identity and/or role membership

Use .NET roles either declaratively (to obtain class or method level authorization), or imperatively within code if
 application requires more fine-grained authorization logic.

You can use declarative or imperative principal permission demands (using the PrincipalPermission class), or you
perform explicit role checks by calling the IPrincipal.IsInRole()method.

The wing example assumes Windows authentication and shows a declarative principal permission demand. T

Win group. If the caller is not a member of this group, a SecurityException is thrown.

 [PrincipalPermission(SecurityAction.Demand,

 Role=@"DomainName\Manager")]

public void SomeMethod()

{

}

The wing example shows an explicit role che
a n indows authentication mechanism is us

 follo ck within code. This example assumes Windows authentication. If
on-W ed, the code remains very similar. Instead of casting the User
ect to to a GenericPrincipal object. obj a WindowsPrincipal object, it should be cast

// ract the authenticated user from the currentExt HTTP context.

// The User variable is equivalent to HttpContext.Current.User if you

 are

using // an .aspx or .asmx page

Win sPrincipal authenticatedUser = User as Widow ndowsPrincipal;

if (null != authenticatedUser)

{

 // Note: To retrieve the authenticated user's username, use the

 // following line of code

 / tring username = au/ s thenticatedUser.Identity.Name;

 // Perform a role check

 if (authenticatedUser.IsInRole(@"DomainName\Manager"))

 {

 // User is authorized to perform manager functionality

 }

}

else

{

 // User is not authorized to perform manager functionality

}

More information

• For a practical implementation of the above pattern for Forms authentication, see the "Forms
section later in this chapter.

eatin

 Gen
ng a n od.

rincipal class. Reasons for implementing your own

• You want extended role checking functionality. You might want methods that allow you to check whether a
e roles. For example:

Authentication"

Cr g a Custom IPrincipal class

The ericPrincipal class provided by the .NET Framework should be used in most circumstances when you are
usi on-Windows authentication mechanism. This provides role checks using the IPrincipal.IsInRole meth

On occasion, you may need to implement your own IP
IPrincipal class include:

particular user is a member of multipl

• CustomPrincipal.IsInAllRoles("Role", "Role2", "Role3")

• CustomPrincipal.IsInAnyRole("Role1", "Role2", "Role3")

• You may want to implement an extra method or property that returns a list of roles in an array. For
example:

• string[] roles = CustomPrincipal.Roles;

ger may be
s like the ones shown

• You want your application to enforce role hierarchy logic. For example, a Senior Mana
considered higher up in the hierarchy than a Manager. This could be tested using method
below.

• CustomPrincipal.IsInHigherRole("Manager");

• CustomPrincipal.IsInLowerRole("Manager");

• You may want to implement lazy initiali
the role list only when a role check is reque

zation of the role lists. For example, you could dynamically load
sted.

You may want to implement the IIdentity interface to have the user identified by an
509ClientCertificate. For example:

•
X

• CustomIdentity id = CustomPrincipal.Identity;

• X509ClientCertificate cert = id.ClientCertificate;

More information

For more information about creating your own IPrincipal class, see How To: Implement IPrincipal in the Reference

e Windows authentication when the users of your application have Windows accounts that can be authenticated
 the server (for example, in intranet scenarios).

igured IIS
authentication mechanism. This is shown in Figure 8.4.

section of this guide.

Windows Authentication

Us
by

If you configure ASP.NET for Windows authentication, IIS performs user authentication by using the conf

Figure 8.4. ASP.NET Windows authentication uses IIS to authenticate callers

The access token of the authenticated caller (which may be the Anonymous Internet user account if IIS is
ote the following:

st requested ASP.NET

hat are mapped to

e impersonation. With impersonation enabled any resource access
impersonated caller's identity. In this event, ensure that the ACLs

ontrol Entry (ACE) that grants at least read access to the original

ns the identity of the
dows authentication, the

s groups to which the user belongs.

dentity of the authenticated Windows user and to perform a simple

configured for Anonymous authentication) is made available to the ASP.NET application. N

• This allows the ASP.NET FileAuthorizationModule to perform access checks again
files using the original caller's access token.

Important ASP.NET File authorization only performs access checks against file types t
Aspnet_isapi.dll.

• File authorization does not requir
performed by your application uses the
attached to resources contain an Access C
caller's identity.

Identifying the authenticated user

ASP.NET associates a WindowsPrincipal object with the current Web request. This contai
authenticated Windows user together with a list of roles that the user belongs to. With Win
role list consists of the set of Window

The following code shows how to obtain the i
role test for authorization.

WindowsPrincipal user = User as WindowsPrincipal;

if (null != user)

{

 string username = user.Identity.Name;

 // Perform a role check

 if (user.IsInRole(@"DomainName\Manager"))

 {

 // User is authorized to perform manager functionality

 }

}

else

{

 // Throw security exception as we don't have a WindowsPrincipal

}

When you are using Forms authentication, the sequence of events triggered by an unauthenticated user who
), is shown in Figure

Forms Authentication

attempts to access a secured file or resource (where URL authorization denies the user access
8.5.

Figure 8.5. Forms authentication sequence of events

ser issues a Web request for Default.aspx.

S allows the request because Anonymous access is enabled. ASP.NET checks the <authorization> elements
s a <deny users=?" /> element.

ibute of the
forms> element.

tials and submits the login form.

ted against a store (SQL Server or Active Directory) and roles are optionally
trieved. You must retrieve a role list if you want to use role-based authorization.

The following describes the sequence of events shown in Figure 8.5:

1. The u

II
and find

2. The user is redirected to the login page (Login.aspx) as specified by the LoginUrl attr
<

3. The user supplies creden

4. The credentials are valida
re

5. A cookie is created with a FormsAuthenticationTicket and sent back t
stored in the ticket. By storing the role list in the ticket, you avoid having to

o the client. Roles are optionally
 access the database to re-retrieve

h successive Web request from the same user.

The user is redirected with client-side redirection to the originally requested page (Default.aspx).

In the Application_AuthenticateRequest event handler (in Global.asax), the ticket is used to create an
n HttpContext.User.

ASP.NET checks the <authorization> elements and finds a <deny users=?" /> element. However, this time
e user is authenticated.

s to ensure the user is in the <allow> element.

ted access to Default.aspx.

lopment Steps for Forms Authentication

1. Configure IIS for anonymous access.

 Retrieve a role list from the custom data store.

store roles in the ticket).

 for anonymous access

ministration tool.

irectory, right-click, and then click Properties.

Click Directory Security.

group, click Edit.

Configure ASP.NET for Forms authentication

the list for eac

6.

7.
IPrincipal object and it is stored i

th

ASP.NET checks the <authorization> element

The user is gran

Deve

The following list highlights the key steps that you must perform to implement Forms authentication:

2. Configure ASP.NET for Forms authentication.

3. Create a logon Web form and validate the supplied credentials.

4.

5. Create a Forms authentication ticket (

6. Create an IPrincipal object.

7. Put the IPrincipal object into the current HTTP context.

8. Authorize the user based on user name/role membership.

Configure IIS for anonymous access

Your application's virtual directory must be configured in IIS for anonymous access.

To configure IIS

1. Start the Internet Information Services ad

2. Select your application's virtual d

3.

4. In the Anonymous access and authentication control

5. Select Anonymous access.

A sample configuration is shown below.

<authentication mode="Forms">

 <forms name="MyAppFormsAuth"

 loginUrl="login.aspx"

 protection="Encryption"

 timeout="20"

 path="/" >

 rms> </fo

</a hentica

Crea a

Valid credentials

More inf

•

ut tion>

te logon Web form and validate the supplied credentials

ate against a SQL Server database, or Active Directory.

ormation

See "How To: Use Forms Authentication with SQL Server 2000" in the Reference section of this guide.

• See "How To: Use Forms Authentication with Active Directory" in the Reference section of this guide.

rieve a role list from the custom data store Ret

D re

hentication ticket

Store the retrieved roles in the ticket. This is illustrated in the following code.

Obtain roles from a table within a SQL Server database, or groups/distribution lists configured within Active
i ctory. Refer to the preceding resources for details.

Create a Forms aut

// s event handler executes when the user clicks the Logon button Thi

// having supplied a set of credentials

private void Logon_Click(object sender, System.EventArgs e)

{

 // Validate credentials against either a SQL Server database

 // or Active Directory

 bool isAuthenticated = IsAuthenticated(txtUserName.Text,

 txtPassword.Text);

 if (isAuthenticated == true)

 {

 // Retrieve the set of roles for this user from the SQL Server

 // database or Active Directory. The roles are returned as a

 // string that contains pipe separated role names

 // for example "Manager|Employee|Sales|"

 // This makes it easy to store them in the authentication ticket

 string roles = RetrieveRoles(txtUserName.Text, txtPassword.Text

);

 // Create the authentication ticket and store the roles in the

 // custom UserData property of the authentication ticket

 FormsAuthenticationTicket authTicket = new

 FormsAuthenticationTicket(

 1, // version

 txtUserName.Text, // user name

 DateTime.Now, // creation

 DateTime.Now.AddMinutes(20),// Expiration

 false, // Persistent

 roles); // User data

 // Encrypt the ticket.

 string encryptedTicket =

 FormsAuthentication.Encrypt(authTicket);

 // Create a cookie and add the encrypted ticket to the

 // cookie as data.

 HttpCookie authCookie =

 new HttpCookie(FormsAuthentication.FormsCookieName,

 encryptedTicket);

 // Add the cookie to the outgoing cookies collection.

 Response.Cookies.Add(authCookie);

 // Redirect the user to the originally requested page

 Response.Redirect(FormsAuthentication.GetRedirectUrl(

 txtUserName.Text,

 false));

 }

}

Create an IPrincipal object

ate the IPrincipal object in the Application_AuthenticationRequest event handler in Global.asax. Use the
ricPrincipal class, unless you need extended role-based functionality. In this case create a custom class that

Put the IPrincipal object into the current HTTP context

.

Cre
Gene
implements IPrincipal.

The creation of a GenericPrincipal object is shown below

protected void Application_AuthenticateRequest(Object sender,

 EventArgs e)

{

 // Extract the forms authentication cookie

 string cookieName = FormsAuthentication.FormsCookieName;

 okie authCookie = Context.RequeHttpCo st.Cookies[cookieName];

 if(null == authCookie)

 {

 // There is no authentication cookie.

 return;

 }

 FormsAuthenticationTicket authTicket = null;

 try

 {

 authTicket = FormsAuthentication.Decrypt(authCookie.Value);

 }

 catch(Exception ex)

 {

 // Log exception details (omitted for simplicity)

 return;

 }

 if (null == authTicket)

 {

 // Cookie failed to decrypt.

 return;

 }

 // When the ticket was created, the UserData property was assigned

 // a pipe delimited string of role names.

 string[] roles = authTicket.UserData.Split(new char[]{'|'});

 // Create an Identity object

 FormsIdentity id = new FormsIdentity(authTicket);

 // This principal will flow throughout the request.

 GenericPrincipal principal = new GenericPrincipal(id, roles);

 // Attach the new principal object to the current HttpContext

 object

 Context.User = principal;

}

Authorize the user based on user name or role membership

Use declarative principal permission demands to restrict access to methods. Use imperative principal permission
demands and/or explicit role checks (IPrincipal.IsInRole) to perform fine-grained authorization within methods.

For

• Use SSL

addition to s
 th

replay atta

•

•

e user's credentials in the
authenticati

• If th
details in

• For each request after initial authentication:

ms Implementation Guidelines

when capturing credentials using an HTML form.

In using SSL for the login page, you should also use SSL for other pages, whenever the credential
or e authentication cookie is sent across the network. This is to mitigate the threat associated with cookie

cks.

Authenticate users against a custom data store. Use SQL Server or Active Directory.

Retrieve a role list from the custom data store and store a delimited list of roles within the UserData
property of the FormsAuthenticationTicket class. This improves performance by eliminating repeated
access to the data store for each Web request and also saves you from storing th

on cookie.

e list of roles is extensive and there is a danger of exceeding the cookie size limit, store the role
 the ASP.NET cache object or database and retrieve them on each subsequent request.

• Retrieve the roles from the ticket in the Application_AuthenticateRequest event handler.

• Use the GenericPrincipal class unless you have a specific need to create a custom IPrincipal

•

placing an order within a secure part of a site).

r.

Mor

• s Authentication with SQL Server 2000

• Create an IPrincipal object and store it in the HTTP context (HttpContext.User). The .NET
Framework also associates it with the current .NET thread (Thread.CurrentPrincipal).

implementation; for example, to support enhanced role-based operations.

Use two cookies; one for personalization and one for secure authentication and authorization. Make the
personalization cookie persistent (make sure it does not contain information that would permit a request to
perform a restricted operation; for example,

• Use a separate cookie name (using the Forms attribute of the <forms> element) and path for each Web
application. This will ensure that users who are authenticated against one application are not treated as
authenticated when using a second application hosted by the same Web serve

• Ensure cookies are enabled within client browsers. For a Forms authentication approach that does not
require cookies, see "Cookieless Forms Authentication" later in this chapter.

e information

See How To: Use Form in the Reference section of this guide.

• See How To: Use Forms Authentication with Active Directory in the Reference section of this guide.

• See How To: Create GenericPrincipal Objects with Forms Authentication in the Reference section of this
guide.

Hosting Multiple Applications Using Forms Authentication

If you are hosting multiple Web applications that use Forms authentication on the same Web server, it is possible
for a user who is authenticated in one application to make a request to another application without being redirected
to that application's logon page. The URL authorization rules within the second application may deny access to the
user, without providing the opportunity to supply logon credentials using the logon form.

This only happens if the name and path attributes on the <forms> element are the same across multiple

re inf

For ollowing Knowledge Base articles:

B: Forms Authentication Requests Are Not Directed to loginUrl Page

applications and each application uses a common <machineKey> element in Web.config.

Mo ormation

more information about this issue, and for resolution techniques, see the f

• Q313116, PR

• Q310415, PRB: Mobile Forms Authentication and Different Web Applications

Cookieless Forms Authentication

If you need a cookieless Forms authentication solution, consider using the approach used by the Microsoft Mobile
Internet Toolkit. Mobile Forms Authentication builds upon Forms Authentication but uses the query string to convey
the authentication ticket instead of a cookie.

More information

For more information about Mobile Forms Authentication, see article Q311568, INFO: How To Use Mobile Forms
Authentication with Microsoft Mobile Internet Toolkit, in the Microsoft Knowledge Base.

t
olution with other Passport enabled sites.

to

Passport Authentication

Use Passport authentication when the users of your application have Passport accounts and you want to implemen
a single-sign-on s

When you configure ASP.NET for Passport authentication, the user is prompted to log in and then is redirected
the Passport site. After successful credential validation, the user is redirected back to your site.

Configure ASP.NET for Passport authentication

To configure ASP.NET for Passport authentication, use the following Web.config settings.

<authentication mode="Passport">

 <passport redirectUrl="internal" />

</authentication>

<authorization>

 <deny users="?" />

 <allow users="*" />

</authorization>

Ma assport identity into roles in Global.asax p a P

map a dler
in Global.asax as shown below.
To Passport identity into roles, implement the PassportAuthentication_OnAuthentication event han

void PassportAuthentication_OnAuthenticate(Object sender,

 PassportAuthenticationEventArgs e)

{

 if(e.Identity.Name == "0000000000000001")

 {

 string[] roles = new String[]{"Developer", "Admin", "Tester"};

 Context.User = new GenericPrincipal(e.Identity, roles);

 }

}

Test role membership

The following code fragment shows how to retrieve the authenticated Passport identity and check role membership
within an aspx page.

PassportIdentity passportId = Context.User.Identity as

 PassportIdentity;

if ll == passpo (nu rtId)

{

 onse.Write(Resp "Not a PassportIdentity
");

 return;

}

Response.Write("IsInRole: Develeoper? " +

 Context.User.IsInRole("Developer"));

Custom Authentication

If none of the authentication modules supplied with t
you can use custom authentication and implement y
company may already have a custom authentication

he .NET Framework meet your precise authentication needs,
our own authentication mechanism. For example, your
strategy that is widely used by other applications.

 implement custom authentication in ASP.NET:

nfig as shown below. This notifies ASP.NET that it should not
invoke any of its built-in authentication modules.

To

• Configure the authentication mode in Web.co

• <authentication mode="None" />

• Create a class that implements the System.Web.IHttpModule interface to create a custom HTTP
module. This module should hook into the HttpApplication.AuthenticateRequest event and provide a

• Obtain credentials from the caller.

edentials against a store.

pal object and store it in HttpContext.User.

• nd protect an authentication token and send it back to the user (typically in a query
ie, or hidden form field).

delegate to be called on each request to the application when authentication is required.

An authentication module must:

• Validate the cr

• Create an IPrinci

 Create a
string, cook

• Obtain the authentication token on subsequent requests, validate it, and reissue it.

More information

For more information about how to implement a custom HTTP Module, see article Q307996, HOW TO: Create an
ASP.NET HTTP Module Using Visual C# .NET, in the Microsoft Knowledge Base.

Process Identity for ASP.NET

Run ASP.NET (specifically the Aspnet_wp.exe worker process) by using a least privileged account.

Use a Least Privileged Account

 a lea etermined attacker
manages to compromise the ASP.NET process that runs your Web application, they can easily inherit and exploit

 privileg ured with minimum privileges
tricts th

o

Don't use the highly-privileged SYSTEM account to run ASP.NET and don't grant the ASP.NET process account the
ilege. You may be tempted to do one or the other to allow your code to
identity (typically for network resource access). For alternate approaches,

Use st privileged account to lessen the threat associated with a process compromise. If a d

the es and access rights granted to the process account. An account config
res e potential damage that can be done.

Av id Running as SYSTEM

"Act as part of the operating system" priv
call the LogonUser API to obtain a fixed
see "Accessing Network Resources" later in this chapter.

Reasons for not running as SYSTEM, or granting the "Act as part of the operating system privilege" include:

• It significantly increases the damage that an attacker can do when the system is compromised, but it
doesn't affect the ability to be compromised.

More information

t of the operating system" privilege, see the Microsoft Systems Journal
August 1999 Security Briefs

• It defeats the principle of least privilege. The ASPNET account has been specifically configured as a least
privileged account designed to run ASP.NET Web applications.

For more information about the "Act as par
 column.

Dom controll

In general, it is not advisable to run your Web server on a domain controller, because a compromise of the server
is a mise o
process a outlined in article Q315158, BUG: ASP.NET Does Not Work with the

ain ers and the ASP.NET process account

compro f the domain. If you need to run ASP.NET on a domain controller, you need to give the ASP.NET
ccount appropriate privileges as

De NET Account on a Domain Controllerfault ASP , in the Microsoft Knowledge Base.

Using the Default ASPNET Account

 ASP.NET Web applications with the minimum

lt, ASP.NET Web applications run using this account, as configured by the <processModel> element

The local ASPNET account has been configured specifically to run
possible set of privileges. Use ASPNET whenever possible.

By defau
within Machine.config.

<processModel userName="machine" password="AutoGenerate" />

ount is created with a cryptographically
eing configured within the Security Account

Manager (SAM) database, the password is stored within the Local System Authority (LSA) on the local computer.
the ASP.NET worker process.

urces, the ASPNET account must be capable of being authenticated by the
s:

Reset the ASPNET account's password to a known value and then create a duplicate account (with the
same name and password) on the remote computer. This approach is the only option in the following

The Web server and remote computer are in separate domains with no trust relationship.

 The Web server and remote computer are separated by a firewall and you do not want to open
cessary ports to support Windows authentication.

•

y update and synchronize passwords, you can use a least privileged domain
account to run ASP.NET. It is vital that the domain account is fully locked down to mitigate the process

the ASP.NET worker process, he or she will have
lly locked down.

ccount and the account becomes compromised, the only computers subject
ters on which you have created duplicate accounts. If you use a domain

 visible to each computer on the domain. However, the account still needs to
cess those computers.

the userName and password attributes which
t that should be used to run the ASP.NET worker process (Aspnet_wp.exe). You have a number
iguring this setting. For example:

Note The machine user name indicates the ASPNET account. The acc
strong password when you install the .NET Framework. In addition to b

The system retrieves the password from the LSA, when it launches

If your application accesses network reso
remote computer. You have two choice

•

circumstances:

•

•
the ne

 If ease of administration is your primary concern, use a least privileged, domain account.

To avoid having to manuall

compromise threat. If an attacker manages to compromise
the ability to access domain resources, unless the account is fu

Note If you use a local a
to attack are the compu
account, the account is
have permission to ac

The <processModel> element

The <processModel> element in the Machine.config file contains
specify the accoun
of options for conf

• "mach
network acce

ine". The worker process runs as the default least privileged ASPNET account. The account has
ss but cannot be authenticated to any other computer on the network because the account is

puter and there is no authority to vouch for the account. On the network, this account is
ineName\ASPNET".

t has extensive privileges
on the local computer and also has the ability to access the network using the credentials of the computer. On

ented as "DomainName\MachineName$".

e

 will have the ability to store encrypted userName and password

Note In contrast to the way classic ASP applications run, ASP.NET code never runs in the dllhost.exe process or
the IW tion protection level is set to High (Isolated) in IIS.
P.NET P.NET worker process (Aspnet_wp.exe). The ASP.NET

ISAP led by the
InProcessIsapiApps Metabase entry, which should not be modified). The ISAPI extension is responsible for

ng requ ications then run in the ASP.NET worker process,
ere ap

In II ave
its o ce.

More inform

cessing

local to the com
represented as "Mach

• "system". The worker process runs as the local SYSTEM account. This accoun

the network, this account is repres

• Specific credentials. When you supply credentials for userName and password, remember the
principle of least privilege. If you specify a local account, the Web application cannot be authenticated on th
network unless you create a duplicate account on the remote computer. If you elect to use a least privileged
domain account, ensure it is not an account that has permission to access more computers on the network
than it needs to.

In the .NET Framework version 1.1 you
attributes in the registry.

as AM_MACHINENAME account even when the applica
AS requests sent to IIS are directly routed to the AS

I extension, Aspnet_isapi.dll, runs in the IIS (Inetinfo.exe) process address space. (This is control

routi ests to the ASP.NET worker process. ASP.NET appl
wh plication domains provide isolation boundaries.

S 6, you will be able to isolate ASP.NET applications by configuring application pools, where each pool will h
wn application instan

ation

• For more information about accessing network resources from ASP.NET Web applications, see "Ac
Network Resources," later in this chapter.

to create a custom account for running ASP.NET, see How To: Create a • For detailed information about how
Custom Account to Run ASP.NET in the Reference section of this guide.

th the of gatekeepers and trust
P.NET.

Impersonation and Local Resources

urces from your Web application code, you must configure the ACLs

permissions to the ASP.NET process account, and use URL
authorization, File authorization, and a combination of declarative and imperative role-based checks.

Imperso

If yo
unle
mus e marked as " Sensitive and cannot be delegated" within
Active Directory.

Note: Windo
authenticatio en when you are impersonating access remote resources and shares.
When using impersona nd accessing remote resources and shares, you may see the following
errors

• An e
2147023888

Impersonation

Wi introduction of the FileAuthorizationModule, and with the efficient use
boundaries, impersonation may prove more of a disadvantage than a benefit in AS

If you use impersonation and access local reso
attached to each secured resource to contain an ACE that grants at least read access to the authenticated user.

A better approach is to avoid impersonation, grant

nation and Remote Resources

u use impersonation and then access remote resources from your Web application code, the access will fail
ss you are using Basic, Forms, or Kerberos authentication. If you use Kerberos authentication, user accounts
t be suitably configured for delegation. They must b

ws 2000 SP 4 introduces a new user right in the security policy called "Impersonate a client after
n". You may need this right wh

tion under ASP.NET a

rror occurred while trying to load the string resources (getmodulehandle) failed with error -

• "Server application unavailable" and the event logs would show a 1000 error for ASP.NET.

• System.Web.HttpException: An error occurred while try to load the string resources (GetModuleHandle
faile

•

 with CLSID {A48ECD2F-169C-4F1A-BFC7-650D38BAB4F4} is either not valid or not

nfigure Kerberos delegation, see:

d with error 126)

Exception Details: System.ApplicationException: Access is denied.

• COM object
registered.

More information

For more information about how to co

• Flowing the Original Caller to the Database in Chapter 5, "Intranet Security."

• "How To: Implement Kerberos Delegation for Windows 2000" in the Reference section of this guide.

Impersonation and Threading

If a thread that is impersonating creates a new thread, the new thread inherits the security context of the ASP.NET
process account and not the impersonated account.

Accessing System Resources

ASP.NET performs no impersonation by default. As a result, if your Web application accesses local system
resources, it does so using the security context associated with the Aspnet_wp.exe worker process. The security
context is determined by the account used to run the worker process.

Accessing the Event Log

Least privileged accounts have sufficient permission to be able to write records to the event log by using existing
event sources. However, they do not have sufficient permissions to create new event sources. This requires a new

s

entry to be placed beneath the following registry hive.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\<log>

sue, create the event sources used by your application at installation time, when administrator
privileges are available. A good approach is to use a .NET installer class, which can be instantiated by the Windows

taller (.

 following registry key
ccess to the ASP.NET process account (of any impersonated account if your application uses

erson

To avoid this is

Ins if you are using .msi deployment) or by the InstallUtil.exe system utility if you are not

If you are unable to create event sources at installation time, you must add permission to the
and grant a
imp ation).

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog

e the following minimum perThe account(s) must hav missions:

•

• Set key value

• Notify

 follo
appl egistry:

Query key value

• Create subkey

• Enumerate subkeys

• Read

The wing code can be used to write to the Application event log from ASP.NET once permissions have been
ied to the r

string source = "Your Application Source";

string logToWriteTo = "Application";

string eventText = "Sample Event";

if (!EventLog.SourceExists(source))

{

 EventLog.CreateEventSource(source, logToWriteTo);

}

EventLog.WriteEntry(source, eventText, EventLogEntryType.Warning,

 234)

Accessing the Registry

Any registry key access to

installer classes and the InstallUtil.exe utility

;

accessed by your application requires an ACE in the ACL that grants (at minimum) read
the ASP.NET process account.

More information

For more information about , see the .NET Framework Tools on MSDN.

tment model objects.

Apartment Model Objects

here are
two issues to note:

• You must mark your ASP.NET page with the AspCompat directive, as shown below.

Accessing COM Objects

In classic ASP, requests are processed using threads from the Single Threaded Apartment (STA) thread pool. In
ASP.NET, requests are processed using threads from the Multithreaded Apartment (MTA) thread pool. This has
implications for ASP.NET Web applications that call Apar

When an ASP.NET Web application calls an Apartment model object (such as a Visual Basic 6 COM object) t

• <%@ Page Language="C#" AspCompat="True" %>

• Don't create your COM objects outside of specific Page event handlers. Always create COM objects in Page
even e page's constructor.

sp

t
d

thread n STA thread).

Specifying AspCompat causes the page to be processed by an STA thread. This avoids a thread switch from MTA
rsonating because a thread
personation token associated

t handlers (such as Page_Load and Page_Init). Don't create COM objects in th

The A Compat directive is required

By default, ASP.NET uses MTA threads to process requests. This results in a thread-switch when an Apartmen
mo el object is called from ASP.NET, because the Apartment model object can't be accessed directly by MTA

s (COM would use a

to STA. This is important from a security perspective if your Web application is impe
switch results in a lost impersonation token. The new thread would not have the im
with it.

The AspCompat directive is not supported for ASP.NET Web services. This means that when you call Apartmen
model objects from Web service code, a thread switch does occur and you lose the thread impersonation token.
This typically results in an Access Denied exception.

t

More information

and Apartment Objects

• See the following Knowledge Base articles for more information:

• Article Q303375, INFO: XML Web Services

 • Article Q325791, PRB: Access Denied Error Message Occurs When Impersonating in ASP.NET and
Calling STA COM Components

• For more information about how to determine the identity of the currently executing code, see the
Determining Identity section of Chapter 13, "Troubleshooting Security Issues."

n

create COM object outside of specific Page event handlers. The following code fragment illustrates what not
.

Do 't create COM objects outside of specific page events

Don't
to do

<% Page Language="C#" AspCompat="True" %> @

<script runat="server">

 // COM object created outside of Page events

 YourComObject obj = new apartmentObject();

 public void Page_Load()

 {

 obj.Foo()

 }

</script>

en you u e the object within specific Page events such as
_Loa

Wh se Apartment model objects, it is important to creat
Page d, as shown below.

<%@ Page Language="C#" AspCompat="True" %>

<script runat="server">

public void Page_Load()

{

 YourComObject obj = new apartmentObject();

 obj.Foo()

}

</script>

More information

For more information, see article Q308095, "PRB: Creating STA Components in the Constructor in ASP.NET
ASPCOMPAT Mode Negatively Impacts Performance" in the Microsoft Knowledge Base.

 and

soft elopment system support all threading
dels (t, when hosted in COM+, C# and Visual Basic
T obj

• The resources your application needs to access.

For ers, Active Directory objects, and so on.

Note For information specific to accessing remote SQL Server databases, see Chapter 12, Data

C# VB .NET objects in COM+

Micro C#® development tool and Microsoft Visual Basic® .NET dev
mo Free-threaded, Neutral, Both, and Apartment). By defaul
.NE ects are marked as Both. As a result, when they are called by ASP.NET, access is direct and you do not
incur a thread switch.

Accessing Network Resources

Your application may need to access network resources. It is important to be able to identify:

example, files on file shares, databases, DCOM serv

• The identity used to perform the resource access.

If your application accesses remote resources, this identity must be capable of being authenticated by the
remote computer.

Access Security.

can access rYou emote resources from an ASP.NET application by using any of the following techniques:

 identity.

nonymous Internet user account (for example, IUSR_MACHINE).

onUser API and impersonating a specific Windows identity.

 Process Identity

attempts to access remote resources. If you want to use the ASP.NET process account for
remote resource access, you have three options:

•
rd on the

rem

te" value.

e the ASPNET password to a known value, the password in the LSA will no
longer match the SAM account password. If you need to revert to the "AutoGenerate" default, you

spnet_regiis.exe, to reset ASP.NET to its default configuration. For more information, see article
Q306005, HOWTO: Repair IIS Mapping After You Remove and Reinstall IIS

• Use the ASP.NET process

• Use a serviced component.

• Use the A

• Use the Log

• Use the original caller.

Using the ASP.NET

When the application is not configured for impersonation, the ASP.NET process identity provides the default identity
when your application

Use mirrored accounts.

This is the simplest approach. You create a local account with a matching user name and passwo
ote computer. You must change the ASPNET account password in User Manager to a known value (always

use a strong password). You must then explicitly set this on the <processModel> element in Machine.config,
and replace the existing "AutoGenera

Important If you chang

will need to do the following:

Run A
 in the Microsoft

Knowledge Base.

• Create a custom, least privileged local account to run ASP.NET and create a duplicate account on the
remote computer.

• Run ASP.NET using a least-privileged domain account.

This assu the same or trusting domains.

re info

 more in process account, see "How To: Create a Custom Account to

mes that client and server computers are in

Mo rmation

For formation about configuring an ASP.NET
Run A ETSP.N " in the Reference section of this guide.

Usi

You can use an out of process-serviced component, configured to run as a fixed identity to access network

ng a Serviced Component

resources. This approach is shown in Figure 8.6.

Figure 8.6 ource
cess

ing an ou lowing
antage

• .

application.

•

•

 Enterprise Services process-account the "Act as part of the
tion is

 can u
h

Your application supports anonymous access.

• ed for anonymous
access).

To use the anonymous account for remote resource access

. Using an out of process serviced component to provide a fixed identity for network res
ac

Us t of process-serviced component (in an Enterprise Services server application) has the fol
adv s:

Flexibility in terms of the identity used. You don't just rely on the ASP.NET identity

• Trusted or higher-privileged code can be isolated from your main Web

An additional process hop raises the bar from a security perspective. It makes it much tougher for an
attacker to cross the process boundary to a process with raised privileges.

If you need to hand-craft impersonation with LogonUser API calls, you can do so in a process that is
separated from your main Web application.

Note To call LogonUser you must give the
operating system" privilege. Raising the privileges for a process that is separate from your Web applica
less of a security concern.

Using the Anonymous Internet User Account

You se the anonymous Internet user account to access network resources if IIS is configured for Anonymous
aut entication. This is the case if one of the following is true:

•

Your application uses Forms, Passport, or Custom authentication (where IIS is configur

1. Configure IIS for Anonymous authentication. You can set the ASP.NET authentication mode to Windows,
Forms, Passport, or None, depending upon the authentication requirements of your application.

SP.NET for impersonation. Use the following setting in Web.config: 2. Configure A

3. <identity impersonate="true" />

,

g the same user name and password on the remote computer. This
approach is necessary when you are making calls across non-trusting domains or through firewalls where the

To support this approach, you must also:

a. Use Internet Services Manager to clear the Allow IIS to Control Password checkbox for the

ith
network credentials (and therefore cannot be used to access network resources). If you don't select

this option, the logon session is an interactive logon session with network credentials.

Important If you impersonate the anonymous account (for example, IUSR_MACHINE), resources must be
ly configured ACLs). Resources that your application needs to

lications

You can use a separate anonymous Internet user account for each virtual root within your Web site. In a hosted
e, track, and audit requests that originate from separate Web

applications. This approach is shown in Figure 8.7.

4. Configure the anonymous account as a least privileged domain account

—or—

Duplicate the anonymous account by usin

necessary ports to support Integrated Windows authentication are not open.

anonymous account.

If you select this option, the logon session created using the specified anonymous account ends up w
NULL

b. Set the account's credentials both in User Manager and in Internet Services Manager.

secured against this account (using appropriate
access must grant read access (at minimum) to the anonymous account. All other resources should deny access to
the anonymous account.

Hosting multiple Web app

environment, this allows you to separately authoriz

Figure 8.7. Impersonating separate anonymous Internet user accounts per application (v-dir)

To configure the anonymous Internet user account for a specific virtual directory

2. Select the virtual directory you want to configure, right-click, and then click Properties.

3. Click the Directory Security tab.

1. Start Internet Services Manager from the Administrative Tools programs group.

4. Click Edit within the Anonymous access and authentication control group.

5. Select Anonymous access, and then click Edit.

6. Enter the user name and password of the account that you want IIS to use when anonymous users

7. Make sure that Allow IIS to control password is NOT selected.

Identity

 name and password attributes on the <identity>

nded. You should avoid them both on Windows 2000 servers,
the operating system" privilege to the ASP.NET process account.

ication.

te resource access, you must be able to delegate the caller's security

ation using the original caller's
cale, because database connection pooling

is rendered ineffective. The security context for database connections is different for each user.

 follo

• Kerberos. For more information, see How To: Implement Kerberos Delegation for Windows 2000

connect to the site.

Using LogonUser and Impersonating a Specific Windows

You can impersonate a specific identity by configuring user
element in Web.config, or by calling the Win32® LogonUser API in your application code.

Important These approaches are not recomme
because it forces you to grant the "Act as part of
This significantly reduces the security of your Web appl
Windows Server 2003 will lift this restriction.

Using the Original Caller

To use the original caller's identity for remo
context from the Web server to the remote computer.

Scalability Warning: If you access the data services tier of your applic
impersonated identity, you severely impact the application's ability to s

The wing authentication schemes support delegation:

 within

ion supports remote resource access because the original caller's credentials are
t the Web server. These can be used to respond to authentication challenges from

rs.

njunction with an interactive or batch logon session. The type of logon
tication is configurable in the IIS Metabase. For more information, see

nformation Services 5.1 on MSDN®.

authentication is the least secure of the approaches that support delegation. This
xt user name and password are passed from the browser to the server over the

network and they are cached in memory at the Web server. You can use SSL to protect credentials
t the Web server where possible.

ource access

rtificate (with IIS certificate mapping), or Basic

the Reference section of this guide.

• Client certificates mapped to Windows accounts. The mapping must be performed by IIS.

• Basic. Basic authenticat
available in clear text a
remote compute

Basic authentication must be used in co
session that results from Basic authen
the Platform SDK: Internet I

Important Basic
is because a clear te

while in transit but you should avoid caching clear text credentials a

To use the original caller for remote res

1. Configure IIS for Integrated Windows (Kerberos), Ce
authentication.

2. Configure ASP.NET for Windows authentication and impersonation.

3. <authentication mode="Window" />

4. <identity impersonate="true" />

5. If you use Kerberos delegation, configure Active Directory accounts for delegation.

• For more information about configuring Kerberos delegation, see "How To: Implement Kerberos

More information

Delegation for Windows 2000" in the Reference section of this guide.

• For more information about IIS certificate mapping, see "Step-by-Step Guide to Mapping Certificates to
User Accounts".

• For more information about ASP.NET Impersonation, see the .NET Framework Developers Guide on MSDN.

If your application needs to access files on a Universal Naming Convention (UNC) share using ASP.NET, it is
re's permissions to grant

at least read access to either the ASP.NET process account or the impersonated identity (if your application is

bases located on non-Windows platforms
:

ndaries associated with the resource?

t the calling application (using a
fixed process or service identity)?

ng feature of Enterprise Services.

If the resource needs to be able to authenticate the original caller (and Windows authentication is not an option),
tions:

Pass credentials in a connection string. Use SSL or IPSec to secure clear text credentials passed over a
netw

Store credentials securely within your application, for example by using DPAPI. For more information about
secu

Accessing Files on a UNC File Share

important to add NTFS permissions to the share's folder. You will also need to set the sha

configured for impersonation).

Accessing Non-Windows Network Resources

If your application needs to access non-Windows resources such as data
or mainframe applications, you need to consider the following questions

• What are the gatekeepers and trust bou

• What credentials are required for authentication?

• Does the resource need to know the original caller identity, or does it trus

• What is the performance cost associated with establishing connections? If the cost is significant you may
need to implement connection pooling; for example, by using the object pooli

you have the following op

• Pass credentials using (method call) parameters.

•
ork.

rely storing database connection strings, see "Storing Database Connection Strings Securely" in Chapter
12, "Data Access Security."

• Use a centralized data store for authentication that both platforms can access; for example, an LDAP

Use SSL to secure the communication link between browser and Web server. SSL provides message confidentiality
rity. Use SSL and/or IPSec to provide a secure channel from Web server to application server or

For more information about secure communication, see "Chapter 4, Secure Communication

directory.

Secure Communication

and message integ
database server.

More information

.

Web applications often need to store secrets. These need to be secured against rogue administrators and malicious
s, such as:

password of a SQL Server login account on a SQL Server computer located across the network.

at
prevent users from accessing privileged files, if an attacker does gain access to a configuration file, the secret

 not be in plain text.

Storing Secrets

Web user

• Rogue administrators. Administrators and other unscrupulous users should not be able to view
privileged information. For example, the administrator of the Web server should not be able to read the

• Malicious Web users. Even though there are components (such as the FileAuthorizationModule) th

in the file should

Typical examples of secrets include:

• SQL connection strings. A common mistake is to store the user name and password in plain text. The
s recommendation is to use Windows authentication instead of SQL authentication. If you can't use Window

authentication, see the following sections in Chapter 12, Data Access Security, which present secure
alternatives:

• Storing Database Connections Securely

• Secure Communication

Application roles must be activated with a stored
procedure that requires the role name and associated password. For more information, see Authorization

• Credentials used for SQL application roles. SQL
 in

xample:

Chapter 12, "Data Access Security."

• Fixed identities in Web.config. For e

• <identity impersonate="true" userName="bob"

• password="inClearText"/>

In the .NET Framework version 1.1, ASP.NET provides the ability to encrypt the username and password and
store it safely in a registry key.

• Process identity in Machine.config. For example:

• <process userName="cUsTuMUzerName" password="kUsTumPazzWerD" >

ser name and "AutoGenerate" password.

to encrypt the user name and password and

ata securely. It is impossible to safely store keys in software. However, certain
tasks can mitigate the risk. An example is to create a custom configuration section handler, which uses

.

te. To use SQL server to manage ASP.NET Web application session state, use the
following Web.config settings.

By default ASP.NET manages the secret if you use the "Machine" u

In the .NET Framework version 1.1, ASP.NET provides the ability
store it safely in a registry key.

• Keys used to store d

asymmetric encryption to encrypt a session key. The session key can then be stored in a configuration file

• SQL Server session sta

• <sessionState Ã‚Â… stateConnectionString="tcpip=127.0.0.1:42424"

• sqlConnectionString="data source=127.0.0.1;

• user id=UserName;password=MyPassword" />

In the .NET Framework 1.1, ASP.NET provides the ability to encrypt this information.

s authentication against a database.

For more information, see "Authenticating Users against a Database

• Passwords used for Form

If your application validates authentication credentials against a database, don't store passwords in the
database. Use a hash of the password with a salt value and compare hashes.

" in Chapter 12, "Data Access Security."

t

A nu lude:

Op ions for Storing Secrets in ASP.NET

mber of approaches are available to .NET Web application developers to store secrets. These inc

• .NET cryptography classes. The .NET Framework includes classes that can be used for encryption and

in32 APIs that encrypt and decrypt data by using a
key derived from the user's password. When using DPAPI, you do not deal with key management. The
ope

•
log in a clear text form,

• ying Crypto API.

ption and decryption.

re inf

For

Consider Storing Secrets in Files on Separate Logical Volumes

eb application directories on a separate logical volume from the operating system (for
example, E: instead of C:). This means that Machine.config (located under C:\WINNT\Microsoft.NET) and

ential
volu

beca

nonicalization bugs can expose files in the Web application folders.

ve been completely
resolved.

• same logical volume.

 bugs

b appl sses

If your ASP.NET W

•
ena thentication

C) on the page's view state when the page is posted back from the client.

decryption. These approaches require that you safely store the encryption key.

• Data Protection API (DPAPI). DPAPI is a pair of W

rating system manages the key, which is the user's password.

COM+ Constructor Strings. If your application uses serviced components, you can store the secret in an
object construction string. The string is stored in the COM+ cata

CAPICOM. This is a Microsoft COM object that provides COM-based access to the underl

• Crypto API. These are low level Win32 APIs that perform encry

Mo ormation

more information, see the entry for Cryptography, CryptoAPI and CAPICOM in the Platform SDK on MSDN.

Consider installing W

pot ly other files that contain secrets such as, Universal Data Link (UDL) files, are located on a separate logical
me from the Web application directories.

The rationale for this approach is to protect against possible file canonicalization and directory traversal bugs
use:

• File ca

Note File canonicalization routines return the canonical form of a file path. This is usually the absolute
pathname in which all relative references and references to the current directory ha

Directory traversal bugs can expose files in other folders on the

No of the sort described above have yet been published that exposed files on other logical volumes.

Securing Session and View State

We ications must manage various types of state including view state and session state. This section discu
secure state management for ASP.NET Web applications.

Securing View State

eb applications use view state:

Ensure the integrity of view state (to ensure it is not altered in any way while in transit) by setting the
bleViewStateMac to true as shown below. This causes ASP.NET to generate a Message Au

Code (MA

• <% @

idation attribute on the <machineKey> element in Machine.config, to specify the type
encryption

 than Message Digest 5 (MD5) so it
is consid or MD5 can be decoded in transit or
on the cl

• ndard (3DES) to detect changes in the view state and to also encrypt it
while in transit. When in this state, even if view state is decoded, it cannot be viewed in plain text.

 Page enableViewStateMac=true >

• Configure the val
of to use for data validation. Consider the following:

• Secure Hash Algorithm 1 (SHA1) produces a larger hash size
ered more secure. However, view state protected with SHA1
ient side and can potentially be viewed in plain text

Use 3 Data Encryption Sta

Securing Cookies

Cookies that contain authentication or authorization data or other sensitive data should be secured in transit by
using SSL. For Forms authentication, the FormsAuthentication.Encrypt method can be used to encrypt the
authentication ticket, passed between client and server in a cookie.

Securing SQL Session State

The default (in-process) ASP.NET session state handler has certain limitations. For example, it cannot work across
computers in a Web farm. To overcome this limitation, ASP.NET allows session state to be stored in a SQL Server
database.

SQL session state can be configured either in Machine.config or Web.config. The default setting in machine.config is
shown below.

<sessionState mode="InProc"

 stateConnectionString="tcpip=127.0.0.1:42424"

 stateNetworkTimeout="10"

 sqlConnectionString="data source=127.0.0.1;user

 id=sa;password="

 cookieless="false" timeout="20"/>

By default, the SQL script InstallSqlState.sql, which is used for building the database used for SQL session state is
installed at the following location:

C:\WINNT\Microsoft.NET\Framework\v1.0.3705

When you use SQL session state there are two problems to consider.

• You must secure the database connection string.

• You must secure the session state as it crosses the network.

Securing the Database Connection String

If you use SQL authentication to connect to the server, the user ID and password information is stored in plain text
in web.config as shown below.

<sessionState

 cookieless="false"

 timeout="20"

 mode="InProc"

 stateConnectionString="tcpip=127.0.0.1:42424"

 sqlConnectionString=

 "data source=127.0.0.1;user

 id=UserName;password=ClearTxtPassword"

/>

By default the HttpForbiddenHandler protects configuration files from being downloaded. However, any user who
n still see the user name and password. A

 Windows authentication to SQL Server.

entication, you can use the ASP.NET process identity (typically ASPNET)

te account (with the same name and password) on the database server.

2. Create a SQL login for the account.

3. Create a database user in the ASPState database and map the SQL login to the new user.

5. Configure permissions in the database for the database role.

n change the connection string to use a trusted connection, as shown below:

has direct access to the folders where the configuration files are stored ca
better practice is to use

To use Windows auth

1. Create a duplica

The ASPState database is created by the InstallSQLState.sql script.

4. Create a user defined database role and add the database user to the role.

You can the

sqlConnectionString="server=127.0.0.1;

 database=StateDatabase;

Securing session state across the network

You may need to pro
how secure

 Integrated Security=SSPI;"

tect the session state as it crosses the network to the SQL Server database. This depends on
 the network hosting the Web server and data servers is. If the database is physically secured in a

trusted environment, you may be able to do without this extra security measure.

he connection

used for the session state, and not all traffic that passes between the computers.

igure

You can use IPSec to protect all IP traffic between the Web servers and SQL Server, or alternatively, you can use
SSL to secure the link to SQL Server. With this approach, you have the option of encrypting just t

More information

• For more information about how to set up SQL Session State, see article Q317604, HOW TO: Conf
SQL Server to Store ASP.NET Session State, in the Microsoft Knowledge Base.

• For more information about using SSL to SQL Server, see How To: Use SSL to Secure Communication with
SQL Server 2000 in the Reference section of this guide.

n • For more information about using IPSec, see How To: Use IPSec to Provide Secure Communicatio
Between Two Servers in the Reference section of this guide.

Web Farm Considerations

In a Web farm scenario, there is no guarantee that successive requests from the same client are serviced by the
same Web server. This has implications for state management and for any encryption that relies on attributes
maintained by the <machineKey> element in Machine.config.

Session State

The default ASP.NET in-process session state handling (which mirrors previous ASP functionality) results in server
affinity and cannot be used in a Web farm scenario. For Web farm deployments, session state must be stored out
of process in either the ASP.NET State service or a SQL Server database as described earlier.

Note You cannot rely on application state for maintaining global counters or unique values in Web farm (Web
application configured to run on multiple servers) or Web garden (Web application configured to run on multiple
processors) scenarios because application state is not shared across processes or computers.

DPAPI

DPAPI can work with either the machine store or user store (which requires a loaded user profile). If you use DPAPI
with the machine store, the encrypted string is specific to a given computer and therefore you must generate the
encrypted data on every computer. Do not copy the encrypted data across computers in a Web farm or cluster.

If you use DPAPI with the user store, you can decrypt the data on any computer with a roaming user profile.

More information

For more information about DPAPI, see Chapter 12, Data Access Security.

Using Forms Authentication in a Web Farm

If you are using Forms authentication, it is essential that all of the servers in the Web farm share a common
machine key, which is used for encryption, decryption, and validation of the authentication ticket.

The machine key is maintained by the <machineKey> element within Machine.config. The default setting is
shown below.

<machineKey validationKey="AutoGenerate"

 decryptionKey="AutoGenerate"

 validation="SHA1"/>

Thi ing results in every machine generating a different validation and decryption key. You must change the
<machineKey> element and place common key values across all servers in the Web farm.

s sett

e <m

The
decr

Whe
stat

Th achineKey> Element

<machineKey> element located in Machine.config is used to configure the keys used for encryption and
yption of Forms authentication cookie data and view state.

n the FormsAuthentication.Encrypt or FormsAuthentication.Decrypt methods are called, and when view
e is created or retrieved, the values in the <machineKey> element are consulted.

<machineKey validationKey="autogenerate|value"

 decryptionKey="autogenerate|value"

 validation="SHA1|MD5|3DES" />

 validationThe Key attribute

The value of the validationKey attribute is used to create and validate MAC codes for view state and Forms
auth
gene

• With Forms authentication, this key works in conjunction with the <forms> protection attribute. When
the protection attribute is set to Validation, and then when the FormsAuthentication.Encrypt method is
calle

he MAC

lue of a control's view state and the validationKey are used to compute a MAC,
view state. When the view state is posted back from the client, the MAC is

recomputed and compared to the MAC that is appended to the view state.

entication tickets. The validation attribute signifies what algorithm to use when performing the MAC
ration. Note the following:

d, the ticket value and the validationKey are used to compute a MAC that is appended to the cookie.
When the FormsAuthentication.Decrypt method is called, the MAC is computed and compared to t
that is appended to the ticket.

• With view state, the va
which is appended to the

The decryptionKey attribute

The value of the decryptionKey attribute is used to encrypt and decrypt Forms authentication tickets and view
state. The DES or Triple DES (3DES) algorithms are used. The precise algorithm depends on whether or not th
Windows 2000 Hi

e
gh Encryption Pack is installed on the server. If it is installed 3DES is used, otherwise DES is

ith the <forms> protection attribute. When
the protection attribute is set to Encryption, and the FormsAuthentication.Encrypt or Decrypt methods
are called, the ticket value is encrypted or decrypted with the specified decryptionKey value.

ith the decryptionKey value when sent

This attribute dictates what algorithm to use when validating, encrypting, or decrypting. It can take the values
1, M

• (20
is

SHA1 is a popular algorithm because of its larger digest size compared to other algorithms.

•

• This encrypts data using the Triple DES (3DES) algorithm.

Not HA1 is

More information

• For i , HOW

used. Note the following:

• With Forms authentication, the key works in conjunction w

• With view state, the value of a controls view state is encrypted w
to the client and is decrypted when the client posts the data back to the server.

The validation attribute

SHA D5, or 3DES. The following describes these values:

SHA1. The HMACSHA1 algorithm is actually used when the setting is SHA1. It produces a 160 bit
byte) hash or digest of the input. HMACSHA1 is a keyed hashing algorithm. The key used as the input for th
algorithm is specified by the validationKey attribute.

MD5. This produces a 20-byte hash using the MD5 algorithm.

3DES.

e When the validation attribute is set to 3DES, it is not actually used by Forms authentication. S
used instead.

nformation about how to create keys suitable for placing in Machine.config, see article Q312906
TO: Create Keys w/ C# .NET for Use in Forms Authentication, in the Microsoft Knowledge Base.

• For more information about the Windows 2000 High Encryption Pack, see Windows 2000 High Encryption
Pack.

ch of
s presented in this chapter also apply to the development of

ASP.NET Web services and .NET Remoting objects hosted by ASP.NET. To summarize:

• If your application uses Forms authentication and if performance is an issue when authenticating the user,

eate a principal and store it in the context on each request.

bal application cache to

unt
Windows server that your application needs to access.

.NET, use the principle of least privilege. For example:

If you use a local account. you must create a duplicated account on any remote computer that
t use local accounts when your application needs to access

rewall prevents Windows authentication.

Summary

This chapter has described a variety of techniques and approaches for securing ASP.NET Web applications. Mu
the guidance and many of the recommendation

retrieve a list of roles and store them in the authentication ticket.

• If you use Forms authentication, always cr

• If there are too many roles to store in an authentication cookie, then use the glo
store the roles.

• Don't create a custom least privileged account to run ASP.NET. Instead, change the ASPNET acco
password and create a duplicate account on any remote

• If you must create a custom account to run ASP

• Use a least privileged domain account if administration is the main concern.

•
the Web application needs to access. You mus
resources in non-trusting domains, or where a fi

•

NET account "Act as part of the operating system" privilege.

sitive information is passed between browser and Web server.

hentication (as opposed to personalization).

•

Don't run ASP.NET using the local SYSTEM account.

• Don't give the ASP

• Use SSL when:

• Security sen

• When Basic authentication is used (to protect credentials).

• When Forms authentication is used for aut

Avoid storing secrets in plain text.

Enterprise Services Security

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

See the Landing Page for the starting oint and complete overview of Building Secure ASP.NET Applications.

ntained within
Enterprise Services applications. It shows you how and when to use Enterprise Services (COM+) roles for

ersonation. It also shows you how to securely call

Contents

 p

Summary: This chapter explains how to secure business functionality in serviced components co

authorization, and how to configure RPC authentication and imp
serviced components from an ASP.NET Web application and how to identify and flow the original caller's security
context through a middle tier serviced component. (30 printed pages)

Security Architecture
Configuring Security
Programming Security
Choosing a Process Identity
Accessing Network Resources
Flowing the Original Caller
RPC Encryption
Building Serviced Components
DCOM and Firewalls
Calling Serviced Components from ASP.NET
Security Concepts
Summary

Traditional COM+ services such as distributed transactions, just-in-time activation, object pooling, and concurrenc
management are available to .NET components. With .NET, such services are referred to as Enterprise Services.
They are essential for many middle-tier .NET co

y

mponents running within .NET Web applications.

 Services
applications are shown in Figure 9.1. The client application shown in Figure 9.1 is an ASP.NET Web application.

To add services to a .NET component, you must derive the component class from the EnterpriseServices.
ServicedComponent base class and then specify precise service requirements using .NET attributes compiled into
the assembly that hosts the component.

This chapter describes how to build secure serviced components and how to call them from ASP.NET Web
applications.

Security Architecture

The authentication, authorization, and secure communication features supported by Enterprise

Figu

Noti at authentication and secure communication features are provided by the underlying RPC transport used
by Distributed COM (DCOM). Authorization is provided by Enterprise Services (COM+) roles.

The following summarizes the main elements of the Enterprise Services security architecture:

• lers. This means that unless
you have tak
NTLM au

• Authorization is provided through Enterprise Services (COM+) roles, which can contain Microsoft®
em group or user accounts. Role membership is defined within the COM+ catalog

 using the Component Services tool.

Note If the Enterprise Services application uses impersonation, caller authorization using Windows ACLs on
lable.

• When a client (for example, an ASP.NET Web application) calls a method on a serviced component, after
ise Services interception layer accesses the COM+ catalog
checks whether membership of the role or roles permits

ponent, interface, and method.

ss, the method is called. If the client doesn't belong to an
flect the failed access

e original caller's security context flows through to the

• To secure the DCOM communication link between client and server applications, either the RPC Packet
used (to provide message integrity), or the RPC Packet Privacy

re 9.1. Enterprise Services role-based security architecture

ce th

Enterprise Services applications use RPC authentication to authenticate cal
en specific steps to disable authentication, the caller is authenticated using either Kerberos or

thentication.

Windows® operating syst
and is administered by

secured resources is also avai

the authentication process is complete, the Enterpr
to determine the client's role membership. It then
authorized access to the current application, com

• If the client's role membership permits acce
appropriate role, the call is rejected, and a security event is optionally generated to re
attempt.

Important To implement meaningful role-based authorization within an Enterprise Services application
called by an ASP.NET Web application, Windows authentication and impersonation must be used within the
ASP.NET Web application in order to ensure that th
serviced component.

Integrity authentication level can be
authentication level can be used (to provide message confidentiality).

Gatekeepers and Gates

The Enterprise Services runtime acts as the gatekeeper for ser
(authorization points) within an Enterprise Services application

viced components. The individual gates
 are shown in Figure 9.2. You configure these gates

sing Enterprise Services roles, which you must populate with the appropriate Windows group and user
ounts.

 You must also ensure that access checking (role-based security) is enabled for your Enterprise Services
application and that the appropriate level of authentication is being used. For more information about how to

ng Security

by u
acc

Note

configure security, see Configuri later in this chapter.

Figure 9.2. Gatekeepers within an Enterprise Services application

 response to a client issuing a method call on a serviced
d below:

An initial access check is performed by the subsystem responsible for activating Enterprise Services
applications—the COM Service Control Manager (SCM)—when a call to a serviced component results in an
activation request (and the creation of a new instance of the COM+ surrogate process, Dllhost.exe).

To successfully pass this access check, the caller must be a member of at least one role defined within the

ss check is performed when the client's call enters the Dllhost.exe process instance.

caller is a member of at least one role defined within the application, this access check

The final access check occurs when the client's call enters either a server or library application.

e a member of a role that is associated with either,
client's call.

Important After a call invokes a method on a serviced component, no further access checks are
made if the component communicates with other components located in the same application.

ecks do occur if a component calls another component within a separate
or server).

ple because it requires encryption to ensure
e data sent to a serviced component remains confidential and tamper proof while in transit across the
k, you should use a server application.

nforced for a server application, while library applications inherit their
tication level from the host process.

figure the activation type of an Enterprise Services application, use the assembly level
ApplicationActivation attribute as shown below.

There are three distinct access checks performed in
component. These are illustrated in Figure 9.2 and describe

1.

application.

2. A second acce

Once again, if the
succeeds.

3.

To successfully pass this access check, the caller must b
the interface, class, or method that is the target of the

However, access ch
application (library

Use Server Applications for Increased Security

If your application needs to enforce an authentication level, for exam
that th
networ

The authentication level can be e
authen

To con

 [assembly: ApplicationActivation(ActivationOption.Server)]

e Activation Type to Server application on the Activation page of the
og within Component Services.

Role-based security works in a similar fashion for in-process library applications and out-of-process server

 of the client (host)
process. For example, if the client process runs with administrator privileges, the library application will also
have a

Impersonation. The impersonation level of a library application is inherited from the client process and
canno et explicitly.

A application is inherited from the client process. With
library thentication. This option is available on the Security
page of a l

This o from other out-of-process COM
compo ts.

With library applications you should always assign roles at the class, interface or method level. This is also best
tice fo

s that or of the client
ess. Th n to perform role-

thor

 Acc Security Requirements

curity (CAS) requires that code have particular permissions to be able to perform certain operations
cess ent where code is downloaded from the
et. In ted.

lly, a ions that use serviced components are fully trusted, and as a result CAS has limited use.
that the calling code have the necessary permission to call unmanaged

Unmanaged code permission is required to activate and perform cross context calls on serviced
compon

If is application must have
nman ode permission.

If a reference to a serviced component is passed to untrusted code, methods defined on the serviced
mpo trusted code.

igu ecurity

ction ows you how to configure security for:

•

This is equivalent to setting th
application's Properties dial

Security for Server and Library Applications

applications.

Note the following differences for library applications:

• Privileges. The privileges of a library application are determined by the privileges

dministrator privileges.

•
t be s

• uthentication. The authentication level of a library
 applications, you can explicitly enable or disable au

ibrary application's Properties dialog box.

ption is typically used to support unauthenticated call-backs
nen

Assign roles to classes, interfaces or methods

prac r server applications.

User are defined within library application roles cannot be added to the security descript
proc is means that you must use at least class-level security to allow a library applicatio
based au ization.

Code ess

Code Access Se
and ac restricted resources. CAS is most useful in a client environm
Intern this type of situation it is unlikely that the code is fully trus

Typica pplicat
However, Enterprise Services does demand
code. This implies the following:

•
ents.

• the client of a serviced component is an ASP.NET Web application, th
u aged c

•
co nent cannot be called from the un

Conf ring S

This se sh

• A serviced component running in an Enterprise Services server (out-of-process) application.

An ASP.NET Web application client.

Configuring a Server Application

The st equired to configure an Eeps r nterprise Services server application are shown in Figure 9.3.

9.3. Configuring Enterprise Services secFigure urity (click thumbnail for larger image)

Dev n

You hin the COM+ catalog at development time by using .NET attributes
with ed component. These attributes are used to populate the COM+ catalog
whe

Other configuration steps such as populating roles with Windows group and user accounts and configuring a run-as
iden ion (Dllhost.exe instance) must be configured using the Component Services
adm tically using script) at deployment time.

Con re authentication

To s ratively, use the ApplicationAccessControl assembly level
attribute as shown below.

elopment time vs. deployment time configuratio

can configure most security settings wit
in the assembly that contains the servic
n the serviced component is registered with COM+ by using the Regsvcs.exe tool.

tity for the server applicat
inistration tool (or programma

figu

et the application authentication level decla

 [assembly: ApplicationAccessControl(

 Authentication = AuthenticationOption.Call)]

This ntication Level for Calls value on the Security page of the application's
Pro dialog within Component Services.

Not ects the authentication level used by the Enterprise Services
appl ark negotiation is employed, which always results in the higher of
the two
For M authentication level used by an ASP.NET client application, see
Conf

 is equivalent to setting the Authe
perties

e The client's authentication level also aff
ication, because a process of high-water m

 settings being used.
more information about configuring the DCO
iguring an ASP.NET Client Application, later in this section.

For n level negotiation, see the Security more information about DCOM authentication levels and authenticatio
Concepts section of this chapter.

Con authorization (component-level access checks)

To e t the component, interface or method level you must:

• able access checks at the application level.

 the following .NET attribute to enable application-wide access checks.

figure

nable fine-grained authorization a

En

Use

 [assembly: ApplicationAccessControl(true)]

cess checks for this application check box on the Security
page of the application's Properties dialog box within Component Services.
This is equivalent to selecting the Enforce ac

Important Failure to set this attribute results in no access checks being performed.

• Conf

For mea security, enable access checking at the process and component levels by using the
following .NET attribute.

igure the application's security level at the process and component level.

ningful role-based

 [assembly: ApplicationAccessControl(AccessChecksLevel=

 AccessChecksLevelOption.

 ApplicationComponent)]

Th nt to selecting the Perform access checks at the process and component levels che
bo on the Security page of the application's Properties dialog box within Component Services.

is is equivale ck
x

cess checking at the process and component level for library applications.

cess checks.

To enabl shown

Note Always enable ac

• Enable component-level ac

e component-level access checks, use the ComponentAccessControl class-level attribute as
below.

 [ComponentAccessControl(true)]

public class MyServicedComponent : ServicedComponent

{

}

This is equivalent to selecting the Enforce Component Level Access Checks check box on the Security
pag

Note This setting is effective only if you have enabled application-level access checking and have
ks, as described previously.

Cre

Roles can be created and assigned at the application, component (class), interface, and method levels.

Adding roles to an application

e SecurityRole assembly level attribute as shown below.

e of the component Properties dialog box within Component Services.

configured process and component level access chec

ate and assign roles

To add roles to an application, use th

 [assembly:SecurityRole("Employee")]

[assembly:SecurityRole("Manager")]

This is equivalent to adding roles to an application by using the Component Services tool.

te U oles to the application, but
 assig faces, or methods. The result is that the members of these roles
ermin r attached to the application. This is used solely to determine

who
For lways apply roles to components, interfaces, and methods as
described below.

To a

No sing the SecurityRole attribute at the assembly level is equivalent to adding r
not ning them to individual components, inter
det e the composition of the security descripto

 is allowed to access (and launch) the application.
more effective role-based authorization, a

Adding roles to a component (class)

dd roles to a component apply the SecurityRole attribute above the class definition, as shown below.

 [SecurityRole("Manager")]

public class Transfer : ServicedComponent

{

}

Adding roles to an interface

apply ement it within your
serviced component class. You can then associate roles with the interface by using the SecurityRole attribute.

s
 COM+

hat is marked with SecureMethod is registered with Component Services.
 role is discussed further in the next section.

To roles at the interface level, you must create an interface definition and then impl

Important At development time, you must also annotate the class with the SecureMethod attribute. This
informs Enterprise Services that method level security services may be used. At deployment time, administrator
must also add users to the system defined Marshaler role, which is automatically created within the
catalog, when a class t
Use of the Marshaler

The following example shows how to add the Manager role to a particular interface.

 [SecurityRole("Manager")]

public interface ISomeInterface

{

 v Method1(string oid message);

 void Method2(int parm1, int parm2);

}

[ComponentAccessControl]

[SecureMethod]

public class MyServicedComponent : ServicedComponent, ISomeInterface

{

 public void Method1(string message)

 {

 // Implementation

 }

 public void Method2(int parm1, int parm2)

 {

 // Implementation

 }

}

Adding roles to a method

To ensure that the public methods of a class appear in the COM+ catalog, you must explicitly implement an
interface that defines the methods. Then, to secure the methods, you must use the SecureMethod attribute on

r the SecureMethod or SecurityRole attribute at the method level.

Note The SecureMethod and SecurityRole attributes must appear above the method implementation and not
efinition.

1. Define an interface that contains the methods you want to secure. For example:

the class, o

within the interface d

To enable method level security, perform the following steps:

2. public interface ISomeInterface

3. {

4. void Method1(string message);

5. void Method2(int parm1, int parm2);

6. }

7. Implement the interface on the serviced component class:

8. [ComponentAccessControl]

9. public class MyServicedComponent : ServicedComponent,

10. ISomeInterface

11. {

12. public void Method1(string message)

13. {

14. // Implementation

15. }

16. public void Method2(int parm1, int parm2)

17. {

18. // Implementation

19. }

20. }

nnotate 21. If you want to configure roles administratively by using the Component Services tool, you must a
the class with the SecureMethod attribute, as shown below.

22. [ComponentAccessControl]

23. [SecureMethod]

24. public class MyServicedComponent : ServicedComponent,

25. ISomeInterface

26. {

27. }

28. Alte
Securit

rnatively, if you want to add roles to methods at development time by using .NET attributes, apply the
yRole attribute at the method level. In this event, you do not need to apply the SecureMethod

e class level (although the ComponentAccessControl attribute must still be present to
mponent level access checks).

llowing example only members of the Manager role can call Method1, while members of the
r and Employee roles can call Method2.

attribute at th
configure co

In the fo
Manage

 [ComponentAccessControl]

public class MyServicedComponent : ServicedComponent,

 ISomeInterface

{

 [SecurityRole("Manager")]

 public void Method1(string message)

 {

 // Implementation

 }

 [SecurityRole("Manager")]

 [SecurityRole("Employee")]

 public void Method2(int parm1, int parm2)

 {

 // Implementation

 }

}

29.
th

At deployment time, administrators must add any user that requires access to methods or interfaces of
e class to the predefined Marshaler role.

Note The Enterprise Services infrastructure uses a number of system-level interfaces that are exposed by all
serviced components. These include IManagedObject, IDisposable, and IServiceComponentInfo. If

access checks are enabled at the interface or method levels, the Enterprise Services infrastructure is denied
access to these interfaces.

th

At deployment time, application administrators need to add all users to the Marshaler role who
r interface of the class. You can automate this in two different ways:

e Component Services object model to copy all users from other roles
to the Marshaler role.

Reg

• The Global Assembly Cache. Serviced components hosted in COM+ server applications require
e library applications do not.

As a result, Enterprise Services creates a special role called Marshaler and associates the role wi
these interfaces. You can view this role (and the aforementioned interfaces) with the Component
Services tool.

needs to access any methods o

• Write a script that uses th

• Write a script that assigns all other roles to these three special interfaces and delete the
Marshaler role.

ister serviced components

Register serviced components in:

installation in the global assembly cache, whil

To register a serviced component in the global assembly cache, run the Gacutil.exe command line utility. To
register an assembly called MyServicedComponent.dll in the global assembly cache, run the following
command.

Gacutil-i MyServicedComponent.dll

uration Tool from the Administrative
Tools program group to view and manipulate the contents of the global assembly cache.
Note You can also use the Microsoft .NET Framework Config

• The COM+ Catalog. To register an assembly called MyServicedComponent.dll in the COM+ catalog, run
the following command.

•

 application. The .NET attributes present within the assembly
are used to populate the COM+ catalog.

s by using the Component Services tool, or by using script to program the COM+ catalog using the
COM+ administration objects.

U e

d Win

Win

•

• ch group to its respective role.

Manager role.

regsvcs.exe MyServicedComponent.dll

This command results in the creation of a COM+

Populate roles

Populate role

s Windows groups

Ad dows 2000 group accounts to Enterprise Services roles for maximum flexibility. By using Windows groups,
you can effectively use one administration tool (the Users and Computers Administration tool) to administer both

dows and Enterprise Services security.

Create a Windows group for each role in the Enterprise Services application.

Assign ea

For example, if you have a role called Manager, create a Windows group called Managers. Assign the
Managers group to the

• After you assign groups to roles, use the Users and Computers Administration tool to add and remove
users in each group.

For example, adding a Windows 2000 user account named David to the Windows 2000 group Managers
he Manager role.

ponent Services

hich you want to
add Wi

3.

see

effectively maps David to t

To assign Windows groups to Enterprise Services roles by using Com

1. Using the Component Services tool, expand the application that contains the roles to w
ndows 2000 groups.

2. Expand the Roles folder and the specific role to which you want to assign Windows groups.

Select the Users folder under the specific role.

4. Right-click the folder, point to New, and then click User.

5. In the Select Users or Groups dialog box, add groups (or users) to the role.

More information

For more information about programming the COM+ catalog by using the COM+ administration objects,
Automating COM+ Administration within the Component Development section of the MSDN Library.

Configure identity

Use the Component Services tool (or script) to configure the identity of the Enterprise Services application. The
identity property determines the account used to run the instance of Dllhost.exe that hosts the application.

4. Click This user and specify the configured service account used to run the application.

For more information about choosing an appropriate identity to run an Enterprise Services application, see

To configure identity

1. Using the Component Services tool, select the relevant application.

2. Right-click the name of the application, and then click Properties.

3. Click the Identity tab.

More information

Choosing a Process Identity later in this chapter.

d impersonation levels used by client applications when
communicating with serviced components using DCOM.

T Web application when it communicates with a
serviced component, edit the comAuthenticationLevel attribute on the <processModel> element in

Configuring an ASP.NET Client Application

You must configure the DCOM authentication level an

Configure authentication

To configure the default authentication level used by an ASP.NE

Machine.config.

Machine.config is located in the following folder.

%windir%\Microsoft.NET\Framework\v1.0.3705\CONFIG

Set the comAuthenticationLevel attribute to one of the following values.

comAuthenticationLevel=

 "[Default|None|Connect|Call|Pkt|PktIntegrity|PktPrivacy]"

Mo ormation re inf

For more information about DCOM authentication levels, see Authentication within the "Security Concepts" section
 in this chapter.

later

Con

The i
the d
com
it to

figure impersonation

mpersonation level set by the client determines the impersonation level capabilities of the server. To configure
efault impersonation level used by a Web-based application when it communicates with a serviced

ponent, edit the comImpersonationLevel attribute on the <processModel> element in Machine.config. Set
 one of the following values.

comImpersonationLevel="[Default|Anonymous|Identify|Impersonate|Delega

 te]"

e inf

For more information about DCOM impersonation levels, see Impersonation

Mor ormation

 within the "Security Concepts" section
later

second (server) application,
you may need to configure the impersonation level for the client application.

l configured for an Enterprise Services application (on the Security page of

o impersonate clients within a serviced component, you must use programmatic impersonation
techniques, as described in "Flowing the Original Caller," later in this chapter.

n impersonation level declaratively, use the ApplicationAccessControl assembly level
attribute as shown below.

 in this chapter.

Configuring Impersonation Levels for an Enterprise Services Application

If a serviced component in one application needs to call a serviced component within a

Important The impersonation leve
the application's Properties dialog box) is the impersonation level used by outgoing calls made by components
within the application. It does not affect whether or not serviced components within the application perform
impersonation. T

To set the applicatio

 [assembly: ApplicationAccessControl(

 ImpersonationLevel=ImpersonationLevelOption.Identify)]

This is equivalent to setting the Impersonation Level value on the Security page of the application's Properties
og within Component Services.

nents using the ContextUtil,

rammatic Role-Based Security

rained authorization decisions, you can programmatically test role membership using the IsCallerInRole
f the ContextUtil class. Prior to calling this method, always check that component-level access checks

e following code fragment. If security is disabled, IsCallerInRole always returns true.

dial

Programming Security

The Enterprise Services security features are available to .NET compo
SecurityCallContext, and SecurityIdentity classes.

Prog

For fine-g
method o
are enabled, as shown in th

public void Transfer(string fromAccount, string toAccount, double

 amount)

{

 // Check that security is enabled

 if (ContextUtil.IsSecurityEnabled)

 {

 // Only Managers are allowed to transfer sums of money in excess

 // of $1000

 if (amount > 1000)

 {

 if (ContextUtil.IsCallerInRole("Manager"))

 {

 // Caller is authorized

 }

 else

 {

 // Caller is unauthorized

 }

 }

}

Identifying Callers

The following example shows how to identify all upstream callers from within a serviced component.

 [ComponentAccessControl]

public class MyServicedComponent : ServicedComponent

{

 public void ShowCallers()

 {

 SecurityCallContext context = SecurityCallContext.CurrentCall;

 SecurityCallers callers = context.Callers;

 foreach(SecurityIdentity id in callers)

 {

 Console.WriteLine(id.AccountName);

 }

 }

}

Note The original caller identity is available via the SecurityCallContext.OriginalCaller property.

Choosing a Process Identity

Server activated Enterprise Services applications run within an instance of the Dllhost.exe process. You must

ctively logged on user (this is the default setting).
There are two main reasons to avoid this:

ess rights of the application will vary and will be dependent upon who is currently
appens to be logged on, the application will have

opers to use at development time, and should not be considered a

unt

threat associated with a process compromise. If a determined
cker manages to compromise the server process, he or she will easily be able to inherit the privileges and

ess rights granted to the process account. An account configured with minimum privileges restricts the potential
damage that can be done.

to access network resources with the process account, the remote computer must be able to
unt. In this scenario, you have two options:

me or trusting domains.

t and then create a duplicate account (with the same user name and password)
on the remote computer. With this option, you must ensure that the passwords of the two accounts remain
sync

You to use the duplicated local account approach if the remote computer is located in a
separate domain (with no trust relationship), or if the remote computer is behind a firewall (where closed
por

Acc

Your
follow

• The identity used to perform the resource access. If your serviced component accesses remote resources,
fault is the process identity) must be capable of being authenticated by the

configure the account used to run the process in the COM+ catalog by using the Component Services tool.

Note You cannot specify the run as identity by using a .NET attribute.

Never Run as the Interactive User

Do not run server applications using the identity of the intera

• The privileges and acc
logged on interactively at the server. If an administrator h
administrator privileges.

• If the application is launched while a user is interactively logged on and then the user logs off, the server
application will be shut down. It will not be able to restart until another user logs on interactively.

The interactive user setting is designed for devel
deployment setting.

Use a Least-Privileged Custom Acco

Create a least privileged account to mitigate the
atta
acc

If you need
authenticate the process acco

• You can use a domain account if the two computers are in the sa

• You can use a local accoun

hronized.

 may be forced

ts do not permit Windows authentication).

essing Network Resources

 serviced components may need to access remote resources. It is important to be able to identify the
ing:

• The resources the components need to access. For example, files on file shares, databases, other DCOM
servers, Active Directory® directory service objects, and so on.

the identity used (which by de
remote computer.

Note For information specific to accessing remote SQL Server databases, see Chapter 12, Data Access
Security.

You can access remote resources from a component within an Enterprise Services application by using any of the
following identities:

• The original caller (if you are explicitly impersonating by using CoImpersonateClient)

lly impersonate the original caller by calling CoImpersonateClient.

pplication server hosting the Enterprise Services
 using Kerberos authentication between your

Enterprise Services application and client application.

alabil ing the original caller's
erson e you prevent database
nection poo security context of each

r

r more information about impersonating callers, see Flowing the Original Caller

• The current process identity (configured in the COM+ catalog for server applications)

• A specific service account

Using the Original Caller

To use the original caller's identity for remote resource access, you must:

• Programmatica

• Be able to delegate the caller's security context from the a
application to the remote computer. This assumes that you are

Sc ity Warning If you access the data services tier of your application us
imp ated identity, you severely impact the application's ability to scale, becaus
con ling from working efficiently; it doesn't work efficiently because the
database connection is tied to many individual callers.

Mo e information

Fo , later in this chapter.

 server process account for remote resource access, you must either:

te computer.

ary concern, you should use a least-privileged domain account.

 is inherited from the host
d application). For more information about using the ASP.NET process

identity for remote resource access, see Chapter 8, ASP.NET Security

Using the Current Process Identity

If your application is configured to run as a server application, you can use the configured process identity for
remote resource access (this is the default case).

If you want to use the

• Run the server application using a least-privileged domain account. This assumes that client and server
computers are in the same or trusting domains.

• Duplicate the process account using the same username and password on the remo

If ease of administration is your prim

If your application is configured to run as a library application, the process identity
process (which will often be a Web-base

.

nded on Windows 2000
because it relies on you calling the LogonUser API.

The use of LogonUser on Windows 2000, forces you to grant the "Act as part of the operating system" privilege to

Note Microsoft Windows Server 2003 will lift this restriction.

Caller

er applications, this is the configured run-
as identity. For library applications, this is the identity of the (host) client process (for example, Aspnet_wp.exe

Using a Specific Service Account

Your Enterprise Services application could access remote resources by using a specifically configured service
account (that is, a non-user Windows account). However, this approach is not recomme

the Enterprise Services process account. This significantly reduces the security of your application.

Flowing the Original

By default, outgoing calls issued by serviced components (for example, to access local or remote resources) are
made using the security context obtained from the host process. For serv

when an ASP.NET Web application is the client).

To flow the original caller's context through an Enterprise Services application

thread.

If local resources are accessed, the caller (client process) must have specified at least Impersonate level
n.

ET Web application, the default impersonation level for the ASP.NET worker process is
Impersonate. Therefore, to flow the original caller to a downstream remote computer, you must change this
default to Delegate (on the <processModel> element of Machine.config on the client computer).

e original caller's security context to access remote resources you must use Kerberos
authentication, with accounts configured for delegation. The account used to run the Enterprise

rver application must also be marked in Active Directory as "Trusted for delegation."

oves the impersonation token. Any subsequent call from the current method uses the process security
context. If you fail to call CoRevertToSelf, it is called implicitly by the runtime when the method ends.

 available
ntext.OriginalCaller. This can be useful for auditing purposes.

ng CoImpersonateClient

definitions by
s illustrated in the following

1. Call CoImpersonateClient.

This creates and attaches a thread impersonation token to the current

2. Perform operation (access local or remote resource).

As impersonation is enabled, the outgoing call is made using the client's security context (as defined by the
impersonation token).

impersonation. If remote resources are accessed, the caller must have specified Delegate level impersonatio

If the caller is an ASP.N

Note To use th

Services se

3. Cease impersonation by calling CoRevertToSelf.

This rem

Note The identity of the original caller automatically flows to an Enterprise Services application and is
using SecurityCallCo

Calli

CoImpersonateClient (and CoRevertToSelf) are located within OLE32.dll. You must import their
using the DllImport attribute in order to be able to call them through P/Invoke. This i
code fragment.

class COMSec

{

 [DllImport("OLE32.DLL", CharSet=CharSet.Auto)]

 public static extern uint CoImpersonateClient();

 [DllImport("OLE32.DLL", CharSet=CharSet.Auto)]

 public static extern uint CoRevertToSelf();

}

. . .

void SomeMethod()

{

 // To flow the original caller's security context and use it to

 // access local or remote resources, start impersonation

 COMSec.CoImpersonateClient();

 // Perform operations as the caller

 // Code here uses the context of the caller - not the context of

 // the process

 . . .

 COMSec.CoRevertToSelf();

 // Code here reverts to using the process context

}

More information

For more information about how to configure a complete Kerberos delegation scenario
original caller's security context through an ASP.NET Web application, an Enterprise S

that shows how to flow the
ervices application, and onto

a database, see Flowing the Original Caller to the Database in Chapter 5, Intranet Security.

RPC Encryption

er DCOM, use the RPC Packet
 and integrity.

tion level at the client and server.

To configure ASP.NET (where an ASP.NET Web application is the client), set the comAuthenticationLevel
ribute on the <processModel> element in machine.config to PktPrivacy.

 configure an Enterprise Services server application, set the application-level authentication level either by using
e Component Services tool or the following .NET attribute within the serviced component assembly.

To secure the data sent from a client application to a remote serviced component ov
Privacy authentication level between client and server. This provides message confidentiality

You must configure the authentica

att

To
th

 [assembly: ApplicationAccessControl(

 Authentication = AuthenticationOption.Privacy)]

re Information

luding authentication levels), see Configuring Security

Mo

• For more information about configuring security (inc

ut RPC/DCOM authentication levels, see Authentication

earlier in this chapter.

• For more information abo later in this chapter.

 about authentication-level negotiation, see Authentication Level Negotiation• For more information later in

ilding Serviced Components

For a step-by-step walkthrough that shows you how to build a serviced component, see How To: Use Role-based

this chapter.

Bu

Security with Enterprise Services in the Reference section of this guide.

e DLL is locked:

DLL Locking Problems

When you rebuild a serviced component, if th

• Use Component Services to shut down the COM+ server application.

• If you are developing a library application, th
process. Run IISReset from a command prompt

e application may still be loaded into the Aspnet_wp.exe
or use Task Manager to stop the Aspnet_wp.exe process.

• Use the FileMon.exe tool from www.sysinternals.com to help troubleshoot file locking problems.

AssemblyVersion attribute that is generated by Microsoft Visual Studio® .NET development system
 create a new project is shown below.

Versioning

The default
when you

[assembly: AssemblyVersion("1.0.*")]

in the generation of a
 register the assembly

egsvcs.exe, you will see duplicated components (strictly classes) with different
ponents folder.

d and unmanaged clients

blyVersion

Each time you rebuild the project, a new assembly version is generated. This also results
new class identifier (CLSID) to identify the serviced component classes. If you repeatedly
with component services using R
CLSIDs listed beneath the Com

While this complies with strict COM versioning semantics and will prevent existing manage
from breaking, it can be an annoyance during development.

During test and development, consider setting an explicit version by using the assembly level Assem
attribute shown below.

 [assembly: AssemblyVersion("1.0.0.1")]

This setting will prevent a new CLSID being generated with each successive project build. You may also
the interface identifiers (IIDs). If your class implements explicit interfaces, you can fix the IID for a given interface

want to fix

by using the GUID attribute as shown below.

 [Guid("E1FBF27E-9F11-474d-8DF6-58916F798E9D")]

public interface IMyInterface

{

}

To generate new GUIDs

1. On the Tools menu of Visual Studio .NET, click Create GUID.

2. Click Registry Format.

Paste the GUID from the clipboard into your source code.

g your serviced component assembly for test and production, remove any fixed
ated assembly versioning mechanism (for example, by using "1.0.*"). Failure to

 so increases the likelihood that a new release of your component will break existing clients.

ormation

re information about versioning for deployment, see Understanding Enterprise Services (COM+) in .NET

3. Click New GUID.

4. Click Copy.

5.

Important Prior to deployin
GUIDs and revert to an autom
do

More inf

For mo on
N.

xceptions

MSD

QueryInterface E

If you see a QueryInterface call for the IRoleSecurity interface failing, this indicates that you have updated a
int rface definition within your assembly, but have not re-registered the

n
e assembly with Component Services using

Regsvcs.exe.

porta

DC

E 18.1) or Windows Server 2003 allow you to configure Enterprise Services applications
 a firewall separates the client from the server, you only need to open two ports in the

As an alternative to this approach consider exposing your Enterprise Services application as a Web service. This
roach

 remote serviced component.

More Information

 more

•

Im nt Each time you run Regsvcs.exe you will need to reconfigure a server application's run-as identity and
will also need to add users to groups again. You can create a simple script to automate this task.

OM and Firewalls

Windows 2000 (SP3 or QF
to use a static endpoint. If
firewall. Specifically, you must open port 135 for RPC and a port for your Enterprise Services application.

allows you to activate and call serviced components by using SOAP over port 80. The main issue with this app
is that it doesn't allow you to flow transaction context from client to server. You would need to initiate your
transaction at the

For information, see the following Knowledge Base articles:

Article Q312960, Cannot Set Fixed Endpoint for a COM+ Application

• Article Q259011, SAMPLE: A Simple DCOM Client Server Test Application

Article Q248809, • ver NAT-Based FirewallPRB: DCOM Does Not Work o

• Article Q ough 250367, INFO: Configuring Microsoft Distributed Transaction Coordinator (DTC) to Work Thr
a Firewall

• rt Allocation to Work w/ FirewallArticle Q154596, HOWTO: Configure RPC Dynamic Po

C l ASP.NET

This ction highl nt.

Caller's

When you call a s from
the appli the
caller's id ocess identity (by default, ASPNET).

ing
Win wsIdentit

From serviced c
Secu tyCallConte

Use Wi pplication

ws

orig

n

DCOM authentication levels are negotiated between client (for example, the Web-based application) and server
urity settings is used.

a ling Serviced Components from

 se ights the main issues you will encounter when an ASP.NET application calls a serviced compone

 Identity

erviced component from an ASP.NET application, the security identity for the call is obtained
cation's Win32® thread identity. If the Web application is configured to impersonate the caller, this is
entity. Otherwise, this is the ASP.NET pr

From an ASP.NET application, you can retrieve the current Win32 thread identity by call
do y.GetCurrent().

 a omponent, you can retrieve the original caller identity by using
ri xt.OriginalCaller.

ndows Authentication and Impersonation Within the Web-based A

To enable meaningful role-based security within your Enterprise Services application, you must use Windo
authentication and enable impersonation. This ensures that the serviced components are able to authenticate the

inal callers and make authorization decisions based on the original caller's identity.

Co figure Authentication and Impersonation within Machine.config

(the Enterprise Services application). The higher of the two sec

Configure ASP.NET authentication levels by using the comAuthenitcation attribute on the <processModel>
element of Machine.config.

Impersonation levels are controlled by the client (for example, a Web-based application). The client can determin
the degree of impersonation that it is willing to allow the server to use.

Configure ASP.NET impersonation levels (for all outgoing DCOM cal

e

ls), by using the comImpersonationLevel
attribute on the <processModel> element of Machine.config.

Configuring Interface Proxies

ity settings t a ained from the default process level
. In th tin s the impersonation level and

el ar scrib r.

, you can y settings used by an indi
ASP.NET application communicates with a serviced component nterfaces and sensitive data is

ugh only on terface, you may choose to use the encryption support provided by the packet privacy
level on d to use, for exa thentication on the other

interface. This means he performa cryption on both
interfaces.

e set of rity settings that apply to an interface proxy are referred to as the security blanket.
COM provides the follo o query and blanket settings on an
individual interface proxy:

ueryProxyBlanket

SetProxyB t

• CoCopyProxy

ET Web application (the DCOM client), The following
ow to co cket Privacy authentication level (which provides

encryption). This code e used from an ASP.NET Web application that communicates with a remote serviced

The secur hat apply to individual interface proxies re usually obt
security settings
authentication lev

e case of ASP.NET, default security set
e configured in Machine.config, as de

gs such a
ed earlie

If necessary alter the securit vidual interface proxy. For example, if your
that exposes two i

passed thro
authentication

e in
ly on the sensitive interface an
that you do not experience t

mple, packet au
nce hit associated with en

Collectively, th secu
wing functions to allow you t manipulate security

• CoQ

• Co lanke

You must use P/Invok
code shows h

e to call these functions from an ASP.N
nfigure a specific interface to use the Pa
 can b

component.

// Define a wrapper class for the P/Invoke call to CoSetProxyBlanket

class COMSec

{

 // Constants required for the call to CoSetProxyBlanket

 public const uint RPC_C_AUTHN_DEFAULT = 0xFFFFFFFF;

 public const uint RPC_C_AUTHZ_DEFAULT = 0xFFFFFFFF;

 public const uint RPC_C_AUTHN_LEVEL_PKT_PRIVACY = 6;

 public const uint RPC_C_IMP_LEVEL_DEFAULT = 0;

 public const uint COLE_D FO = 0xFFFFFFFF; EFAULT_AUTHIN

 public const uint COLE_DEFAULT_PRINCIPAL = 0;

 public const uint EOAC_DEFAULT = 0x800;

 // HRESULT CoSetProxyBlanket(IUnknown * pProxy,

 // DWORD dwAuthnSvc,

 // DWORD dwAuthzSvc,

 // WCHAR * pServerPrincName,

 // DWORD dwAuthnLevel,

 // DWORD dwImpLevel,

 // RPC_AUTH_IDENTITY_HANDLE pAuthInfo,

 // DWORD dwCapabilities);

[DllImport("OLE32.DLL", CharSet=CharSet.Auto)]

public unsafe static extern uint CoSetProxyBlanket(

 IntPtr pProxy,

 uint dwAuthnSvc,

 uint dwAuthzSvc,

 IntPtr pServerPrincName,

 uint dwAuthnLevel,

 uint dwImpLevel,

 IntPtr pAuthInfo,

 uint dwCapababilities);

} // end class COMSec

// Code to call CoSetProxyBlanket

void CallComponent()

{

 // This is the interface to configure

 Guid IID_ISecureInterface = new Guid("c720ff19-bec1-352c-bb4b-

 e2de10b858ba");

 IntPtr pISecureInterface;

 // Instantiate the serviced component

 CreditCardComponent comp = new CreditCardComponent();

 // Get its IUnknown pointer

 IntPtr pIUnk = Marshal.GetIUnknownForObject(comp);

 // Get the interface to configure

 Marshal.QueryInterface(pIUnk, ref IID_ISecureInterface,

 out pISecureInterface);

 try

 {

 // Configure the interface proxy and set packet privacy

 //authentication

 uint hr = COMSec.CoSetProxyBlanket(pISecureInterface,

 COMSec.RPC_C_AUTHN_DEFAULT,

 COMSec.RPC_C_AUTHZ_DEFAULT,

 IntPtr.Zero,

 COMSec.RPC_C_AUTHN_LEVEL_PKT_PRIVACY,

 COMSec.RPC_C_IMP_LEVEL_DEFAULT,

 IntPtr.Zero,

 COMSec.EO AC_DEFAULT);

 ISecureInterface secure = (ISecureInterface)comp;

 // The following call will be encrypted as ISecureInterface is

 // configured for packet privacy authentication. Other interfaces

 // use the process level defaults (normally packet

 // authentication).

 secure.ValidateCreditCard("123456789");

 }

 catch (Exception ex)

 {

 }

}

ore information

• For more information about configuring an ASP.NET client application to call serviced components, see
Configuring an ASP.NET Client Application

M

, earlier in this chapter.

• For more information about DCOM authentication levels, see Authentication, later in this chapter.

• For more information about DCOM impersonation levels, see Impersonation, later in this chapter.

• For more information about using Windows authentication and enabling impersonation within a Web-based
application, see Chapter 8, ASP.NET Security.

Security Concepts

This section provides a brief overview of Enterprise Services security concepts. If you are already experienced with
COM+, many of the concepts will be familiar.

For background information on Enterprise Services, see the MSDN article Understanding Enterprise Services
(COM+) in .NET.

The following are summaries of key security concepts that you should understand:

• Security settings for serviced components and Enterprise Services applications are maintained within the
COM+ catalog. Most settings can be configured using .NET attributes. All settings can be configured by using
the Component Services administration tool or Microsoft Visual Basic® Scripting Edition development system
scripts.

• Authorization is provided by Enterprise Services (COM+) roles, which can contain Windows group or user
accounts. These are not the same as .NET roles.

• Role-based security can be applied at the application, interface, class, and method levels.

• Imperative role checks can be performed programmatically within methods by using the
IsCallerInRole method of the ContextUtil class.

• Effective role-based authorization within an Enterprise Services application relies on a Windows identity
being used to call serviced components.

• This may require you to use Windows authentication coupled with impersonation within an
ASP.NET Web application—if the Web application calls serviced components that rely on Enterprise
Services (COM+) roles.

• When you call a serviced component from an ASP.NET Web application or Web service, the
identity used for the outgoing DCOM call is determined by the Win32 thread identity as defined by
WindowsIdentity.GetCurrent().

• Serviced components can run in server or library applications.

• Server applications run in separate instances of Dllhost.exe.

• Library applications run in the client's process address space.

• Role-based authorization works in a similar fashion for server and library applications, although
there are some subtle differences between library and server applications from a security perspective. For
details, see "Security for Server and Library Applications" earlier in this chapter.

• Authentication is provided by the underlying services of DCOM and RPC. The client and server's
authentication level combined to determine the resulting authentication level used for communication with the
serviced component.

• Impersonation is configured within the client application. It determines the impersonation capabilities of
the server.

Enterprise Services (COM+) Roles and .NET Roles

es are used to represent common categories of users who share the same security
oles, they are completely independent.

Enterprise Services (COM+) roles contain Windows user and group accounts (unlike .NET roles that can contain
dows user identities). Because of this, Enterprise Services (COM+) roles are only an effective
hanism for applications that use Windows authentication and impersonation (in order to flow the

ty context to the Enterprise Services application).

es (COM+) roles with .NET roles

Enterprise Services (COM+) rol
privileges within an application. While conceptually similar to .NET r

arbitrary non-Win
authorization mec
caller's securi

Table 9.1. Comparing Enterprise Servic

Feature Enterprise Services (COM+) Roles .NET Roles

Administration Component Services Administration Custom
Tool

Data Store COM+ Catalog Custom data store (for example, SQL Server or
Active Directory)

Declarative Yes
[SecurityRole("Manager")]

Yes
[PrincipalPermission(
SecurityAction.Demand,
Role="Manager")]

Imperative Yes
ContextUtil.IsCallerInRole()

Yes
IPrincipal.IsInRole

Class, Interface,
and Method Level
Granularity

Yes Yes

Extensible No Yes
(using custom IPrincipal implementation)

Available to all .NET
components

Only for components that
derive from ServicedComponent base
class

Yes

Role Membership Roles contain Windows group or user
accounts

When using WindowsPrincipals,
roles ARE Windows groups—no extra level of
abstraction

Requires explicit Yes
Interface To obtain method level authorization,

 be explicitly defined

No

implementation an interface must
and implemented

Authentication

Be Enterprise Services rely on the under
aut cation level settings available to Ente

cause lying infrastructure provided by COM+ and DCOM/RPC, the
henti rprise Services applications are those defined by RPC (and used by
OM). DC

Table 9.2. Enterprise Services applications authentication settings

Authentication Level Description

Default Choose authentication level using normal negotiation rules

None No authentication

Connect Only authenticate credentials when the client initially connects to the server

Call Authenticate at the start of each remote procedure call

Packet Authenticate all data received from the client

Packet Integrity Authenticate all data and verify that none of the transferred data has been
modified

Packet Privacy Authenticate all data and encrypt parameter state for each remote
procedure call

Authentication level promotion

You should be aware that certain authentication levels are silently promoted. For example:

• If the User Data Protocol (UDP) datagram ransport is used, Connect and Call levels are promoted to
Packet, because the aforementioned authentication levels only make sense over a connection oriented

• For inter-process calls on a single computer, all authentication levels are always promoted to Packet
Priv ause the data
doesn't cross the network).

thent

The authentication level used by Enterprise Services to authenticate a client is determined by two settings:

),

figured authentication level of the client process that
o affects the authentication level that is used.

The

 high 4.

 t

transport such as TCP.

Note Windows 2000 defaults to RPC over TCP for DCOM communications.

acy. However, in a single computer scenario, data is not encrypted for confidentiality (bec

Au ication level negotiation

• The process level authentication level. For a server-activated application (running within Dllhost.exe
the authentication level is configured within the COM+ catalog.

• The client authentication level. The con
communicates with the serviced component als

 default authentication level for an ASP.NET Web application is defined by the comAuthenticationLevel
attribute on the <processModel> element in Machine.config.

The er of the two (client and server) authentication level is always chosen. This is illustrated in the Figure 9.

Figu

tion

to configure authentication levels for an Enterprise Service application, see Configuring

re 9.4. Authentication level negotiation

More informa

For information about how
Security earlier in this chapter.

Imp

 impe personation level to be
used for all outgoing DCOM calls made by serviced components within the application.

ersonation

The rsonation level defined for an Enterprise Services application determines the im

Important It does NOT determine whether or the not serviced components within the application impersonate
st

Impersonation is a client-side setting. It offers a degree of protection to the client as it allows the client to restrict
the impersonation capabilities of the server.

Table 9.3. Available impersonation levels

their callers. By default, serviced components do not impersonate callers. To do so, the service component mu
call CoImpersonateClient, as described in "Flowing the Original Caller" earlier in this chapter.

Impersonation Level Description

Identify Allows the server to identify the client and perform access checks using the
client's access token

Impersonate Allows the server to access local resources using the client's credentials

Dele Allows the server to access remote resources using the client's credentials gate
(this requires Kerberos and specific account configuration)

The defa ed by a Web-based application when it communicates with serviced components
(or any component using DCOM) is determined by the comImpersonationLevel attribute on the

> element in Machine.config.

 during
two forms of cloaking:

cations use dynamic cloaking (this is not
confi ned by the host process, for example the ASP.NET
wor tions also use dynamic cloaking—again this is not
conf

Dyn
imp personateClient within a serviced component, the client's
iden s made by the same method, until either CoRevertToSelf is
calle re CoRevertToSelf is implicitly called).

aking, the server sees the credentials that are used on the first call from
client to server (irrespective of whether or not a thread is impersonating during an outgoing call).

tion about how to configure impersonation levels for Enterprise Service applications, see
Configuring Security

ult impersonation level us

<processModel

Cloaking

Cloaking determines precisely how client identity is projected through a COM object proxy to a server
impersonation. There are

• Dynamic Cloaking. Enterprise Services server appli
gurable). Cloaking for library applications is determi

ker process (Aspnet_wp.exe). Web-based applica
igurable.

amic cloaking causes the thread impersonation token to be used to represent the client's identity during
ersonation. This means that if you call CoIm
tity is assumed for subsequent outgoing call
d or the method ends (whe

• Static Cloaking. With static clo

More information

• For informa
, earlier in this chapter.

• For more information about cloaking, see the Platform SDK information on Cloaking on MSDN.

Su ary mm

rise Services application. You
e also erviced components. To

Use server activated Enterprise Services applications for increased security. Additional process hops raise
secu

• Use least-privileged, local accounts to run server applications.

• Use Packet Privacy level authentication (which must be configured at the server and client) if you need to
secure the data sent to and from a serviced component across a network from a client application.

• Enable component-level access checks for a meaningful role-based security implementation.

This chapter has described how to build secure serviced components within an Enterp
hav seen how to configure an ASP.NET Web-based client application that calls s
summarize:

•
rity.

• Use Windows authentication and enable impersonation in an ASP.NET Web application prior to calling a
component within an Enterprise Services application that relies on role-based security.

• Use secured gateway classes as entry points into Enterprise Service applications.

By reducing the number of gateway classes that provide entry points for clients into your Enterprise Service
applications, you reduce the number of classes that need to have roles assigned. Other internal helper classes
should have role-based checks enabled but should have no roles assigned to them. This means that external
clients will not be able to call them directly, while gateway classes in the same application will have direct
access.

• Call IsSecurityEnabled immediately prior to checking role membership programmatically.

• Avoid impersonation in the middle tier because this prevents the effective use of database connection
pooling and dramatically reduces the scalability of your application.

• Add Windows groups to Enterprise Services (COM+) roles for increased flexibility and easier
administration

Web Services

J.D. ier, Alex Mackma and Srinath Vasireddy
Micr Corpora

November 2002

 Mi soft® AS
 Mi t® Inter
 Mi soft® We

e the

Security

Me n, Michael Dunner,
osoft tion

Applies to:
cro P.NET
crosof net Information Server
cro b Services Development Kit

Se Landing Page for the starting point and complete overview of Building Secure ASP.NET Applications.

pter focuses on platform-level security for Web services using the underlying features of IIS
and ASP.NET. For message-level security, Microsoft is developing the Web Services Development Kit, which allows

 b rvices
tect

Contents

Summary: This cha

you to uild security solutions that conform to the WS-Security specification, part of the Global XML Web Se
Archi ure (GXA) initiative. (29 printed pages)

Web Service Security Model
Platform/Transport Security Architecture
Authentication and Authorization Strategies
Configuring Security
Passing Credentials for Authentication to Web Services
Flowing the Original Caller
Trusted Subsystem

essinAcc g System Resources
Acce twork Resourcesssing Ne
Acc g COM Objectsessin
Using Client Certificates with Web Services

cure CSe ommunication
Summary

ation, authorization, and secure communication
ice

 and authorize callers and how to flow security context through a
Web service. It also explains, from a client-side perspective, how to call Web services with credentials and

els:

• Message-level (end-to-end) security

nt strengths and weaknesses, and these are elaborated upon below. The choice of
sage

te This chapter focuses ation-level security. Message-level security is addressed by the
bal X e and specifically the WS-Security specification. At the time of

writi Microsoft ws
you de

Plat rm/Transport Level (Point-to-Point) Security

This chapter describes how to develop and apply authentic
techniques to secure ASP.NET Web services and Web service messages. It describes security from the Web serv
perspective and shows you how to authenticate

certificates to support server-side authentication.

Web Service Security Model

Web service security can be applied at three lev

• Platform/transport-level (point-to-point) security

• Application-level (custom) security

Each approach has differe
approach is largely dependent upon the characteristics of the architecture and platforms involved in the mes
exchange.

No on platform- and applic
Glo ML Web Services Architecture (GXA) initiativ

ng, has just released a technology preview version of the Web Services Development Kit. This allo
to velop message-level security solutions that conform to the WS-Security specification.

fo

The trans t-
to-point

port channel between two endpoints (Web service client and Web service) can be used to provide poin
security. This is illustrated in Figure 10.1.

Fig .1. Platform/transport-lure 10 evel security

ity, which assumes a tightly-coupled Microsoft® Windows® operating system

• The Web server (IIS) provides Basic, Digest, Integrated, and Certificate authentication.

me of the ASP.NET authentication and authorization features.

• SSL and rity and confidentiality.

Whe to u

The t nsp r many (primarily intranet-based)
scenarios e tightly controlled.

The main issues with transport-level security are:

• Security becomes tightly coupled to, and dependant upon, the underlying platform, transport mechanism,
d security

• Se gh
erm

Applicati rity

With is a example:

• An authenticate the user with each
b s e or license) in the SOAP header.

• Th tains roles. This might be
ust

• Th requires secure key storage and
develo

 alt ity and combine it with custom
S AP

When to u

 this

Yo les that is used within an
existin

ant to encrypt parts of a message, rather than the entire data stream.

When you use platform secur
environment, for example, on corporate intranets:

• The ASP.NET Web service inherits so

/or IPSec may be used to provide message integ

n se

ra ort-level security model is simple, well understood, and adequate fo
, in which the transport mechanisms and endpoint configuration can b

an service provider (NTLM, Kerberos, and so on).

curity is applied on a point to point basis, with no provision for multiple hops and routing throu
int ediate application nodes.

on Level Secu

th pproach, the application takes over security and uses custom security features. For

 application can use a custom SOAP header to pass user credentials to
We ervice request. A common approach is to pass a ticket (or user nam

e application has the flexibility to generate its own IPrincipal object that con
a c om class or the GenericPrincipal class provided by the .NET Framework.

e application can selectively encrypt what it needs to, although this
pers must have knowledge of the relevant cryptography APIs.

An ernative technique is to use SSL to provide confidentiality and integr
O headers to perform authentication.

 se

Use approach when:

• u want to take advantage of an existing database schema of users and ro
g application.

• You w

Message Level (End-to-End) Security

This represents the mo
with e WS-Security specification. Message-level security is illustrated in Figure 10.2.

st flexible and powerful approach and is the one used by the GXA initiative, specifically
in th

Figure 10.2. Message-level security

-Secu
entiality, and single message authentication.

• Authentication is provided by security tokens, which flow in SOAP headers. No specific type of token is
rberos tickets, X.509 certificates, or a custom

ity.

ect
 intermediate application nodes.

Message-level security:

• Enables a heterogeneous security architecture

d security and accommodates message routing through intermediate application nodes

• Supports

• n-repudiation

The eb

The Web ices
such as r el referrals. This toolkit conforms to the latest Web service standards such as WS-

curity s interoperability with other vendors who follow the same specifications.

Mor

• bout the Web Services Development Kit and WS-Security specifications, see the XML

WS rity specifications describe enhancements to SOAP messaging that provide message integrity, message
confid

required by WS-Security. The security tokens may include Ke
binary token.

• Secure communication is provided by digital signatures to ensure message integrity and XML encryption
for message confidential

When to use

WS-Security can be used to construct a framework for exchanging secure messages in a heterogeneous Web
services environment. It is ideally suited to heterogeneous environments and scenarios where you are not in dir
control of the configuration of both endpoints and

• Can be independent from the underlying transport

• Provides end-to-en

 multiple encryption technologies

Supports no

 W Services Development Kit

 Services Development Kit provides the necessary APIs to manage security in addition to other serv
outing and message-lev

Se and as a result enable

e information

For the latest news a
Web Services Developer Center page.

• e the WS-Security Specification IndexFor more information about the WS-Specification, se page.

• NewsgroupFor discussions on this topic, refer to the GXA Interoperability .

Pla curity Architecture tform/Transport Se

• The ASP.NET Web services platform security architecture is shown in Figure 10.3.

Figure 10 security architecture

Figure 10.3 illustrates the authentication and authorization mechanisms provided by ASP.NET Web services. When
a cli cal occurs:

1. Th contain authentication credentials
pen

2. II r Kerberos), or Certificate
authen is not possible, IIS is

enticated by using message-
el a

3. II with specific IP addresses.

4. IIS pass may be the anonymous
ern entication).

no additional
auth

If a no n mode is set to None to
allow

te Forms and Passport authentication are not currently supported for Web services.

6. ASP.NET authorizes access to the requested Web service (.asmx file) by using URL authorization and File
auth s

d to the authenticated caller.

ained authorization, .NET roles can also be used (either declaratively or programmatically) to ensure
that the caller is authorized to access the requested Web method.

7. Code within the Web service may access local and/or remote resources by using a particular identity. By
defa
accou
iden

Gatekeepers

.3. Web services

ent ls a Web service, the following sequence of authentication and authorization events

e SOAP request is received from the network. This may or may not
de ding upon the type of authentication being used.

S optionally authenticates the caller by using Basic, Digest, Integrated (NTLM o
tication. In heterogeneous environments where IIS (Windows) authentication

configured for anonymous authentication. In this scenario, the client may be auth
lev ttributes such as tickets passed in the SOAP header.

S can also be configured to accept requests only from client computers

es the authenticated caller's Windows access token to ASP.NET (this
Int et user's access token, if the Web service is configured for anonymous auth

5. ASP.NET authenticates the caller. If ASP.NET is configured for Windows authentication,
entication occurs at this point; IIS authenticates the caller.

n-Windows authentication method is being used, the ASP.NET authenticatio
custom authentication.

No

orization, which uses NTFS permissions associated with the .asmx file to determine whether or not acces
should be grante

Note File authorization is only supported for Windows authentication.

For fine-gr

ult, ASP.NET Web services perform no impersonation and, as a result, the configured ASP.NET process
nt provides the identity. Alternate options include the original caller's identity, or a configured service

tity.

The gatekeepers within an ASP.NET Web service are:

• IIS

• If IIS anonymous authentication is disabled IIS only allows requests from authenticated users.

sses.

ET

n only)

• The URL authorization HTTP Module

Principal Permission Demands and Explicit Role Checks

Mor

formation about the gatekeepers, see Gatekeepers

• IP Address Restrictions

IIS can be configured to only allow requests from computers with specific IP addre

• ASP.N

• The File authorization HTTP Module (for Windows authenticatio

•

e information

• For more in in Chapter 8, "ASP.NET Security."

• For more information about configuring security, see "Configuring Security" later in this chapter.

thentic

This ains which authorization options (configurable and programmatic) are available for a set of
commonly used authentication schemes.

The following authentication schemes are summarized here:

• Windows authentication with impersonation

• Windows authentication without impersonation

 with Impersonation

n

on on a per-Web service basis in each Web service's Web.config file.

Au ation and Authorization Strategies

 section expl

• Windows authentication using a fixed identity

Windows Authentication

The following configuration elements show you how to enable Windows (IIS) authentication and impersonatio
declaratively in Web.config or Machine.config.

Note You should configure authenticati

<authentication mode="Windows" />

<identity impersonate="true" />

With henticated caller. To impersonate the
original caller, you must turn off anonymous access in IIS. With anonymous access, the Web service code

rsona is IUSR_MACHINE).

Configurabl

When you us he following authorization options are
available to you:

• ists (ACLs)

b service (.asmx) file. File authorization performs access checks for requested ASP.NET
resources (which include the .asmx Web service file) using the original caller's security context. The

 this configuration, your Web service code impersonates the IIS-aut

impe tes the anonymous Internet user account (which by default

e security

e Windows authentication together with impersonation, t

Windows Access Control L

• We

original caller must be granted at least read access to the .asmx file.

• Resources accessed by your Web service. Windows ACLs on resources accessed by your Web
e

• URL Authorization. This is configured in Machine.config and/or Web.config. With Windows
rm DomainName\UserName and roles map one-to-one with Windows

groups.

service (files, folders, registry keys, Active Directory® directory service objects and so on) must includ
an Access Control Entry (ACE) that grants read access to the original caller (because the Web service
thread used for resource access is impersonating the caller).

authentication, user names take the fo

• <authorization>

• <deny user="DomainName\UserName" />

• <allow roles="DomainName\WindowsGroup" />

• </authorization>

Pro matic security gram

tic
u

Pr emands

• ithin a method's code)

Programmatic security refers to security checks located within your Web service code. The following programma
sec rity options are available when you use Windows authentication and impersonation:

• incipal Permission D

Imperative (in-line w

• ck = new PrincipalPermission(PrincipalPermission permChe

• , null
@"DomainName\WindowsGroup");

•

• thods or Web classes)

 permCheck.Demand();

Declarative (these attributes can precede Web me

• caller is a member of a specific role (for // Demand that the

• // Windows

• // authentication this is the same as a Windows group)

• [PrincipalPermission(SecurityAction.Demand,

• Role=@"DomainName\WindowsGroup")]

• // Demand that the caller is a specific user

• [PrincipalPermission(SecurityAction.Demand,

• Name=@"DomainName\UserName")]

• Explicit Role Checks. You can perform role checking using the IPrincipal interface.

• e(@"DomainName\WindowsGroup"); IPrincipal.IsInRol

Wh use

Windows authentication and impersonation when:

en to

Use

counts, which can be authenticated

caller's security context through the Web service and onto the next tier. For

• You need to flow the original caller's security context to the downstream tiers to support operating

ase connection pooling. As an

• The clients of the Web service can be identified by using Windows ac
by the server.

• You need to flow the original
example, a set of serviced components that use Enterprise Services (COM+) roles, or onto a data tier that
requires fine-grained (per-user) authorization.

system-level auditing.

Important Using impersonation can reduce scalability, because it impacts datab
alternative approach, consider using the trusted subsystem model where the Web service authorizes callers and
then uses a fixed identity for database access. You can flow the caller's identity at the application level; for
example, by using stored procedure parameters.

More information

• For more information about Windows authentication and impersonation, see Chapter 8, ASP.NET Security.

• For more information about URL authorization, see URL Authorization Notes in Chapter 8, "ASP.NET
Security."

Windows Authentication without Impersonation

The following configuration elements show how you enable Windows (IIS) authentication with no impersonation
declaratively in Web.config.

<authentication mode="Windows" />

<!-- The following setting is equivalent to having no identity element -->

<identity impersonate="false" />

Co rable security nfigu

When you use Windows authentication without impersonation, the following authorization options are available to
:

• Windows ACLs

• ET
t

s ACLs on resources accessed by your
must include an ACE that grants read
by the Web service thread when

rm

you

 Web Service (.asmx) file. File authorization performs access checks for requested ASP.N
resources (which include the .asmx Web service file) using the original caller. Impersonation is no
required.

• Resources accessed by your application. Window
application (files, folders, registry keys, Active Directory objects)
access to the ASP.NET process identity (the default identity used
accessing resources).

• URL Authorization

This is configured in Machine.config and Web.config. With Windows authentication, user names take the fo
DomainName\UserName and roles map one-to-one with Windows groups.

<authorization>

 <deny user="DomainName\UserName" />

 <allow roles="DomainName\WindowsGroup" />

</authorization>

Programmatic security

Programmatic security refers to security checks located within your Web service code. The following programmatic

mission Demands

security options are available when you use Windows authentication without impersonation:

• Principal Per

• Imperative

• PrincipalPermission permCheck = new PrincipalPermission(

• null,
@"DomainName\WindowsGroup");

• permCheck.Demand();

• Declarative

• // Demand that the caller is a member of a specific role (for

• // Windows

• // authentication this is the same as a Windows group)

• [PrincipalPermission(SecurityAction.Demand,

• Role=@"DomainName\WindowsGroup")]

• // Demand that the caller is a specific user

• [PrincipalPermission(SecurityAction.Demand,

• Name=@"DomainName\UserName")]

IPrincipal interface. • Explicit Role Checks. You can perform role checking using the

•

be identified by using Windows accounts, which can be authenticated

• You want to use the trusted subsystem model and authorize clients within the Web service and then use a
fixed identity to access downstream resources (for example, databases) in order to support connection
pooling.

 information about Windows authentication and impersonation, see Chapter 8, ASP.NET Security

IPrincipal.IsInRole(@"DomainName\WindowsGroup");

When to use

Use Windows authentication without impersonation when:

• The clients of the Web service can
by the server.

More information

• For more .

• For more information about URL authorization, see URL Authorization Notes in Chapter 8, "ASP.NET
Security."

Windows Authentication Using a Fixed Identity

The <identity> element within Web.config supports optional user name and password attributes which allows you
to configure a specific fixed identity for your Web service to impersonate. This is shown in the following
configuration file fragment.

<identity impersonate="true" userName="DomainName\UserName"

 password="ClearTextPassword" />

When to use

r two reasons:

• User names and passwords should not be stored in plain text in configuration files.

ccount the "Act as part of the
ope

e information

• For more information about Windows authentication and impersonation, see Chapter 8, ASP.NET Security

This approach is not recommended in secure environments fo

• On Windows 2000, this approach forces you to grant the ASP.NET process a
rating system" privilege. This reduces the security of your Web service and increases the threat should an

attacker compromise the Web service process (Aspnet_wp.exe).

Mor

.

• For more information about URL authorization, see URL Authorization Notes in Chapter 8, "ASP.NET

T Web service. These are
summarized in Figure 10.4.

Security."

Configuring Security

This section shows you the practical steps required to configure security for an ASP.NE

Figure 10.4. Configuring ASP.NET Web service security

Configure IIS Settings

For detailed information about how to configure IIS security settings, see Configuring Security in Chapter 8,
"ASP.NET Security," because the information is also applicable to ASP.NET Web services.

Configure ASP.NET Settings

Application-level configuration settings are maintained in Web.config files, which are located in your Web service's
virtual root directory. Configure the following settings:

-Web service basis (not in Machine.config) in the 1. Configure Authentication. This should be set on a per
Web.config file located in the Web service's virtual root directory.

2. <authentication mode="Windows|None" />

Note Web services do not currently support Passport or Forms authentication. For custom and
message-level authentication, set the mode to None.

3. Configure Impersonation and Authorization. For detailed information, see Configuring Security in
Chapter 8, "ASP.NET Security."

Mo e information

more information about URL authorization, see

r

For URL Authorization Notes in Chapter 8, "ASP.NET Security."

e Resources Secur

ces as presented in Chapter 8, ASP.NET SecurityYou should use the same techniques to secure Web resour . In
 HTTP-POST protocol from Machine.config

By default, clients can communicate with ASP.NET Web services, using three protocols: HTTP-GET, HTTP-POST,
and SOAP over HTTP. You should disable support for both the HTTP-GET and HTTP-POST protocols at the machine

at do not require them. This is to avoid a potential security breach that could allow
internal Web service running behind a firewall.

isabling these protocols mean ll not be able to test an XML Web service using the
 button on the Web service test pag must create a test client program by adding a reference

isual Studio® .NET development system. You may want to leave these
ent computers to allow developers to use the test page.

e the HTTP-GET and HTTP OST protocols for an entire computer

.

2. Comment out the lines within
POST. After doing so, Machine.con

addition, however, for Web services consider removing the HTTP-GET and
on production servers.

Disable HTTP-GET, HTTP-POST

level on production machines th
a malicious Web page to access an

Note D
Invoke

s that a new client wi
e. Instead, you

to the Web service using Microsoft V
protocols enabled on developm

To disabl

1. Edit Machine.config

-P

 the <webServices> element that add support for HTTP-GET and HTTP-
fig should appear as follows.

3. <webServices>

4. <protocols>

5. <add name="HttpSoap"/>

6. <!-- <add name="HttpPost"/> -->

7. <!-- <add name="HttpGet"/> -->

8. <add name="Documentation"/>

9. </protocols>

10. </webServices>

11. Save Machine.config.

eb service clients that communicate with a Web service using either
pport for those protocols in the application's Web.config file, by creating a

Services> and adding support for th e <protocol> and <add> elements, as shown

n about securing resources, see Secure Resources

Note For special cases where you have W
HTTP-GET or HTTP-POST, you can add su
<web
earlier.

ese protocols with th

More information

For detailed Informatio within Chapter 8, "ASP.NET Security."

n of SSL and IPSec to ecure communication links.

 For information about calling a Web service using SSL, see How To: Call a Web Service Using SSL

Secure Communication

Use a combinatio s

More information

• in the
 guide.

bout using IPSec between two computers, see How To: Use IPSec to Provide Secure

Reference section of this

• For information a
Communication Between Two Servers in the Reference section of this guide.

ng Credentials for Authentication to Web Services

you call a Web service, you do s vice proxy; a local object that exposes the same set of

You can generate a Web service proxy by using the Wsdl.exe command line utility. Alternatively, if you are using
Visual Studio .NET you can generate t

Note If the Web service for which you want to generate a proxy is configured to require client certificates, you
 off that requir ter you add the

er to reco
d be to keep a tion Language (WSDL) file available to

consumer applications. You must reme changes.

Specifying Client Credentials fo

If you are using Windows authenticatio
Credentials property of the Web serv d
without any credentials. If Windows au d
response.

Using DefaultCredentials

Client credentials do not flow implicitly. The Web service consumer must set the credentials and authentication
details on the proxy. To flow the security context of the client's Windows security context (either from an

 token or process token) to a Web service you can set the Credentials property of the Web

Passi

When o by using a Web ser
methods as the target Web service.

he proxy by adding a Web reference to the project.

must temporarily switch
reference, you must rememb
An alternate approach woul

ement while you add the reference, or an error occurs. Af
nfigure the service to require certificates.

n offline Web Services Descrip
mber to update this if your Web service interface

r Windows Authentication

n, you must specify the credentials to be used for authentication using the
ice proxy. If you do not explicitly set this property, the Web service is calle
thentication is required, this will result in an HTTP status 401, access denie

impersonating thread
service proxy to CredentialCache. DefaultCredentials as shown below.

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

Consider the following points before you use this approach:

• This flows the client credentials only when you use NTLM, Kerberos, or Negotiate authentication.

• If a client-side application (for example, a Windows Forms application) calls the Web service, the
credentials are obtained from the user's interactive logon session.

• Server-side applications—such as ASP.NET Web applications—use the process identity unless

Using specific credentials

se the following code.

impersonation is configured. In that case the impersonated caller's identity is used.

To use a specific set of credentials for authentication when you call a Web service, u

CredentialCache cache = new CredentialCache();

cache.Add(new Uri(proxy.Url), // Web service URL

 "Negotiate", // Kerberos or NTLM

 new NetworkCredential("username", "password", "domainname"));

proxy.Credentials = cache;

In the above example, the requested Negotiate au
authentication.

thentication type results in either Kerberos or NTLM

ntication type

above. Avoid direct use of the
ing code.

Always request a specific authe

You should always request a specific authentication type as illustrated
NetworkCredential class as shown in the follow

proxy.Credentials = new

 NetworkCredential("username", "password",
"domainname");

This should be avoided in production cod
the Web service and as a result you have

e because you have no control over the authentication mechanism used by
 no control over how the credentials are used.

ect a Kerberos or NTLM authentication challenge from the server but instead you may
r text

 set to true or false. Set it to true to supply specific authentication
TTP header to be passed with the Web request. This saves the Web

erforming authentication on the subsequent retry request.

Note Pre-authentication only applies after the Web service successfully authenticates the first time. Pre-

For example, you may exp
receive a Basic challenge. In this case, the supplied user name and password will be sent to the server in clea
form.

Set the PreAuthenticate property

The proxy's PreAuthenticate property can be
credentials to cause a WWW-authenticate H
server denying access on the request, and p

authentication has no impact on the first Web request.

private void ConfigureProxy(WebClientProtocol proxy,

 string domain, string username,

 string password)

{

 // To improve performance, force pre-authentication

 proxy.PreAuthenticate = true;

 // Set the credentials

 CredentialCache cache = new CredentialCache();

 cache.Add(new Uri(proxy.Url),

 "Negotiate",

 new NetworkCredential(username, password, domain));

 proxy.Credentials = cache;

 proxy.ConnectionGroupName = username;

}

Using the ConnectionGroupName

Notice that the above

p

 code sets the Co
required if the security context used to connect to the Web service varies from one request to the next as

have an ASP.NET Web applica Web service and flows the security context of the
re , you should set the

ty o to prevent a new,
using a e Web service that is associated with

tion cre HTTP KeepAlives and
ersistence which is e

et the ConnectionGroupName property to an identifier (such as the caller's user name) that distinguishes one
e us code fragment.

s securit to the Web service,
 Web application con ntity (such as the Web application's

ASP.NET process identity), you do not need to set the ConnectionGroupName property. In this scenario, the
connection security context remains

tio browser scenarios. These include:

• Certificate Authenticatio

• Basic Authentication. For ta store
(without requiring Active Direct e

roperty

nnectionGroupName property of the Web service proxy. This is only

described below.

If you tion that connects to a
original caller (by using DefaultC
ConnectionGroupName proper
unauthenticated client from re
a previous client's authentica
authentication p

S
caller from the next as shown in th

Note If the original caller'
and instead the

dentials or by setting explicit credentials, as shown above)
f the Web service proxy within the Web application. This is
n old, authenticated TCP connection to th

dentials. Connection reuse can occur as a result of
nabled for performance reasons within IIS.

 previo

y context does not flow through the Web application and on
nects to the Web service using a fixed ide

constant from one caller to the next.

Calling Web Services from Non-Windows Clients

There are a number of authentica n approaches that work for cross-

n. This uses cross-platform X.509 certificates.

 an example of how to use Basic authentication against a custom da
ory), see Web Services Security - HTTP Basic Authentication without Activ

Directory.

• GXA Message Level Approaches. Use the Web Services Development Toolkit to implement GXA (WS-

Custom Approaches. For example, flow credentials in SOAP headers.

t sup Add Web Reference dialog box (although
rted with the next version of Visual Studio .NET). As a result you might receive an HTTP status 407:

"Proxy Authentication Required" response when you attempt to add a Web reference.

 you view the .asmx file from a browser, because the browser automatically
s.

k around this issue, you can use and line utility (instead of the Add Web Reference
) as shown below.

Security) solutions.

•

Proxy Server Authentication

Proxy server authentication is no
it will be suppo

ported by the Visual Studio .NET

Note You may not see this error when
sends credential

To wor
dialog

 the Wsdl.exe comm

wsdl.exe /proxy:http://<Yo rProxy> /pu:<YourName> /pp:<YourPassword> u
/pd:<YourDomain> http://ww .YouWebServer.com/YourWebService/YourService.asmx

If you need to programmatically set th

w

e proxy server authentication information, use the following code.

YourWebServiceProxy.Proxy.

Flowing the Original Caller

This section describes how you can flo tion
and onto a Web service located on a re
user authorization within the Web serv
where you want to authorize original c dual database objects).

0.5, the security context of the original caller (Alice) flows through the front-end Web server that hosts
an ASP.NET Web application, onto the remote object, hosted by ASP.NET on a remote application server and finally

h to a backend database server

Credentials = CredentialsCache.DefaultCredentials;

w the original caller's security context through an ASP.NET Web applica
mote application server. You may need to do this in order to support per-
ice or within subsequent downstream subsystems (for example, databases,
allers to indivi

In Figure 1

throug .

Figure 10.5. Flowing the original caller's security context

In order to flow credentials to a Web ser cation in this scenario)
must configure the Web service proxy sing
Credentials for Authentication to Web

There are two ways to flow the caller's

• Pass default credentials an . This approach
requires that you impersonate within the AS mote object proxy with
DefaultCredentials obtained from the impersonated caller's security context.

entials and use Basic or Forms authentication. This approach does not require
e ASP.NET Web application. Instead, you programmatically configure the Web service

To use Kerberos delegation, all computers (servers and clients) must be running Windows 2000 or later.
ust be stored in Active Directory and must not be marked as

"Sensitive and cannot be delegated."

The following tables show the configuration steps required on the Web server, and application server.

vice, the Web service client (the ASP.NET Web appli
 and explicitly set the proxy's Credentials property, as described in "Pas
Services" earlier in this chapter.

 context.

d use Kerberos authentication (and delegation)
P.NET Web application and configure the re

• Pass explicit cred
impersonation within th
proxy with explicit credentials obtained from either server variables (with Basic authentication) or HTML form
fields (with Forms authentication) that are available to the Web application. With Basic or Forms
authentication, the user name and password are available to the server in clear text.

Default Credentials with Kerberos Delegation

Additionally, client accounts that are to be delegated m

Configuring the Web server

Configure IIS

Step More Information

Disable Anonymous access for your
Web application's virtual root

dows Integrated

Kerberos authentication will be negotiated assuming clients and server are

directory

Enable Win

Authentication for the Web running Windows 2000 or later.
application's virtual root Note: If you are using Internet Explorer 6 on Windows 2000, it defaults to

NTLM authentication instead of the required Kerberos authentication. To
enable Kerberos delegation, see article Q299838, Unable to Negotiate
Kerberos Authentication after upgrading to Internet Explorer 6, in the
Microsoft Knowledge Base.

Configure ASP.NET

Step More Information

Configure your ASP.NET Web

authentication

Edit Web.config in your Web application's virtual directory
application to use Windows Set the <authentication> element to:

<authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application's virtual directory
application for impersonation Set the <identity> element to:

<identity impersonate="true" />

Configure the Web Service Proxy

Step More Information

Set the credentials property of the
Web service proxy to
DefaultCredentials.

See Using DefaultCredentials earlier in this chapter for a code sample.

Configuring the remote application server

Configure IIS

Step More Information

Disable Anonymous access for your
Web service's virtual root directory

Enable Windows Integrated
Authentication for the Web

application's virtual root

Configure ASP.NET (Web Service
Host)

Step More Information

Configure ASP.NET to use Windows Edit
authentication

 Web.config in the Web service's virtual directory.
t the <authentication> element to: Se

<authentication mode="Windows" />

Configure ASP.NET for
impersonation

E
S
dit Web.config in the Web service's virtual directory.
et the <identity> element to:

<identity impersonate="true" />

Note: This step is only required if you want to flow the original caller's
security context through the Web service and onto the next downstream,
subsystem (for example, a database). With impersonation enabled here,
resource access (local and remote) uses the impersonated original caller's
security context.

If your requirement is simply to allow per-user authorization checks in the
Web service, you do not need to impersonate here.

More information

For more information about configuring Kerberos delegation, see How To: Implement Kerberos Delegation for
Windows 2000 in the Reference section of this guide.

Explicit Credentials with Basic or Forms Authentication

As an alternative to Kerberos delegation, you can use Basic or Forms authentication at the Web application to
capture the client's credentials and then use Basic (or Integrated Windows) authentication to the Web service.

With this approach, the client's clear-text credentials are available to the Web application. These can be passed to
the Web service through the Web service proxy. For this, you must write code in the Web application to retrieve
the client's credentials and configure the proxy.

Basic authentication

With Basic authentication, the original caller's credentials are available to the Web application in server variables.
The following code shows how to retrieve them and configure the Web service proxy.

// Retrieve client's credentials (available with Basic

// authentication)

string pwd = Request.ServerVariables["AUTH_PASSWORD"];

string uid = Request.ServerVariables["AUTH_USER"];

// Associate the credentials with the Web service proxy

// To improve performance, force preauthentication

proxy.PreAuthenticate = true;

// Set the credentials

CredentialCache cache = new CredentialCache();

cache.Add(new Uri(proxy.Url),

 "Basic",

 new NetworkCredential(uid, pwd, domain));

proxy.Credentials = cache;

Forms authentication

With Forms authentication, the original caller's credentials are available to the Web application in form fields
(rather than server variables). In this case, use the following code.

// Retrieve client's credentials from the logon form

string pwd = txtPassword.Text;

string uid = txtUid.Text;

// Associate the credentials with the Web service proxy

// To improve performance, force preauthentication

proxy.PreAuthenticate = true;

// Set the credentials

CredentialCache cache = new CredentialCache();

cache.Add(new Uri(proxy.Url),

 "Basic",

 new NetworkCredential(uid, pwd, domain));

proxy.Credentials = cache;

The following tables show the configuration steps required on the Web server, and application server.

Configuring the Web server

Configure IIS

Step More Information

To use Basic authentication, disable
Anonymous access for your Web
application's virtual root directory
and select Basic authentication

- or -

To use Forms authentication, enable
anonymous access

Both Basic and Forms authentication should be used in conjunction with SSL
to protect the clear text credentials sent over the network. If you use Basic
authentication, SSL should be used for all pages (not just the initial logon
page), as Basic credentials are transmitted with every request.

Similarly, SSL should be used for all pages if you use Forms authentication,
to protect the clear text credentials on the initial log on and to protect the
authentication ticket passed on subsequent requests.

Configure ASP.NET

Step More Information

If you use Basic authentication,
configure your ASP.NET Web
application to use Windows
authentication

- or -

If you use Forms authentication,
configure your ASP.NET Web
application to use Forms
authentication

Edit Web.config in your Web application's virtual directory
Set the <authentication> element to:

<authentication mode="Windows" />

- or -

Edit Web.config in your Web application's virtual directory
Set the <authentication> element to:

<authentication mode="Forms" />

Disable impersonation within the
ASP.NET Web application

Edit Web.config in your Web application's virtual directory.
Set the <identity> element to:

<identity impersonate="false" />

Note: This is equivalent to having no <identity> element.
Impersonation is not required, as the user's credentials will be passed
explicitly to the Web service through the proxy.

Configure the Web Service
Proxy

Step More Information

Write code to capture and explicitly
set the credentials on the Web
Service proxy

Refer to the code fragments shown earlier in the Basic Authentication and
Forms Authentication sections.

Configuring the application server

Configure IIS

Step More Information

Disable Anonymous access for your
application's virtual root directory

Enable Basic authentication

Note: Basic authentication at the (Web service) application server, allows
the Web service to flow the original caller's security context to the database
(as the caller's user name and password are available in clear text and can
be used to respond to network authentication challenges from the database
server).
If you don't need to flow the original caller's security context beyond the
Web service, consider configuring IIS at the application server to use
Windows Integrated authentication, as this provides tighter security—
credentials are not passed across the network and are not available to the
Web service.

Configure ASP.NET (Web
Service)

Step More Information

Configure ASP.NET to use Windows
authentication

Edit Web.config in the Web service's virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

Configure your ASP.NET Web service
for impersonation

Edit Web.config in the Web service's virtual directory.
Set the <identity> element to:

<identity impersonate="true" />

Note: This step is only required if you want to flow the original caller's
security context through the Web service and onto the next downstream,
subsystem (for example, a database). With impersonation enabled here,
resource access (local and remote) uses the impersonated original caller's
security context.
If your requirement is simply to allow per-user authorization checks in the
Web service, you do not need to impersonate here.

Trusted Subsystem

The trusted subsystem model provides an alternative (and simpler to implement) approach to flowing the original
caller's security context. In this model a trust boundary exists between the Web service and Web application. The
Web service trusts the Web application to properly authenticate and authorize callers, prior to letting requests
proceed to the Web service. No authentication of the original callers occurs at the Web service. The Web service
authenticates the fixed trusted identity used by the Web application to communicate with the Web service. In most
cases, this is the process identity of the ASP.NET worker process.

The trusted subsystem model is shown in Figure 10.6.

Figure 10.6. The trusted subsystem model

Flowing the Caller's Identity

If you use the trusted subsystem model, you may still need to flow the original caller's identity (name, not security
context), for example, for auditing purposes at the database.

You can flow the identity at the application level by using method and stored procedure parameters and trusted
query parameters (as shown in the following example) can be used to retrieve user-specific data from the
database.

SELECT x,y,z FROM SomeTable WHERE UserName = "Alice"

Configuration Steps

The following tables show the configuration steps required on the Web server, and application server.

Configuring the web server

Configure IIS

Step More Information

Configure IIS authentication The Web application can use any form of authentication to authenticate the
original callers.

Configure ASP.NET

Step More Information

Configure authentication and make
sure impersonation is disabled

Edit Web.config in your Web application's virtual directory.
Set the <authentication> element to "Windows", "Forms" or "Passport."

<authentication mode="Windows|Forms|Passport" />

Set the <identity> element to:

<identity impersonate="false" />

(or remove the <identity> element)

Reset the password of the ASPNET For more information about how to access network resources (including Web

account used to run ASP.NET OR
create a least privileged domain
account to run ASP.NET and specify
account details on the
<processModel> element within
Web.config

services) from ASP.NET and about choosing and configuring a process
account for ASP.NET, see Accessing Network Resources and Process Identity
for ASP.NET in Chapter 8, "ASP.NET Security."

Configure Web Service Proxy

Step More Information

Configure the Web service proxy to
use default credentials for all calls to
the Web service

Use the following line of code:

proxy.Credentials = DefaultCredentials;

Configuring the application server

Configure IIS

Step More Information

Disable Anonymous access for your
Web service's virtual root directory

Enable Windows Integrated
authentication

Configure ASP.NET

Step More Information

Configure ASP.NET to use Windows
authentication

Edit Web.config in the Web service's virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

Disable impersonation Edit Web.config in the application's virtual directory.
Set the <identity> element to:

<identity impersonate="false" />

Accessing System Resources

For details about accessing system resources (for example the event log and the registry) from ASP.NET Web
services, see Accessing System Resources in Chapter 8, "ASP.NET Security." The approaches and restrictions
discussed in Chapter 8 also apply to ASP.NET Web services.

Accessing Network Resources

When you access network resources from a Web service, you need to consider the identity that is used to respond
to network authentication challenges from the remote computer. You have three options:

• The process identity (determined by the account used to run the ASP.NET worker process)

• A service identity (for example, one created by calling LogonUser)

• The original caller identity (with the Web service configured for impersonation)

For details about the relative merits of each of these approaches, together with configuration details, see Accessing
Network Resources in Chapter 8, "ASP.NET Security."

Accessing COM Objects

The AspCompat directive (used by Web applications when they call apartment threaded COM objects) is not
available to Web services. This means that when you call apartment model objects from Web services, a thread
switch occurs. This results in a slight performance hit, and if your Web service is impersonating, your
impersonation token will be lost when calling the COM component. This typically results in an Access Denied
exception.

More Information

• For more information about access denied exceptions when calling apartment threaded COM objects, see
article Q325791,PRB: Access Denied Error Message Occurs When Impersonating in ASP.NET and Calling STA
COM Components, in the Microsoft Knowledge Base.

• For more information about accessing COM objects and using the AspCompat attribute, see Accessing
COM Objects within Chapter 8, "ASP.NET Security."

• For more information about calling apartment threaded COM objects from Web services, see article
Q303375, INFO: XML Web Services and Apartment Objects, in the Microsoft Knowledge Base.

Using Client Certificates with Web Services

This section describes techniques for using X.509 client certificates for Web service authentication.

You can use client certificate authentication within a Web service to authenticate:

• Other Web services

• Applications that communicate directly with the Web service (for example, server-based or client-side
desktop applications)

Authenticating Web Browser Clients with Certificates

A Web service cannot use client certificates to authenticate callers if they interact with an intermediate Web
application, because it is not possible to forward the original caller's certificate through the Web application and
onto the Web service. While the Web application can authenticate its clients with certificates, the same certificates
cannot then be used by the Web service for authentication.

The reason that this server-to-server scenario fails is that the Web application does not have access to the client's
certificate (specifically its private key) in its certificate store. This problem is illustrated in Figure 10.7.

Figure 10.7. Web service client certificate authentication

Using the Trusted Subsystem Model

To address this restriction, and to support certificate authentication at the Web service, you must use a trusted-
subsystem model. With this approach, the Web service authenticates the Web application using the Web
application's certificate (and not the original caller's certificate). The Web service must trust the Web application to
authenticate its users and to perform the necessary authorization to ensure that only authorized callers are able to
access the data and functionality exposed by the Web service.

This approach is shown in Figure 10.8.

Figure 10.8. The Web service authenticates the trusted Web application

If the authorization logic within the Web service requires multiple roles, the Web application can send different
certificates based upon the role membership of the caller. For example, one certificate may be used for members of
an Administrators group (who are allowed to update data within a back-end database) and another certificate may
be used for all other users (who are authorized only for read operations).

Note In scenarios such as these, a local certificate server (accessible only by the two servers) can be used to
manage all the Web application certificates.

In this scenario:

• The Web application authenticates its users by using client certificates.

• The Web application acts as a gatekeeper and authorizes its users and controls access to the Web service.

• The Web application calls the Web service and passes a different certificate that represents the application
(or possibly a range of certificates based on the role membership of the caller).

• The Web service authenticates the Web application and it trusts the application to perform the necessary
client authorization.

• IPSec is used between the Web application server and Web service server to provide additional access
control. Unauthorized access attempts from other computers are prevented by IPSec. Certificate
authentication at the Web service server also prevents unauthorized access.

Solution implementation

To use certificate authentication at the Web service in this scenario, use a separate process to call the Web service
and pass the certificate. You cannot manipulate the certificates directly from the ASP.NET Web application because
it does not have a loaded user profile and associated certificate store. The separate process must be configured to
run using an account that has an associated user profile (and certificate store). You have two main options:

• You can use an Enterprise Services server application.

• You can use a Windows service.

Figure 10.9 illustrates this scenario with an Enterprise Services server application.

Figure 10.9. Client certificate authentication with Web services

The following summarizes the sequence of events illustrated by Figure 10.9:

1. The original caller is authenticated by the Web application using client certificates.

2. The Web application is the gatekeeper and is responsible for authorizing access to specific areas of
functionality (including those that involve interaction with the Web service).

3. The Web application calls a serviced component running in an out-of-process Enterprise Services
application.

4. The account used to run the Enterprise Services application has an associated user profile. The component
accesses a client certificate from its certificate store, which is used by the Web service to authenticate the Web
application.

5. The serviced component calls the Web service, passing the client certificate on each method request. The
Web service authenticates the Web application using this certificate and trusts the Web application to correctly
authorize original callers.

Why use an additional process?

An additional process is required (rather than using the Aspnet_wp.exe Web process to contact the Web service)
due to the fact that a user profile (containing a certificate store) is required.

A Web application that runs using the ASPNET account does not have access to any certificates on the Web server.
This is because certificate stores are maintained within user profiles associated with interactive user accounts. User
profiles are only created for interactive accounts when you physically log on using the account. The ASPNET
account is not intended to be an interactive user account and is configured with the "Deny interactive logon"
privilege for added security.

Important Do not reconfigure the ASPNET account to remove this privilege and turn the account into an
interactive logon account. Use a separate process with a configured service account to access certificates, as
described earlier in this chapter.

More information

• For more information about how to implement this approach, see How To: Call a Web Service Using Client
Certificates from ASP.NET in the Reference section of this guide.

• For more information about configuring IPSec, see How To: Use IPSec to Provide Secure Communication
Between Two Servers in the Reference section of this guide.

Secure Communication

Secure communication is concerned with guaranteeing the integrity and confidentiality of Web service messages as
they flow from application to application across the network. There are two approaches to this problem: transport-
level options and message-level options.

Transport Level Options

Transport-level options include:

• SSL

• IPSec

These options may be appropriate if the following conditions are met:

• You are sending a message directly from your application to a Web service and the message will not be
routed through intermediate systems.

• You can control the configuration of both endpoints involved in the message transfer.

Message-Level Options

Message-level approaches can be used to guarantee the confidentiality and integrity of messages as they pass
through an arbitrary number of intermediate systems. Messages can be signed to provide integrity. For
confidentiality, you can choose between encrypting the entire message or part of a message.

Use a message-level approach if the following conditions are met:

• You are sending a message to a Web service, and the message is likely to be forwarded to other Web
services or may be routed through intermediate systems.

• You do not control the configuration of both endpoints. For example, if you are sending messages from
one company to another.

More information

• The Web Service Development Toolkit will provide message encryption functionality in accordance with the
WS-Security specification.

• For more information about SSL and IPSec, see Chapter 4, Secure Communication.

Summary

This chapter has focused on platform/transport-level (point-to-point) Web service security provided by the
underlying services of ASP.NET, IIS, and the operating system. While platform-level security provides secure
solutions for tightly-coupled intranet scenarios, it is not suited to heterogeneous scenarios. For this, message-level
security provided by the GXA WS-Security specification is required. Use the Web Services Development Kit to build
message-level Web service security solutions.

For tightly-coupled Windows domain environments:

• If you want to flow the original caller's identity from an ASP.NET Web application to a remote Web service,
the ASP.NET Web application should use Kerberos authentication (with accounts configured for delegation),
Basic authentication, or Forms authentication.

• With Kerberos authentication, enable impersonation with the Web application and configure the
Credentials property of the Web service proxy using DefaultCredentials.

• With Basic or Forms authentication, capture the caller's credentials and set the Credentials
property of the Web service proxy by adding a new CredentialCache object.

For Web-service to Web-service scenarios:

• Use Basic or Kerberos authentication and set credentials in the client proxy.

• Use an out of process Enterprise Services application or a Windows service to manipulate X.509
certificates from Web applications.

• As far as possible, use system-level authorization checks such as File and URL authorization.

• For granular authorization (for example, at the Web method level) use .NET roles (declaratively and
imperatively).

• Authorize non-Windows users by using .NET roles (based on a GenericPrincipal object that contains
roles).

• Disable HTTP-GET and HTTP-POST protocols on product servers.

• Use transport-level security if you are not worried about passing messages securely through intermediary
systems.

• Use transport-level security if SSL performance is acceptable.

• Use WS-Security and the Web Services Development Kit to develop message-level solutions.

.NET Remoting Security

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

See the Landing Page for the starting point and complete overview of Building Secure ASP.NET Applications.

Summary: The .NET Framework provides a remoting infrastructure that allows clients to communicate with
objects, hosted in remote application domains and processes, or on remote computers. This chapter shows you
how to implement secure .NET Remoting solutions. (27 printed pages)

Contents

.NET Remoting Architecture

.NET Remoting Gatekeepers
Authentication
Authorization
Authentication and Authorization Strategies
Accessing System Resources
Accessing Network Resources
Passing Credentials for Authentication to Remote Objects
Flowing the Original Caller
Trusted Subsystem
Secure Communication
Choosing a Host Process
Remoting vs. Web Services
Summary

The .NET Framework provides a remoting infrastructure that allows clients to communicate with objects, hosted in
remote application domains and processes, or on remote computers. This chapter shows you how to implement
secure .NET Remoting solutions.

.NET Remoting Architecture

Figure 11.1 shows the basic .NET Remoting architecture when a remote object is hosted within ASP.NET. An
ASP.NET host, coupled with the HTTP channel for communication, is the recommended approach if security is the
key concern, because it allows the remote object to utilize the underlying security services provided by ASP.NET
and IIS.

For more information about the range of possible host and channel types, together with comparison information,
see Choosing a Host Process later in this chapter.

Figure 11.1. The .NET remoting architecture

The client communicates with an in-process proxy object. Credentials for authentication (for example, user names,
passwords, certificates, and so on) can be set through the remote object proxy. The method call proceeds through
a chain of sinks (you can implement your own custom sinks, for example, to perform data encryption) and onto a
transport sink that is responsible for sending the data across the network. At the server side, the call passes
through the same pipeline after which the call is dispatched to the object.

Note The term proxy used throughout this chapter refers to the client-side, in-process proxy object through
which clients communicate with the remote object. Do not confuse this with the term proxy server.

Remoting Sinks

.NET Remoting uses transport channels sinks, custom channel sinks, and formatter channel sinks when a client
invokes a method call on a remote object.

Transport channel sinks

Transport channel sinks pass method calls across the network between the client and the server. .NET supplies the
HttpChannel and the TcpChannel classes, although the architecture is fully extensible and you can plug in your
own custom implementations.

• HttpChannel. This channel is designed to be used when you host a remote object in ASP.NET. This
channel uses the HTTP protocol to send messages between the client and the server.

• TcpChannel. This channel is designed to be used when you host a remote object in a Microsoft®
Windows® operating system service or other executable. This channel uses TCP sockets to send messages
between the client and the server.

• Custom channels. A custom transport channel can use any underlying transport protocol to send
messages between the client and server. For example, a custom channel may use named pipes or mail slots.

Comparing Transport Channel Sinks

The following table provides a comparison of the two main transport channel sinks.

Table 11.1. Comparison of TcpChannel and HttpChannel

Feature TCP Channel HTTP Channel Comments

Authentication No Yes The HTTP channel uses the authentication
features provided by IIS and ASP.NET,
although Passport and Forms authentication is
not supported.

Authorization No Yes The HTTP channel supports the authorization
features provided by IIS and ASP.NET. These
include NTFS permissions, URL authorization
and File authorization.

Secure
Communication

Yes Yes Use IPSec with the TCP channel. Use SSL
and/or IPSec with the HTTP channel.

Custom sinks

Custom channels sinks can be used at different locations within the channel sink pipeline to modify the messages
sent between the client and the server. A channel sink that provides encryption and decryption is an example of a
custom channel sink.

Formatter sinks

Formatter sinks take method calls and serialize them into a stream capable of being sent across the network. .NET
supplies two formatter sinks:

• Binary Formatter. This uses the BinaryFormatter class to package method calls into a serialized binary
stream, which is subsequently posted (using an HTTP POST) to send the data to the server. The binary
formatter sets the content-type in the HTTP request to "application/octet-stream."

The binary formatter offers superior performance in comparison to the SOAP formatter.

• SOAP Formatter. This uses the SoapFormatter class to package method calls into a SOAP message.
The content type is set to "text/xml" in the HTTP request and is posted to the server with an HTTP POST.

Anatomy of a Request When Hosting in ASP.NET

Remote object endpoints are addressed by URLs that end with the .rem or .soap file name extension, for example
http://someserver/vDir/remoteobject.soap. When a request for a remote object (with the extension .rem or .soap),
is received by IIS, it is mapped (within IIS) to the ASP.NET ISAPI extension (Aspnet_isapi.dll). The ISAPI extension
forwards the request to an application domain within the ASP.NET worker process (Aspnet_wp.exe). The sequence
of events is shown in Figure 11.2.

Figure 11.2. Server-side processing

Figure 11.2 shows the following sequence of events:

1. A .soap or .rem request is received over HTTP and is mapped to a specific virtual directory on the Web
server.

2. IIS checks the .soap/.rem mapping and maps the file extension to the ASP.NET ISAPI extension,
Aspnet_isapi.dll.

3. The ISAPI extension transfers the request to an application domain inside the ASP.NET worker process
(Aspnet_wp.exe). If this is the first request directed at this application, a new application domain is created.

4. The HttpRemotingHandlerFactory handler is invoked and the remoting infrastructure reads the
<system.runtime.remoting> section in the Web.config that controls the server-side object configuration
(for example, single-call or singleton parameters) and authorization parameters (from the <authorization>
element).

5. The remoting infrastructure locates the assembly that contains the remote object and instantiates it.

6. The remoting infrastructure reads the HTTP headers and the data stream, and then invokes the method on
the remote object.

Note During this process, ASP.NET calls the normal sequence of event handlers. You can optionally
implement one or more of these in Global.asax. For example, BeginRequest, AuthenticationRequest,
AuthorizeRequest, and so on. By the time the request reaches the remote object method, the IPrincipal
object that represents the authenticated user is stored in HttpContext.User (and Thread.CurrentPrincipal)
and is available for authorization. For example, by using principal permission demands and programmatic role
checks.

ASP.NET and the HTTP Channel

Remoting does not have its own security model. Authentication and authorization between the client (proxy) and
server (remote object) is performed by the channel and host process. You can use the following combination of
hosts and channels:

• A custom executable and the TCP Channel. This combination does not provide any inbuilt security
features.

• ASP.NET and the HTTP Channel. This combination provides authentication and authorization through
the underlying ASP.NET and IIS security features.

Objects hosted within ASP.NET benefit from the underlying security features of ASP.NET and IIS. These include:

• Authentication Features. Windows authentication is configured within Web.config:

• <authentication mode="Windows"/>

The settings in IIS control what type of HTTP authentication is used.

Common HTTP headers are used to authenticate requests. You can supply credentials for the client by
configuring the remote object proxy or you can use default credentials.

You cannot use Forms or Passport authentication because the channel does not provide a way to allow the
client to access cookies, which is a requirement for both of these authentication mechanisms. Also, Forms and
Passport require a redirect to a logon page that requires client interaction. Remote, server side objects are
designed for non-interactive use.

• Authorization Features. Clients are authorized using standard ASP.NET authorization techniques.

Configurable authorization options include:

• URL authorization.

• File authorization (this requires specific configuration, as described in "Using File Authorization"
later in this chapter).

Programmatic authorization options include:

• Principal permission demands (declarative and imperative).

• Explicit role checks using IPrincipal.IsInRole.

• Secure Communication Features. SSL (and/or IPSec) should be used to secure the transport of data
between the client and server.

More information

• For more information about the authentication and authorization features provided by ASP.NET and IIS,
see Chapter 8, ASP.NET Security.

• For information about how to host an object in ASP.NET/IIS, see article Q312107, HOW TO: Host a
Remote Object in Microsoft Internet Information Services, in the Microsoft Knowledge Base.

.NET Remoting Gatekeepers

The authorization points (or gatekeepers) available to a remote object hosted by ASP.NET are:

• IIS. With anonymous authentication turned off, IIS only permits requests from users that it can
authenticate either in its domain or in a trusted domain. IIS also provides IP address and DNS filtering.

• ASP.NET

• UrlAuthorizationModule. You can configure <authorization> elements within your
application's Web.config to control which users and groups of users should have access to the application.
Authorization is based on the IPrincipal object stored in HttpContext.User.

• FileAuthorizationModule. The FileAuthorizationModule is available to remote components,
although this requires specific configuration, as described in "Using File Authorization" later in this
chapter.

Note Impersonation is not required for File authorization to work.

The FileAuthorizationModule class only performs access checks against the requested file or URI (for
example .rem and .soap), and not for files accessed by code within the remote object.

• Principal Permission Demands and Explicit Role Checks. In addition to the IIS and ASP.NET
configurable gatekeepers, you can also use principal permission demands (declaratively or imperatively) as an
additional fine-grained access control mechanism. Principal permission checks allow you to control access to
classes, methods, or individual code blocks based on the identity and group membership of individual users, as
defined by the IPrincipal object attached to the current thread.

Note Principal permission checks used to demand role membership are different from calling
IPrincipal.IsInRole to test role membership. The former results in an exception if the caller is not a member
of the specified role, while the latter simply returns a Boolean value to confirm role membership.

With Windows authentication, ASP.NET automatically attaches a WindowsPrincipal object that represents
the authenticated user to the current Web request (using HttpContext.User).

Authentication

When you use remoting in conjunction with an ASP.NET Web application client, authentication occurs within the
Web application and at the remote object host. The available authentication options for the remote object host
depend on the type of host.

Hosting in ASP.NET

When objects are hosted in ASP.NET the HTTP channel is used to communicate method calls between the client-
side proxy and the server. The HTTP channel uses the HTTP protocol to authenticate the remote object proxy to the
server.

The following list shows the range of authentication options available when you host inside ASP.NET:

• IIS Authentication Options. Anonymous, Basic, Digest, Windows Integrated and Certificate.

• ASP.NET Authentication Options. Windows authentication or None (for custom authentication
implementations).

Note Forms and Passport authentication cannot be used directly by .NET Remoting. Calls to remote objects
are designed to be non-interactive. If the client of the remote object is a .NET Web application, the Web
application can use Forms and Passport authentication and pass credentials explicitly to the remote object.
This type of scenario is discussed further in the "Flowing the Original Caller" section later in this chapter.

Hosting in a Windows Service

When objects are hosted in a Windows service, the TCP channel is used to communicate method calls between the
client and server. This uses raw socket-based communications. Because there is no authentication provided with
sockets, there is no way for the server to authenticate the client.

In this scenario, the remote object must use custom authentication.

Custom authentication

For simple custom authentication, the remote object can expose a Login method which accepts a user name and
password. The credentials can be validated against a store, a list of roles retrieved, and a token sent back to the

client to use on subsequent requests. When the token is retrieved at the server it is used to create an IPrincipal
object (with roles) which is stored in Thread.CurrentPrincipal, where it is used for authorization purposes.

Other examples of custom authentication include creating a custom transport channel sink that uses an inter-
process communication channel that provides authentication, such as named pipes, or creating a channel sink that
performs authentication using the Windows Security Service Provider Interface (SSPI).

More information

• For information about how to host an object in a Windows service, see How To: Host a Remote Object in a
Windows Service in the Reference section of this guide.

• For more information about sinks and sink chains, search for see the section of the .NET Framework on
Sinks and Sink Chains in the MSDN Library.

• For more information about how to create a custom authentication solution that uses SSPI, see the MSDN
article .NET Remoting Security Solution, Part 1: Microsoft.Samples.Security.SSPI Assembly.

Note The implementation in this article is a sample and not a product tested and supported by Microsoft.

Authorization

When objects are hosted by ASP.NET and the HTTP channel is used for communication, the client can be
authenticated and authorization can be controlled by the following mechanisms:

• URL authorization

• File authorization

• Principal permission demands (declarative and imperative)

• IPrincipal.IsInRole checks in code

When objects are hosted in a Windows service, there is no authentication provided by the TCP channel. As a result,
you must perform custom authentication and then perform authorization by creating an IPrincipal object and
storing it in Thread.CurrentPrincipal.

You can then annotate your remote object's methods with declarative principal permission demand checks, like the
one shown below.

[PrincipalPermission(SecurityAction.Demand,

 Role="Manager")]

void SomeMethod()

{

}

Within your object's method code, imperative principal permission demands and explicit role checks using
IPrincipal.IsInRole can also be used.

Using File Authorization

You may want to use built-in Windows access control to secure the remote object as a securable Windows
resource. Without File authorization (using Windows ACLs), you only have URL authorization.

To use the FileAuthorizationModule to authorize access to remote object endpoints (identified with .rem or .soap
URLs), you must create a physical file with the .rem or .soap extension within your application's virtual directory.

Note The .rem and .soap extensions are used by IIS to map requests for object endpoints to the ASP.NET ISAPI
extension (aspnet_isapi.dll). They do not usually exist as physical files.

To configure File authorization for .NET Remoting

1. Create a file with the same name as the objectUri (for example, RemoteMath.rem) in the root of the
application's virtual directory.

2. Add the following line to the top of the file and save the file.

3. <%@ webservice class="YourNamespace.YourClass" ... %>

4. Add an appropriately configured ACL to the file using Windows Explorer.

Note You can obtain the objectUri from the web.config file used to configure the remote object on the
server. Look for the <wellknown> element, as shown in the following example.

<wellknown mode="SingleCall" objectUri="RemoteMath.rem"
type="RemotingObjects.RemoteMath, RemotingObjects, Version=1.0.000.000
Culture=neutral, PublicKeyToken=4b5ae668c251b606"/>

More information

• For more information about these authorization mechanisms, see Chapter 8, ASP.NET Security.

• For more information about principal permission demands, see Chapter 8, ASP.NET Security.

Authentication and Authorization Strategies

In many applications that use .NET Remoting, the remote objects are used to provide business functionality within
the application's middle tier and this functionality is called by ASP.NET Web applications. This arrangement is
shown in Figure 11.3.

Figure 11.3. Remote objects called by an ASP.NET Web application

In this scenario, the IIS and ASP.NET gatekeepers available to the Web application can be used to secure access to
the client-side proxy, and the IIS and ASP.NET gatekeepers available to the ASP.NET host on the remote
application server are available to secure access to the remote object.

There are essentially two authentication and authorization strategies for remote objects that are accessed by .NET
Web applications.

• You can authenticate and authorize callers at the Web server and then flow the caller's security context to
the remote object by using impersonation. This is the impersonation/delegation model.

With this approach you use an IIS authentication mechanism that allows you to delegate the caller's security
context, such as Kerberos, Basic, or Forms authentication (the latter two allow the Web application to access
the caller's credentials) and explicitly flow credentials to the remote object using the remote object's proxy.

The ASP.NET configurable and programmatic gatekeepers (including URL authorization, File authorization,
principal permission demands, and .NET roles) are available to authorize individual callers within the remote
object.

• You can authenticate and authorize callers at the Web server and then use a trusted identity to
communicate with the remote object. This is the trusted subsystem model.

This model relies on the Web application to authenticate and properly authorize callers before invoking the
remote object. Any requests received by the remote object from the trusted identity projected from the Web
application are allowed to proceed.

More Information

• For more information about the impersonation/delegation and trusted subsystem models, see Choosing an
Authentication Mechanism in Chapter 3, "Authentication and Authorization."

• For more information about using the original caller model with remoting, Flowing the Original Caller later
in this chapter.

• For more information about using the trusted subsystem model with remoting, see Trusted Subsystem
later in this chapter.

Accessing System Resources

For details about accessing system resources (for example, the event log and the registry) from a remote object
hosted by ASP.NET, see Accessing System Resources in Chapter 8, "ASP.NET Security." The approaches and
restrictions discussed in Chapter 8 also apply to remote objects hosted by ASP.NET.

Accessing Network Resources

When you access network resources from a remote object, you need to consider the identity that is used to
respond to network authentication challenges from the remote computer. You have three options:

• The Process Identity (this is the default). If you host within ASP.NET, the identity used to run the
ASP.NET worker process and defined by the <processModel> element in Machine.config determines the
security context used for resource access.

If you host within a Windows service, the identity used to run the service process (configured with the
Services MMC snap-in) determines the security context used for resource access.

• A Fixed Service Identity. For example, one created by calling LogonUser.

Note Don't confuse this service identity with the identity used to run a Windows service. A fixed service
identity refers to a Windows user account created specifically for the purposes of accessing resources from an
application.

• The Original Caller Identity. With ASP.NET configured for impersonation, or programmatic
impersonation used within a Windows service.

For details about the relative merits of each of these approaches, together with configuration details, see Accessing
Network Resources in Chapter 8, "ASP.NET Security."

Passing Credentials for Authentication to Remote Objects

When a client process calls a remote object, it does so by using a proxy. This is a local object that exposes the
same set of methods as the target object.

Specifying Client Credentials

If the remote object is hosted within ASP.NET and is configured for Windows authentication, you must specify the
credentials to be used for authentication using the credentials property of the channel. If you do not explicitly set
credentials, the remote object is called without any credentials. If Windows authentication is required, this will
result in an HTTP status 401, which is an access denied response.

Using DefaultCredentials

If you want to use the credentials of the process that hosts the remote object proxy (or the current thread token, if
the thread that calls the proxy is impersonating), you should set the credentials property of the channel to the
DefaultCredentials maintained by the process credential cache.

You can either specify the use of DefaultCredentials in a configuration file or set the credentials
programmatically.

Explicit configuration

Within the client application configuration file (Web.config, if the client application is an ASP.NET Web application)
set the useDefaultCredentials attribute on the <channel> element to true in order to specify that the proxy
should use DefaultCredentials when it communicates with the remote object.

<channel ref="http" useDefaultCredentials="true" />

Programmatic configuration

For programmatic configuration, use the following code to establish the use of DefaultCredentials
programmatically.

IDictionary channelProperties;

channelProperties = ChannelServices.GetChannelSinkProperties(proxy);

channelProperties ["credentials"] = CredentialCache.DefaultCredentials;

Using specific credentials

To use a specific set of credentials for authentication when you call a remote object, disable the use of default
credentials within the configuration file, by using the following setting.

<channel ref="http" useDefaultCredentials="false" />

Note Programmatic settings always override the settings in the configuration file.

Then, use the following code to configure the proxy to use specific credentials.

IDictionary channelProperties =

 ChannelServices.GetChannelSinkProperties(proxy);

NetworkCredential credentials;

credentials = new NetworkCredential("username", "password", "domain");

ObjRef objectReference = RemotingServices.Marshal(proxy);

Uri objectUri = new Uri(objectReference.URI);

CredentialCache credCache = new CredentialCache();

// Substitute "authenticationType" with "Negotiate", "Basic",

// "Digest",

// "Kerberos" or "NTLM"

credCache.Add(objectUri, "authenticationType", credentials);

channelProperties["credentials"] = credCache;

channelProperties["preauthenticate"] = true;

Always request a specific authentication type

You should always request a specific authentication type by using the CredentialCache.Add method, as illustrated
above. Avoid direct use of the NetworkCredential class as shown in the following code.

IDictionary providerData =
ChannelServices.GetChannelSinkProperties(yourProxy);

providerData["credentials"] = new NetworkCredential(uid, pwd);

This should be avoided in production code because you have no control over the authentication mechanism used by
the remote object host and as a result you have no control over how the credentials are used.

For example, you may expect a Kerberos or NTLM authentication challenge from the server but instead you may
receive a Basic challenge. In this case, the supplied user name and password will be sent to the server in clear text
form.

Set the preauthenticate property

The proxy's preauthenticate property can be set to true or false. Set it to true (as shown in the above code) to
supply specific authentication credentials to cause a WWW-Authenticate HTTP header to be passed with the
initial request. This stops the Web server denying access on the initial request, and performing authentication on
the subsequent request.

Using the connectiongroupname property

If you have an ASP.NET Web application that connects to a remote component (hosted by ASP.NET) and flows the
security context of the original caller (by using DefaultCredentials and impersonation or by setting explicit
credentials, as shown above), you should set the connectiongroupname property of the channel within the Web
application. This is to prevent a new, unauthenticated client from reusing an old, authenticated connection to the
remote component that is associated with a previous client's authentication credentials. Connection reuse can occur
as a result of HTTP KeepAlives and authentication persistence which is enabled for performance reasons within IIS.

Set the connectiongroupname property to an identifier (such as the caller's user name) that distinguishes one
caller from the next.

channelProperties["connectiongroupname"] = userName;

Note You do not need to set the connectiongroupname property if the original caller's security context does
not flow through the Web application and onto the remote component, but connects to the remote component
using a fixed identity (such as the Web application's ASP.NET process identity). In this scenario, the connection
security context remains constant from one caller to the next.
The next version of the .NET Framework will support connection pooling based on the SID of the thread that calls
the proxy object, which will help to address the problem described above, if the Web application is impersonating
the caller. Pooling will be supported for .NET Remoting clients and not for Web services clients.

Flowing the Original Caller

This section describes how you can flow the original caller's security context through an ASP.NET Web application
and onto a remote component hosted by ASP.NET on a remote application server. You may need to do this in order
to support per-user authorization within the remote object or within subsequent downstream subsystems (for
example databases).

In Figure 11.4, the security context of the original caller (Bob) flows through the front-end Web server that hosts
an ASP.NET Web application, onto the remote object, hosted by ASP.NET on a remote application server, and
finally through to a back-end database server.

Figure 11.4. Flowing the original caller's security context

In order to flow credentials to a remote object, the remote object client (the ASP.NET Web application in this
scenario) must configure the object's proxy and explicitly set the proxy's credentials property, as described in
"Passing Credentials for Authentication to Remote Objects" earlier in this chapter.

Note IPrincipal objects do not flow across .NET Remoting boundaries.

There are two ways to flow the caller's context:

• Pass default credentials and use Kerberos authentication (and delegation). This approach
requires that you impersonate within the ASP.NET Web application and configure the remote object proxy with
DefaultCredentials obtained from the impersonated caller's security context.

• Pass explicit credentials and use Basic or Forms authentication. This approach does not require
impersonation within the ASP.NET Web application. Instead, you programmatically configure the remote object
proxy with explicit credentials obtained from either, server variables (with Basic authentication), or HTML form
fields (with Forms authentication) that are available to the Web application. With Basic or Forms
authentication, the username and password are available to the server in clear text.

Default Credentials with Kerberos Delegation

To use Kerberos delegation, all computers (servers and clients) must be running Windows 2000 or later.
Additionally, client accounts that are to be delegated must be stored in Active Directory™ directory service and
must not be marked as "Sensitive and cannot be delegated."

The following tables show the configuration steps required on the Web server and application server.

Configuring the Web server

Configure IIS

Step More Information

Disable Anonymous access for your
Web application's virtual root
directory

Enable Windows Integrated
Authentication for the Web
application's virtual root

Kerberos authentication will be negotiated assuming clients and server are
running Windows 2000 or above.
Note: If you are using Microsoft Internet Explorer 6 on Windows 2000, it
defaults to NTLM authentication instead of the required Kerberos
authentication. To enable Kerberos delegation, see article Q299838, Unable
to Negotiate Kerberos Authentication after upgrading to Internet Explorer 6,
in the Microsoft Knowledge Base.

Configure ASP.NET

Step More Information

Configure your ASP.NET Web
application to use Windows
authentication

Edit Web.config in your Web application's virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

Configure your ASP.NET Web Edit Web.config in your Web application's virtual directory.

application for impersonation Set the <identity> element to:

<identity impersonate="true" />

Configure Remoting (Client Side
Proxy)

Step More Information

Configure the remote object proxy
to use default credentials for all calls
to the remote object

Add the following entry to Web.config:

<channel ref="http"

 useDefaultCredentials="true" />

Credentials will be obtained from the Web application's thread impersonation
token.

Configuring the remote application server

Configure IIS

Step More Information

Disable Anonymous access for your
Web application's virtual root
directory

Enable Windows Integrated
Authentication for the Web
application's virtual root

Configure ASP.NET (Remote
Object Host)

Step More Information

Configure ASP.NET to use Windows
authentication

Edit Web.config in the application's virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

Configure ASP.NET for
impersonation

Edit Web.config in the application's virtual directory.
Set the <identity> element to:

<identity impersonate="true" />

Note: This step is only required if you want to flow the original caller's
security context through the remote object and onto the next, downstream
subsystem (for example, database). With impersonation enabled here,
resource access (local and remote) uses the impersonated original caller's
security context.
If your requirement is simply to allow per-user authorization checks in the
remote object, you do not need to impersonate here.

More information

For more information about Kerberos delegation, see How To: Implement Kerberos Delegation for Windows 2000 in
the Reference section of this guide.

Explicit Credentials with Basic or Forms Authentication

As an alternative to Kerberos delegation, you can use Basic or Forms authentication at the Web application to
capture the client's credentials and then use Basic (or Integrated Windows) authentication to the remote object.

With this approach, the client's clear text credentials are available to the Web application. These can be passed to
the remote object through the remote object proxy. For this, you must include code in the Web application to
retrieve the client's credentials and configure the remote object proxy.

Basic authentication

With Basic authentication, the original caller's credentials are available to the Web application in server variables.
The following code shows how to retrieve them and configure the remote object proxy.

// Retrieve client's credentials (available with Basic

// authentication)

string pwd = Request.ServerVariables["AUTH_PASSWORD"];

string uid = Request.ServerVariables["AUTH_USER"];

// Associate the credentials with the remote object proxy

IDictionary channelProperties =

 ChannelServices.GetChannelSinkProperties(proxy);

NetworkCredential credentials;

credentials = new NetworkCredential(uid, pwd);

ObjRef objectReference = RemotingServices.Marshal(proxy);

Uri objectUri = new Uri(objectReference.URI);

CredentialCache credCache = new CredentialCache();

credCache.Add(objectUri, "Basic", credentials);

channelProperties["credentials"] = credCache;

channelProperties["preauthenticate"] = true;

Note The NetworkCredential constructor shown in the above code is supplied with the user ID and password.
To avoid hard coding the domain name, a default domain can be configured at the Web server within IIS when you
configure Basic authentication.

Forms authentication

With Forms authentication, the original caller's credentials are available to the Web application in form fields
(rather than server variables). In this case, use the following code.

// Retrieve client's credentials from the logon form

string pwd = txtPassword.Text;

string uid = txtUid.Text;

// Associate the credentials with the remote object proxy

IDictionary channelProperties =

 ChannelServices.GetChannelSinkProperties(proxy);

NetworkCredential credentials;

credentials = new NetworkCredential(uid, pwd);

ObjRef objectReference = RemotingServices.Marshal(proxy);

Uri objectUri = new Uri(objectReference.URI);

CredentialCache credCache = new CredentialCache();

credCache.Add(objectUri, "Basic", credentials);

channelProperties["credentials"] = credCache;

channelProperties["preauthenticate"] = true;

The following tables show the configuration steps required on the Web server and application server.

Configuring the Web server

Configure IIS

Step More Information

To use Basic authentication, disable
Anonymous access for your Web
application's virtual root directory
and select Basic authentication

- or -

To use Forms authentication, enable
anonymous access

Both Basic and Forms authentication should be used in conjunction with SSL
to protect the clear text credentials sent over the network. If you use Basic
authentication, SSL should be used for all pages (not just the initial logon
page) because Basic credentials are transmitted with every request.

Similarly, SSL should be used for all pages if you use Forms authentication
to protect the clear text credentials on the initial logon and to protect the
authentication ticket passed on subsequent requests.

Configure ASP.NET

Step More Information

If you use Basic authentication,
configure your ASP.NET Web
application to use Windows
authentication

- or -

If you use Forms authentication,
configure your ASP.NET Web
application to use Forms
authentication

Edit Web.config in your Web application's virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

- or -

Edit Web.config in your Web application's virtual directory.
Set the <authentication> element to:

<authentication mode="Forms" />

Disable impersonation within the
ASP.NET Web application

Edit Web.config in your Web application's virtual directory.
Set the <identity> element to:

<identity impersonate="false" />

Note: This is equivalent to having no <identity> element.
Impersonation is not required because the user's credentials will be passed
explicitly to the remote object through the remote object proxy.

Configure Remoting (Client Side
Proxy)

Step More Information

Configure the remoting proxy to not
use default credentials for all calls to
the remote object

Add the following entry to Web.config:

<channel ref="http"

 useDefaultCredentials="false" />

You do not want default credentials to be used (because the Web application
is configured not to impersonate; this would result in the security context of
the ASP.NET process identity being used).

Write code to capture and explicitly
set the credentials on the remote
object proxy

Refer to the code fragments shown earlier.

Configuring the application server

Configure IIS

Step More Information

Disable Anonymous access for your
application's virtual root directory

Enable Basic authentication

Note: Basic authentication at the application server (remote object), allows
the remote object to flow the original caller's security context to the
database (because the caller's user name and password are available in
clear text and can be used to respond to network authentication challenges
from the database server).
If you don't need to flow the original caller's security context beyond the
remote object, consider configuring IIS at the application server to use
Windows Integrated authentication because this provides tighter security—
credentials are not passed across the network and are not available to the
application.

Configure ASP.NET (Remote
Object Host)

Step More Information

Configure ASP.NET to use Windows
authentication

Edit Web.config in the application's virtual directory.
Set the <authentication> element to:

<authentication mode="Windows" />

Configure ASP.NET for
impersonation

Edit Web.config in the application's virtual directory.
Set the <identity> element to:

<identity impersonate="true" />

Note: This step is only required if you want to flow the original caller's
security context through the remote object and onto the next, downstream
subsystem (for example, database). With impersonation enabled here,
resource access (local and remote) uses the impersonated original caller's
security context.
If your requirement is simply to allow per-user authorization checks in the
remote object, you do not need to impersonate here.

Trusted Subsystem

The trusted subsystem model provides an alternative (and simpler to implement) approach to flowing the original
caller's security context. In this model, a trust boundary exists between the remote object host and Web
application. The remote object trusts the Web application to properly authenticate and authorize callers, prior to
letting requests proceed to the remote object. No authentication of the original caller occurs within the remote
object host. The remote object host authenticates the fixed, trusted identity used by the Web application to
communicate with the remote object. In most cases, this is the process identity of the ASP.NET Web application.

The trusted subsystem model is shown in Figure 11.5. This diagram also shows two possible configurations. The
first uses the ASP.NET host and the HTTP channel, while the second uses a Windows service host and the TCP
channel.

Figure 11.5. The trusted subsystem model

Flowing the Caller's Identity

If you use the trusted subsystem model, you may still need to flow the original caller's identity (name, not security
context), for example, for auditing purposes at the database.

You can flow the identity at the application level by using method and stored procedure parameters and trusted
query parameters (as shown in the following example) can be used to retrieve user-specific data from the
database.

SELECT x,y,z FROM SomeTable WHERE UserName = "Bob"

Choosing a Host

The trusted subsystem model means that the remote object host does not authenticate the original callers.
However, it must still authenticate (and authorize) its immediate client (the ASP.NET Web application in this
scenario), to prevent unauthorized applications issuing requests to the remote object.

If you host within ASP.NET and use the HTTP channel, you can use Windows Integrated authentication to
authenticate the ASP.NET Web application process identity.

If you host within a Windows service, you can use the TCP channel which offers superior performance but no
authentication capabilities. In this scenario, you can use IPSec between the Web server and application server. An
IPSec policy can be established that only allows the Web server to communicate with the application server.

Configuration Steps

The following tables show the configuration steps required on the Web server and application server.

Configuring the Web server

Configure IIS

Step More Information

Configure IIS authentication The Web application can use any form of authentication to authenticate the
original callers.

Configure ASP.NET

Step More Information

Configure authentication and make
sure impersonation is disabled

Edit Web.config in your Web application's virtual directory.
Set the <authentication> element to "Windows", "Forms" or "Passport."

<authentication mode="Windows|Forms|Passport" />

Set the <identity> element to:

<identity impersonate="false" />

(OR remove the <identity> element)

Reset the password of the ASPNET
account used to run ASP.NET OR
create a least privileged domain
account to run ASP.NET and specify
account details on the
<processModel> element within
Web.config

For more information about how to access network resources (including
remote objects) from ASP.NET and about choosing and configuring a process
account for ASP.NET, see Accessing Network Resources and Process Identity
for ASP.NET in Chapter 8, "ASP.NET Security."

Configure Remoting (Client Side
Proxy

Step More Information

Configure the remoting proxy to use
default credentials for all calls to the
remote object

Add the following entry to Web.config:

<channel ref="http"

 useDefaultCredentials="true" />

Because the Web application is not impersonating, using default credentials
results in the use of the ASP.NET process identity for all calls to the remote

object.

Configuring the application server

The following steps apply if you are using an ASP.NET host.

Configure IIS

Step More Information

Disable Anonymous access for your
application's virtual root directory

Enable Windows Integrated
authentication

Configure ASP.NET (Remote
Object Host)

Step More Information

Configure ASP.NET to use Windows
authentication

Edit Web.config in the application's virtual directory.
et the <authentication> element to:

<authentication mode="Windows" />

Disable impersonation Edit Web.config in the application's virtual directory.
Set the <identity> element to:

<identity impersonate="false" />

Using a Windows service host

If you are using a Windows service host process, you must create a Windows account to run the service. This
security context provided by this account will be used by the remote object for all local and remote resource
access.

To access a remote Microsoft SQL Server™ database (using Windows authentication), you can use a least
privileged domain account, or use a least privileged local account and then create a duplicated account (with the
same user name and password) on the database server.

Secure Communication

Secure communication is related to guaranteeing the integrity and confidentiality of messages as they flow across
the network. You can use a platform-based approach to secure communication and use SSL or IPSec, or you can
use a message-level approach and develop a custom encryption sink to encrypt the entire message, or selected
parts of a message.

Platform Level Options

The two platform-level options to consider for securing the data passed between a client and remote component
are:

• SSL

• IPSec

If you host remote objects in ASP.NET, you can use SSL to secure the communication channel between client and
server. This requires a server authentication certificate on the computer that hosts the remote object.

If you host remote objects in a Windows service, you can use IPSec between the client and host (server)
computers, or develop a custom encryption sink.

Message-Level options

Due to the extensible nature of the .NET Remoting architecture, you can develop your own custom sinks and plug
them into the processing pipeline. To provide secure communication, you can develop a custom sink that encrypts
and decrypts the message data sent to and from the remote object.

The advantage of this approach is that it allows you to selectively encrypt parts of a message. This is in contrast to
the platform-level approaches that encrypt all the data sent between client and server.

More information

For more information about SSL and IPSec, see Chapter 4, Secure Communication.

Choosing a Host Process

Objects that are to be accessed remotely must run in a host executable. The host listens for incoming requests and
dispatches calls to objects. The type of host selected influences the message transport mechanism called a
channel. The type of channel that you select influences the authentication, authorization, secure communication,
and performance characteristics of your solution.

The HTTP channel provides better security options, but the TCP channel provides superior performance.

You have the following main options for hosting remote objects:

• Host in ASP.NET

• Host in a Windows Service

• Host in a Console Application

Recommendation

To take advantage of the security infrastructure provided by ASP.NET and IIS, it is recommended from a security
standpoint to host remote objects in ASP.NET. This requires clients to communicate with the remote objects over
the HTTP channel. ASP.NET and IIS authentication, authorization, and secure communication features are available
to remote objects that are hosted in ASP.NET.

If performance (and not security) is the primary concern, consider hosting remote objects in Windows services.

Hosting in ASP.NET

When you host a remote object in ASP.NET:

• The object is accessed using the HTTP protocol.

• It has an endpoint that is accessible by a URL.

• It exists in an application domain inside the Aspnet_wp.exe worker process.

• It inherits the security features offered by IIS and ASP.NET.

Advantages

If you host remote objects in IIS, you benefit from the following advantages:

• Authentication, authorization, and secure communication features provided by IIS and ASP.NET are
immediately available.

• You can use the auditing features of IIS.

• The ASP.NET worker process is always running.

• You have a high degree of control over the hosting executable through the <processModel> element in
Machine.config. You can control thread management, fault tolerance, memory management, and so on.

• You can create a Web services façade layer in front of the remote object.

Disadvantages

If you use ASP.NET to host remote objects, you should be aware of the following disadvantages:

• It requires the use of the HTTP channel which is slower than the TCP channel.

• User profiles are not loaded by ASP.NET. Various encryption techniques (including DPAPI) may require
user profiles.

• If the object is being accessed from code running in an ASP.NET Web application, you may have to use
Basic authentication.

Hosting in a Windows Service

When you host a remote object in a Windows service, the remote object lives in an application domain contained
within the service process. You cannot use the HTTP channel and must use the TCP channel. The TCP channel
supports the following security features:

• Authentication Features

You must provide a custom authentication solution. Options include:

• Using the underlying authentication services of the SSPI. You can create a channel sink
that uses the Windows SSPI credential and context management APIs to authenticate the caller and
optionally impersonate the caller. The channel-sink sits on top of the TCP channel. The SSPI in
conjunction with the TCP channel allows the client and server to exchange authentication information.
After authentication the client and server can send messages ensuring confidentiality and integrity.

• Using an underlying transport that supports authentication, for example, named pipes.
The named pipe channel uses named pipes as the transport mechanism. This provides authentication of
the caller and also introduces Windows ACL-based security on the pipe and also impersonation of the
caller.

• Authorization Features

Authorization is possible only if you implement a custom authentication solution.

• If you are able to impersonate the user (for example, by using an underlying named pipe
transport), you can use WindowsPrincipal.IsInRole.

• If you are able to create an IPrincipal object to represent the authenticated client, you can use
.NET roles (through principal permission demands and explicit role checking using IPrincipal.IsInRole)

• Secure Communication Features

You have two options:

• Use IPSec to secure the transport of data between the client and server.

• Create a custom channel sink that performs asymmetric encryption. This option is discussed later
in this chapter.

Advantages

If you host remote objects in Windows services, you benefit from the following advantages:

• High degree of activation control over the host process

• Inherits the benefits of Windows service architecture

• No need to introduce IIS on your application's middle tier

• User profiles are automatically loaded

• Performance is good, as clients communicate over the TCP channel using binary encoded data

Disadvantages

If you use a Windows service to host remote objects, you should be aware of the following disadvantages:

• You must provide custom authentication and authorization solutions.

• You must provide secure communication solutions.

• You must provide auditing solutions.

Hosting in a Console Application

When you host a remote object in a console application, the remote object lives in an application domain contained
within the console application process. You cannot use the HTTP channel and must use the TCP channel.

This approach is not recommended for production solutions.

Advantages

There are very few advantages to this approach, although it does mean that IIS is not required on the middle tier.
However, this approach is only recommended for development and testing and not for production environments.

Disadvantages

If you host remote objects in a custom executable, you should be aware of the following disadvantages:

• The host must be manually started and runs under the interactive logon session (which is not
recommended).

• There is no fault tolerance.

• You must provide custom authentication and authorization.

• There is no auditing capability.

Remoting vs. Web Services

.NET offers many different techniques to allow clients to communicate with remote objects including the use of
Web services.

If you need interoperability between heterogeneous systems, a Web services approach that uses open standards
such as SOAP, XML, and HTTP is the right choice. On the other hand, if you are creating server to server intranet-
based solutions, remoting offers the following features:

• Rich object fidelity because any .NET type (including custom types created using Microsoft C#®
development tool and Microsoft Visual Basic® .NET development system) can be remoted.

This includes classes, class hierarchies, interfaces, fields, properties, methods and delegates, datasets, hash
tables, and so on.

• Objects may be marshaled by value and by reference.

• Object lifetime management is lease-based.

• High performance, particularly with the TCP channel and binary formatter.

• It allows you to construct load balanced middle tiers, using network load balancing.

Table 11.2. The major differences between remoting and Web services

Remoting Web Services

State full or stateless, lease-based object lifetime
management

All method calls are stateless

No need for IIS
(Although hosting in IIS/ASP.NET is recommended for
security)

Must have IIS installed on the server

All managed types are supported Limited data types are supported. For more information
about the types supported by ASP.NET Web services,
see the .NET Framework Developer's Guide on MSDN.

Objects can be passed by reference or by value Objects cannot be passed

Contains an extensible architecture not limited to HTTP
or TCP transports

Limited to XML over HTTP

Can plug custom processing sinks into the message
processing pipeline

No ability to modify messages

SOAP implementation is limited and can only use RPC
encoding

SOAP implementation can use RPC or document
encoding and can fully interoperate with other Web
service platforms.

For more information, see the "Message Formatting and
Encoding" section of the Distributed Application
Communication article on MSDN.

Tightly coupled Loosely coupled

Summary

.NET Remoting does not provide its own security model. However, by hosting remote objects in ASP.NET and by
using the HTTP channel for communication, remote objects can benefit from the underlying security services
provided by IIS and ASP.NET. In comparison, the TCP channel and a custom host executable offers improved
performance, but this combination provides no built-in security.

• If you want to authenticate the client, use the HTTP channel, host in ASP.NET, and disable Anonymous
access in IIS.

• Use the TCP channel for better performance and if you don't care about authenticating the client.

• Use IPSec to secure the communication channel between client and server if you use the TCP channel. Use
SSL to secure the HTTP channel.

• If you need to make trusted calls to a remote resource, host the component in Windows service and not a
console application.

• IPrincipal objects are not passed across .NET Remoting boundaries. You could consider implementing
your own IPrincipal class that can be serialized. If you do so, be aware that it would be relatively easy for a
rogue client to spoof an IPrincipal object and send it to your remote object. Also, be careful of
IlogicalThreadAffinitive if you implement your own IPrincipal class for remoting.

• Never expose remote objects to the Internet. Use Web services for this scenario.

.NET Remoting should be used on the intranet only. Objects should be accessed from Web applications
internally. Even if an object is hosted in ASP.NET, don't expose them to Internet clients, as clients would need
to be .NET clients.

Data Access Security

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET
 Microsoft® SQL Server™

See the Landing Page for the starting point and complete overview of Building Secure ASP.NET Applications.

Summary: This chapter presents recommendations and guidance that will help you develop a secure data access
strategy. Topics covered include using Windows authentication from ASP.NET to the database, securing connection
strings, storing credentials securely in a database, protecting against SQL injection attacks and using database
roles. (33 printed pages)

Contents

Introducing Data Access Security
Authentication
Authorization
Secure Communication
Connecting with Least Privilege
Creating a Least Privilege Database Account
Storing Database Connection Strings Securely
Authentication Users against a Database
SQL Injection Attacks
Auditing
Process Identity for SQL Server
Summary

When you build Web-based applications, it is essential that you use a secure approach to accessing and storing
data. This chapter addresses some of the key data access issues. It will help you:

• Choose between Microsoft® Windows® operating system authentication and SQL authentication when
connecting to SQL Server™.

• Store connection strings securely.

• Decide whether to flow the original caller's security context through to the database.

• Take advantage of connection pooling.

• Protect against SQL injection attacks.

• Store credentials securely within a database.

The chapter also presents various trade-offs that relate to the use of roles, for example, roles in the database
versus role logic applied in the middle tier. Finally, a set of core recommendations for data access are presented.

Introducing Data Access Security

Figure 12.1 shows key security issues associated with data access.

Figure 12.1. Key data access security issues

The key issues shown in Figure 12.1 and discussed throughout the remainder of this chapter are summarized
below:

1. Storing database connection strings securely. This is particularly significant if your application uses
SQL authentication to connect to SQL Server or connects to non-Microsoft databases that require explicit logon
credentials. In these cases, connection strings include clear text usernames and passwords.

2. Using an appropriate identity or identities to access the database. Data access may be performed
by using the process identity of the calling process, one or more service identities, or the original caller's
identity (with impersonation/delegation). The choice is determined by your data access model—trusted
subsystem or impersonation/delegation.

3. Securing data that flows across the network. For example, securing login credentials and sensitive
data passed to and from SQL Server.

Note Login credentials are only exposed on the network if you use SQL authentication, not Windows
authentication.

SQL Server 2000 supports SSL, with server certificates. IPSec can also be used to encrypt traffic between the
client computer (for example, a Web or application server) and database server.

4. Authenticating callers at the database. SQL Server supports Windows authentication (using NTLM or
Kerberos) and SQL authentication (using SQL Server's built-in authentication mechanism).

5. Authorizing callers at the database. Permissions are associated with individual database objects.
Permissions can be associated with users, groups, or roles.

SQL Server Gatekeepers

Figure 12.2 highlights the key gatekeepers for SQL server data access.

Figure 12.2. SQL Server gatekeepers

The key gatekeepers are:

• The chosen data store used to maintain the database connection string.

• The SQL Server login (as determined by the server name specified in the connection string).

• The database login (as determined by the database name specified in the connection string).

• Permissions attached to individual database objects.

Permissions may be assigned to users, groups, or roles.

Trusted Subsystem vs. Impersonation/Delegation

Granularity of access to the database is a key factor to consider. You must consider whether you need user-level
authorization at the database (which requires the impersonation/delegation model), or whether you can use
application role logic within the middle tier of your application to authorize users (which implies the trusted
subsystem model).

If your database requires user-level authorization, you need to impersonate the original caller. While this
impersonation/delegation model is supported, you are encouraged to use the trusted subsystem model, where the
original caller is checked at the IIS/ASP.NET gate, mapped to a role, and then authorized based on role
membership. System resources for the application are then authorized at the application or role level using service
accounts, or using the application's process identity (such as the ASPNET account).

Figure 12.3 shows the two models.

Figure 12.3. The trusted subsystem and impersonation/delegation models for database access

There are a number of key factors that you should consider when connecting to SQL Server for data access. These
are summarized below and elaborated upon in subsequent sections:

• What type of authentication should you use? Windows authentication offers improved security, but
firewalls and non-trusting domain issues may force you to use SQL authentication. If so, you should ensure
that your application's use of SQL authentication is as secure as possible, as discussed in the "SQL
Authentication" section later in this chapter.

• Single user role versus multiple user roles. Does your application need to access SQL using a single
account with a fixed set of permissions within the database, or are multiple (role-based) accounts required
depending on the user of the application?

• Caller identity. Does the database need to receive the identity of the original caller through the call
context either to perform authorization or to perform auditing, or can you use one or more trusted connections
and pass the original caller identity at the application level?

For the operating system to flow the original caller's identity, it requires impersonation/delegation in the
middle tier. This dramatically reduces the effectiveness of connection pooling. Connection pooling is still
enabled, but it results in many small pools (for each separate security context), with little if any reuse of
connections.

• Are you sending sensitive data to and from the database server? While Windows authentication
means that you do not pass user credentials over the network to the database server, if your application's
data is sensitive (for example, employee details or payroll data), then this should be secured using IPSec or
SSL.

Authentication

This section discusses how you should authenticate clients to SQL Server and how you choose an identity to use for
database access within client applications, prior to connecting to SQL Server.

Windows Authentication

Windows authentication is more secure than SQL authentication for the following reasons:

• Credentials are managed for you and the credentials are not transmitted over the network.

• You avoid embedding user names and passwords in connection strings.

• Logon security improves through password expiration periods, minimum lengths, and account lockout
after multiple invalid logon requests. This mitigates the threat from dictionary attacks.

Use Windows authentication in the following scenarios:

• You have used the trusted subsystem model and you connect to SQL Server using a single fixed identity.
If you are connecting from ASP.NET, this assumes that the Web application is not configured for
impersonation.

In this scenario, use the ASP.NET process identity or a serviced component identity (obtained from the
account used to run an Enterprise Services server application).

• You are intentionally delegating the original caller's security context by using delegation (and are prepared
to sacrifice application scalability by foregoing database connection pooling).

Consider the following key points when you use Windows authentication to connect to SQL Server:

• Use the principle of least privilege for the ASP.NET process account. Avoid giving the ASP.NET process
account the "Act as part of the operating system" privilege to enable LogonUser API calls.

• Determine which code requires additional privileges, and place it within serviced components that run in
out-of-process Enterprise Services applications.

More information

For more information about accessing network resources from ASP.NET and choosing and configuring an
appropriate account to run ASP.NET, see Chapter 8, ASP.NET Security.

Using Windows authentication

You have the following options when you use Windows authentication to connect to SQL Server from an ASP.NET
application (or Web service, or remote component hosted by ASP.NET):

• Use the ASP.NET process identity.

• Use fixed identities within ASP.NET.

• Use serviced components.

• Use the LogonUser API and impersonating a specific identity.

• Use the original caller's identity.

• Use the anonymous Internet User account.

Recommendation

The recommendation is to configure the local ASP.NET process identity by changing the password to a known value
on the Web server and create a mirrored account on the database server by creating a local user with the same
name and password. Further details for this and the other approaches are presented below.

Using the ASP.NET process identity

If you connect to SQL Server directly from an ASP.NET application (or Web service, or remote component hosted
by ASP.NET), use the ASP.NET process identity. This is a common approach and the application defines the trust
boundary, that is, the database trusts the ASP.NET account to access database objects.

You have three options:

• Use mirrored ASPNET local accounts.

• Use mirrored, custom local accounts.

• Use a custom domain account.

Use mirrored ASPNET local accounts

This is the simplest approach and is the one generally used when you own the target database (and can control the
administration of local database-server accounts). With this option, you use the ASPNET least-privileged, local
account to run ASP.NET and then create a duplicated account on the database server.

Note This approach has the added advantages that it works across non-trusting domains and through firewalls.
The firewall may not open sufficient ports to support Windows authentication.

Use mirrored, custom local accounts

This approach is the same as the previous approach except that you don't use the default ASPNET account. This
means two things:

• You will need to create a custom local account with appropriate permissions and privileges.

For more information, see How To: Create a Custom Account to Run ASP.NET in the Reference section of this
guide.

• You are no longer using the default account created by the .NET Framework installation process. Your
company may have a policy not to use default installation accounts. This can potentially raise the security bar
of your application.

For more information, see the Sans Top 20, Accounts with No Passwords or Weak Passwords.

Use a custom domain account

This approach is similar to the previous one except that you use a least-privileged domain account instead of a
local account. This approach assumes that client and server computers are in the same or trusting domains. The
main benefit is that credentials are not shared across machines; the machines simply give access to the domain
account. Also, administration is easier with domain accounts.

Implementing mirrored ASPNET process identity

In order to use mirrored accounts to connect from ASP.NET to a database, you need to perform the following
actions:

• Use User Manager on the Web server to reset the ASPNET account's password to a known strong
password value.

Important If you change the ASPNET password to a known value, the password in the Local Security
Authority (LSA) on the local computer will no longer match the account password stored in the Windows
Security Account Manager (SAM) database. If you need to revert to the AutoGenerate default, you must do the
following:

Run Aspnet_regiis.exe to reset ASP.NET to its default configuration. For more information, see article
Q306005, HOWTO: Repair IIS Mapping After You Remove and Reinstall IIS, in the Microsoft
Knowledge Base. When you do this, you get a new account and a new Windows Security Identifier
(SID). The permissions for this account are set to their default values. As a result, you need to
explicitly reapply permissions and privileges that you had originally set for the old ASPNET account.

• Explicitly set the password in Machine.config.

• <processModel userName="machine" password="YourStrongPassword" .

• You should protect Machine.config from unauthorized access by using Windows ACLs. For example, restrict
Machine.config from the IIS anonymous Internet user account.

• Create a mirrored account (with the same name and password) on the database server.

• Within the SQL database, create a server login for the local ASPNET account and then map the login to a
user account within the required database. Then create a database user role, add the database user to the
role, and configure the appropriate database permissions for the role.

For more information, see Creating a Least Privilege Database Account later in this chapter.

Connecting to SQL Server using Windows authentication

To connect to SQL Server using Windows authentication

• Within the client application, use a connection string that contains either "Trusted Connection=Yes", or
"Integrated Security=SSPI". The two strings are equivalent and both result in Windows authentication
(assuming that your SQL Server is configured for Windows authentication). For example:

• "server=MySQL; Integrated Security=SSPI; database=Northwind"

Note The identity of the client making the request (that is, the client authenticated by SQL Server)
is determined by the client's thread impersonation token (if the thread is currently impersonating) or
the client's current process token.

Using fixed identities within ASP.NET

With this approach, you configure your ASP.NET application to impersonate a specified, fixed identity, by using the
following element in Web.config.

<identity impersonate="true"

 userName="YourAccount"

 password="YourStrongPassword" />

This becomes the default identity that is used when you connect to network resources, including databases.

This approach is not recommended with the .NET Framework version 1.0 for two reasons:

• User names and passwords are in clear text in the Web space (that is, in Web.config in a virtual
directory).

• ASP.NET (on Windows 2000) requires the "Act as part of the operating system" privilege. This restriction
does not apply for Microsoft Windows Server 2003.

For more information about this strong privilege, see the Security Briefs column in the August 99 issue of
Microsoft Systems Journal.

The .NET Framework version 1.1 will provide an enhancement for this scenario on Windows 2000. Specifically:

• The credentials will be encrypted.

• The logon will be performed by the IIS process, so that ASP.NET does not require the "Act as part of the
operating system" privilege.

Using serviced components

You can develop a serviced component specifically to contain data access code. With serviced components, you can
access the database by either hosting your component in an Enterprise Services (COM+) server application running
under a specific identity, or you can write code that uses the LogonUser API to perform impersonation.

Using out of process serviced components raises the security bar because process hops make an attacker's job
more difficult, particularly if the processes run with different identities. The other advantage is that you can isolate
code that requires more privilege from the rest of the application.

Calling LogonUser and impersonating a specific Windows identity

You should not call LogonUser directly from ASP.NET. In Windows 2000, this approach requires you to give the
ASP.NET process identity "Act as part of the operating system".

A preferred approach is to call LogonUser outside of the ASP.NET process using a serviced component in an
Enterprise Services server application, as discussed above.

Using the original caller's identity

For this approach to work, you need to use Kerberos delegation and impersonate the caller to the database, either
directly from ASP.NET or from a serviced component.

From ASP.NET add the following to your application's Web.config.

<identity impersonate="true" />

From a serviced component, call CoImpersonateClient.

Using the anonymous Internet user account

As a variation of the previous approach, for scenarios where your application uses Forms or Passport authentication
(which implies IIS anonymous authentication), you can enable impersonation within your application's Web.config
in order to use the anonymous Internet user account for database access.

<identity impersonate="true" />

With IIS configured for anonymous authentication, this configuration results in your Web application's code running
using the anonymous Internet user's impersonation token. In a Web hosting environment, this has the advantage
of allowing you to separately audit and track database access from multiple Web applications.

More Information

• For more information and implementation details about using the original caller's identity, see Flowing the
Original Caller to the Database in Chapter 5, "Intranet Security."

• For more information about how to configure IIS to use anonymous user account refer to Chapter 8,
ASP.NET Security.

When can't you use Windows authentication?

Certain application scenarios may prevent the use of Windows authentication. For example:

• Your database client and database server are separated by a firewall which prevents Windows
authentication.

• Your application needs to connect to one or more databases using multiple identities.

• You are connecting to databases other than SQL Server.

• You don't have a secure way within ASP.NET to run code as a specific Windows user. Either you can't (or
won't) forward the original caller's security context, and/or you want to use a dedicated service account rather
than grant logons to end users.

Specifying a user name and password in Machine.config (on the <processModel> element) or in Web.config
(on the <identity> element) in order to run the ASP.NET worker process or your application is less secure
than taking explicit steps to protect standard SQL credentials.

In these scenarios, you will have to use SQL authentication (or the database's native authentication mechanism),
and you must:

• Protect database user credentials on the application server.

• Protect database user credentials while in transit from the server to the database.

If you do use SQL authentication, there are various ways in which you can make SQL authentication more secure.
These are highlighted in the next section.

SQL Authentication

If your application needs to use SQL authentication, you need to consider the following key points:

• Use a least-privileged account to connect to SQL.

• Credentials are passed over the wire so they must be secured.

• The SQL connection string (which contains credentials) must be secured.

Connection string types

If you connect to a SQL Server database using credentials (user name and password) then your connection string
looks like this:

SqlConnectionString = "Server=YourServer;

 Database=YourDatabase;

 uid=YourUserName;pwd=YourStrongPassword;"

If you need to connect to a specific instance of SQL Server (a feature available only in SQL Server 2000 or later)
installed on the same computer then your connection string looks like this:

SqlConnectionString = "Server=YourServer\Instance;

 Database=YourDatabase;uid=YourUserName;

 pwd=YourStrongPassword;"

If you want to connect to SQL Server using your network credentials, use the Integrated Security attribute (or
Trusted Connection attribute) and omit the username and password:

SqlConnectionString = "Server=YourServer;

 Database=YourDatabase;

 Integrated Security=SSPI;"

- or -

SqlConnectionString = "Server=YourServer;

 Database=YourDatabase;

 Trusted_Connection=Yes;"

If you are connecting to an Oracle database by using explicit credentials (user name and password) then your
connection string looks like this:

SqlConnectionString = "Provider=MSDAORA;Data Source=YourDatabaseAlias;

 User ID=YourUserName;Password=YourPassword;"

More information

For more information about using Universal Data Link (UDL) files for your connection, see article Q308426, HOW
TO: Use Data Link Files with the OleDbConnection Object in Visual C# .NET, in the Microsoft Knowledge Base.

Choosing a SQL account for your connections

Don't use the built-in sa or db_owner accounts for data access. Instead, use least-privileged accounts with a
strong password.

Avoid the following connection string:

SqlConnectionString = "Server=YourServer\Instance;

 Database=YourDatabase; uid=sa; pwd=;"

Use least-privileged accounts with a strong password, for example:

SqlConnectionString= "Server=YourServer\Instance;

 Database=YourDatabase;

 uid=YourStrongAccount;

 pwd=YourStrongPassword;"

Note that this does not address the issue of storing credentials in plain text in your Web.config files. All you've
done so far is limit the scope of damage possible in the event of a compromise, by using a least-privileged account.
To further raise the security bar, you should encrypt the credentials.

Note If you selected a case-sensitive sort order when you installed SQL Server, your login ID is also case-
sensitive.

Passing credentials over the network

When you connect to SQL Server with SQL authentication, the user name and password are sent across the
network in clear text. This can represent a significant security concern. For more information about how to secure
the channel between an application or Web server and database server, see Secure Communication later in this
chapter.

Securing SQL connection strings

User names and passwords should not be stored in clear text in configuration files. For details about how to store
connection strings securely, see "Storing Database Connection Strings" later in this chapter.

Authenticating Against Non-SQL Server Databases

The typical issues you may encounter when connecting to non-SQL databases are similar to scenarios where you
need to use SQL authentication. You may need to supply explicit credentials if the target resources do not support
Windows authentication. To secure this type of scenario, you must store the connection string securely and you
must also secure the communication over the network (to prevent interception of credentials).

More information

• For more information about storing database connection strings, see Storing Database Connection Strings
Securely later in this chapter.

• For more information about securing the channel to the database server, see Secure Communication later
in this chapter.

Authorization

SQL Server provides a number of role-based approaches for authorization. These revolve around the following thee
types of roles supported by SQL Server:

• User-defined Database Roles. These are used to group together users who have the same security
privileges within the database. You add Windows user or group accounts to user database roles and establish
permissions on individual database objects (stored procedures, tables, views, and so on) using the roles.

• Application Roles. These are similar to user database roles in that they are used when establishing
object permissions. However, unlike user database roles, they do not contain users or groups. Instead, they
must are activated by an application using a built-in stored procedure. Once active, the permissions granted to
the role determine the data access capabilities of the application.

Application roles allow database administrators to grant selected applications access to specified database
objects. This is in contrast to granting permissions to users.

• Fixed Database Roles. SQL Server also provides fixed server roles such as db_datareader and
db_datawriter. These built-in roles are present in all databases and can be used to quickly give a user read
specific (and other commonly used) sets of permissions within the database.

For more information about these various role types (and also fixed server roles which are similar to fixed database
roles but apply at the server level instead of the database level), see SQL Server Books Online.

Using Multiple Database Roles

If your application has multiple categories of users, and the users within each category require the same
permissions within the database, your application requires multiple roles.

Each role requires a different set of permissions within the database. For example, members of an Internet User
role may require read-only permissions to the majority of tables within a database, while members of an
Administrator or Operator role may require read/write permissions.

Options

To accommodate these scenarios, you have two main options for role-based authorization within SQL Server:

• User-defined SQL Server Database Roles. These are used to assign permissions to database objects
for groups of users who have the same security permissions within the database.

When you use user-defined database roles, you check at the gate, map users to roles, (for example, in an
ASP.NET Web application or in a middle-tier serviced component in an Enterprise Services server application)
and use multiple identities to connect to the database, each of which maps to a user-defined database role.

• SQL Application Roles. These are similar to user-defined database roles in that they are used when you
assign permissions to database objects. However, unlike user-defined database roles, they do not contain
members and are activated from individual applications by using a built-in stored procedure.

When you use application roles, you check at the gate, map users to roles, connect to the database using a
single, trusted, service identity, and activate the appropriate SQL application role.

User-Defined database roles

If you elect to use user-defined database roles, you must:

• Create multiple service accounts to use for database access.

• Map each account to a user-defined database role.

• Establish the necessary database permissions for each role within the database.

• Authorize users within your application (ASP.NET Web application, Web service, or middle tier component)
and then use application logic within your data access layer to determine which account to connect to the
database with. This is based on the role-membership of the caller.

Declaratively, you can configure individual methods to allow only those users that belong to a set of roles. You
then add imperative role-checks within method code to determine precise role membership, which determines
the connection to use.

Figure 12.4 illustrates this approach.

Figure 12.4. Connecting to SQL Server using multiple SQL user database roles

To use the preferred Windows authentication for this scenario, you develop code (using the LogonUser API) in an
out of process serviced component to impersonate one of a set of Windows identities.

With SQL authentication, you use a different connection string (containing different user names and passwords)
depending upon role-based logic within your application.

More information

For more information about securely storing database connection strings, see Storing Database Connection Strings
Securely later in this chapter.

Application roles

With SQL application roles, you must:

• Create a single service account to use for database access (this may be the process account used to run
the ASP.NET worker process, or an Enterprise Services application).

• Create a set of SQL application roles within the database.

• Establish the necessary database permissions for each role within the database.

• Authorize users within your application (ASP.NET Web application, Web service or middle tier component),
and use application logic within your data access layer to determine which application role to activate within
the database. This is based on the role-membership of the caller.

Figure 12.5 illustrates this approach.

Figure 12.5. Using multiple SQL application roles

In Figure 12.5, the identity ServiceIdentity1 that is used to access the database is usually obtained from the
ASP.NET worker process or from an Enterprise Services server application process identity.

With this approach, the same service identity (and therefore the same connection) is used to connect to SQL
Server. SQL application roles are activated with the sp_setapprole built-in stored procedure, based on the role
membership of the caller. This stored procedure requires the role name and a password.

If you use this approach, you must securely store the role name and password credentials. For further advice and
secret storage techniques, see Storing Database Connection Strings Securely later in this chapter.

Limitations of SQL application roles

The following are the key points that you must be aware of before you choose to use SQL application roles:

• You need to manage credentials for the SQL application roles. You must call the sp_setapprole stored
procedure passing a role name and password for each connection. If you are activating a SQL application role
from managed code then having a clear text password embedded in the assembly is not safe.

• SQL application role credentials are passed to the database in clear text. You should secure them on the
network by using IPSec or SSL between the application server and database server.

• After a SQL application role is activated on a connection it cannot be deactivated. It remains active until
the connection closes. Also, you cannot switch between two or more roles on the same connection.

• Use SQL application roles only when your application uses a single, fixed identity to connect to the
database. In other words, use them only when your application uses the trusted subsystem model.

If the security context of the connection changes (as it would if the original caller's context were use to
connect to the database), then SQL application roles do not work in conjunction with connection pooling.

For more information, see article Q229564, PRB: SQL Application Role Errors with OLE DB Resource Pooling, in
the Microsoft Knowledge Base.

Secure Communication

In most application scenarios you need to secure the communication link between your application server and
database. You need to be able to guarantee:

• Message Confidentiality. The data must be encrypted to ensure that it remains private.

• Message Integrity. The data must be signed to ensure that it remains unaltered.

In some scenarios, all of the data passed between application server and database server must be secured, while
in other scenarios, selected items of data sent over specific connections must be secured. For example:

• In an intranet Human Resources application, some of the employee details passed between client and the
database server are sensitive.

• In Internet scenarios, such as secure banking applications, all of the data passed between the application
server and database server must be secured.

• If you are using SQL authentication, you should also secure the communication link to ensure that user
names and passwords can not be compromised with network monitoring software.

The Options

You have two options for securing the network link between an application server and database server:

• IPSec

• SSL (using a server certificate on the SQL Server computer)

Note You must be running SQL Server 2000 to support the use of SSL. Earlier versions do not support it. The
client must have the SQL Server 2000 client libraries installed.

Choosing an Approach

Whether or not you should use IPSec or SSL depends on a number of primarily environmental factors, such as
firewall considerations, operating system and database versions, and so on.

Note IPSec is not intended as a replacement for application-level security. Today it is used as a defense in depth
mechanism, or to secure insecure applications without changing them, and to secure non-TLS (for example, SSL)
protocols from network-wire attacks.

More information

• For more information about configuring IPSec, see How To: Use IPSec to Provide Secure Communication
Between Two Servers in the Reference section of this guide.

• For more information about configuring SSL, see How To: Use SSL to Secure Communication with SQL
Server 2000 in the Reference section of this guide.

• For more information about SSL and IPSec in general, see Chapter 4, Secure Communication.

Connecting with Least Privilege

Connecting to the database with least privilege means that the connection you establish only has the minimum
privileges that you need within the database. Simply put, you don't connect to your database using the sa or
database owner accounts. Ideally, if the current user is not authorized to add or update records, then the

corresponding account used for their connection (which may be aggregated to an identity that represents a
particular role) cannot add or update records in the database.

When you connect to SQL Server, your approach needs to support the necessary granularity that your database
authorization requires. You need to consider what the database trusts. It can trust:

• The application

• Application-defined roles

• The original caller

The Database Trusts the Application

Consider a finance application that you authorize to use your database. The finance application is responsible for
managing user authentication and authorizing access. In this case, you can manage your connections through a
single trusted account (which corresponds to either a SQL login or a Windows account mapped to a SQL login). If
you're using Windows authentication, this would typically mean allowing the process identity of the calling
application (such as the ASP.NET worker process, or an Enterprise Services server application identity) to access
the database.

From an authorization standpoint, this approach is very coarse-grained, because the connection runs as an identity
that has access to all database objects and resources needed by the application. The benefits of this approach are
that you can use connection pooling and you simplify administration because you are authorizing a single account.
The downside is that all of your users run with the same connection privileges.

The Database Trusts Different Roles

You can use pools of separate, trusted connections to the database that correspond to the roles defined by your
application, for example, one connection that is for tellers, another for managers, and so on.

These connections may or may not use Windows authentication. The advantage of Windows authentication is that it
handles credential management and doesn't send the credentials over the network. However, while Windows
authentication is possible at the process or application level (as when you use a single connection to the database),
there are additional challenges presented by the fact you need multiple identities (one per role).

Many applications use the LogonUser API to establish a Windows access token. The problem with this approach is
two-fold:

• You now have a credential management issue (your application has to securely store the account user
name and password).

• The LogonUser API requires that the calling process account have the "Act as part of the operating
system" privilege. This means that you are forced to give the ASP.NET process account this privilege, which is
not recommended. An alternative is to use SQL Authentication, but then you need to protect the credentials on
the server and over the network.

Note This LogonUser restriction is lifted in Windows Server 2003.

The Database Trusts the Original Caller

In this case, you need to flow the original caller through multiple tiers to the database. This means that your clients
need network credentials to be able to hop from one computer to the next. This requires Kerberos delegation.

Although this solution provides a fine-grained level of authorization within the database, because you know the
identity of the original caller and can establish per user permissions on database objects, it impacts application
performance and scalability. Connection pooling (although still enabled) becomes ineffective.

Creating a Least Privilege Database Account

The following steps are provided as a simple example to show you how to create a least privilege database
account. While most database administrators are already familiar with these steps, many developers may not be
and resort to using the sa or database owner account to force their applications to work.

This can create difficulties when moving from a development environment, to a test environment, and then to a
production environment because the application moves from an environment that's wide open into a more tightly
controlled setting, which prevents the application from functioning correctly.

You start by creating a SQL login for either a SQL account or a Windows account (user or group). You then add that
login to a database user role and assign permissions to that role.

To set up a data access account for SQL

1. Create a new user account and add the account to a Windows group. If you are managing multiple users,
you would use a group. If you are dealing with a single application account (such as a duplicated ASP.NET
process account), you may choose not to add the account to a Windows group.

2. Create a SQL Server login for the user/group.

a. Start Enterprise Manager, locate your database server, and then expand the Security folder.

b. Right-click Logins, and then click New Login.

c. Enter the Windows group name into the Name field, and then click OK to close the SQL Server
Login Properties dialog box.

3. Create a new database user in the database of interest that is mapped to the SQL server login.

a. Use Enterprise Manager and expand the Databases folder, and then expand the required
database for which the login requires access.

b. Right-click Users, and then click New Database User.

c. Select the previously created Login name.

d. Specify a user name.

e. Configure permissions as discussed below.

4. Grant the database user Select permissions on the tables that need to be accessed and Execute
permissions on any relevant stored procedures.

Note If the stored procedure and the table are owned by the same person, and access the table only through
the stored procedure (and do not need to access the table directly), it is sufficient to grant execute
permissions on the stored procedure alone. This is because of the concept of ownership chaining. For more
information, see SQL Server Books online.

5. If you want the user account to have access to all the views and tables in the database, add them to the
db_datareader role.

Storing Database Connection Strings Securely

There are a number of possible locations and approaches for storing database connection strings, each with varying
degrees of security and configuration flexibility.

The Options

The following list represents the main options for storing connection strings:

• Encrypted with DPAPI

• Clear text in Web.config or Machine.config

• UDL files

• Custom text files

• Registry

• COM+ catalog

Using DPAPI

Windows 2000 and later operating systems provide the Win32® Data Protection API (DPAPI) for encrypting and
decrypting data. DPAPI is part of the Cryptography API (Crypto API) and is implemented in Crypt32.dll. It consists
of two methods—CryptProtectData and CryptUnprotectData.

DPAPI is particularly useful in that it can eliminate the key management problem exposed to applications that use
cryptography. While encryption ensures the data is secure, you must take additional steps to ensure the security of
the key. DPAPI uses the password of the user account associated with the code that calls the DPAPI functions in
order to derive the encryption key. As a result the operating system (and not the application) manages the key.

Why not LSA?

Many applications use the Local Security Authority (LSA) to store secrets. DPAPI has the following advantages over
the LSA approach:

• To use the LSA, a process requires administrative privileges. This is a security concern because it greatly
increases the potential damage that can be done by an attacker who manages to compromise the process.

• The LSA provides only a limited number of slots for secret storage, many of which are already used by the
system.

Machine store vs. user store

DPAPI can work with either the machine store or user store (which requires a loaded user profile). DPAPI defaults
to the user store, although you can specify that the machine store be used by passing the
CRYPTPROTECT_LOCAL_MACHINE flag to the DPAPI functions.

The user profile approach affords an additional layer of security because it limits who can access the secret. Only
the user who encrypts the data can decrypt the data. However, use of the user profile requires additional
development effort when DPAPI is used from an ASP.NET Web application because you need to take explicit steps
to load and unload a user profile (ASP.NET does not automatically load a user profile).

The machine store approach is easier to develop because it does not require user profile management. However,
unless an additional entropy parameter is used, it is less secure because any user on the computer can decrypt
data. (Entropy is a random value designed to make deciphering the secret more difficult). The problem with using
an additional entropy parameter is that this must be securely stored by the application, which presents another key
management issue.

Note If you use DPAPI with the machine store, the encrypted string is specific to a given computer and therefore
you must generate the encrypted data on every computer. Do not copy the encrypted data across computers in a
farm or cluster.
If you use DPAPI with the user store, you can decrypt the data on any computer with a roaming user profile.

DPAPI implementation solutions

This section presents two implementation solutions that show you how to use DPAPI from an ASP.NET Web
application to secure a connection string (or a secret of any type). The implementation solutions described in this
section are:

• Using DPAPI from Enterprise Services. This solution allows you to use DPAPI with the user store.

• Using DPAPI directly from ASP.NET. This solution allows you to use DPAPI with the machine store,
which makes the solution easier to develop as DPAPI can be called directly from an ASP.NET Web application.

Using DPAPI from Enterprise Services

An ASP.NET Web application can't call DPAPI and use the user store because this requires a loaded user profile.
The ASPNET account usually used to run Web applications is a non-interactive account and as such does not have a
user profile. Furthermore, if the ASP.NET application is impersonating, the Web application thread runs as the
currently authenticated user, which can vary from one request to the next.

This presents the following issues for an ASP.NET Web application that wants to use DPAPI:

• Calls to DPAPI from an ASP.NET application running under the default ASPNET account will fail. This is
because the ASPNET account does not have a user profile, as it is not used for interactive logons.

• If an ASP.NET Web application is configured to impersonate its callers, the ASP.NET application thread has
an associated thread impersonation token. The logon session associated with this impersonation token is a
network logon session (used on the server to represent the caller). Network logon sessions do not result in
user profiles being loaded.

To overcome this issue, you can create a serviced component (within an out-of-process Enterprise Services
(COM+) server application) to call DPAPI. You can ensure that the account used to run the component has a user
profile and you can use a Win32 service to automatically load the profile.

Note It is possible to avoid the use of a Win32 service by placing calls to Win32 profile management functions
(LoadUserProfile and UnloadUserProfile) within the serviced component.
There are two drawbacks to this approach. First, calls to these APIs on a per-request basis would severely impact
performance. Second, these APIs require that the calling code have administrative privileges on the local computer,
which defeats the principle of least privilege for the Enterprise Services process account.

Figure 12.6 shows the Enterprise Services DPAPI solution.

Figure 12.6. The ASP.NET Web application uses a COM+ server application to interact with DPAPI

In Figure 12.6, the runtime sequence of events is as follows:

1. The Windows service control manager starts the Win32 service and automatically loads the user profile
associated with the account under which the service runs. The same Windows account is used to run the
Enterprise Services application.

2. The Win32 service calls a launch method on the serviced component that starts the Enterprise Services
application and loads the serviced component.

3. The Web application retrieves the encrypted string from the Web.config file.

You can store the encrypted string by using an <appSettings> element within Web.config as shown below.
This element supports arbitrary key-value pairs.

<configuration>

 <appSettings>

 <add key="SqlConnString"

 value="AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAABcqc/xCHxki3" />

 </appSettings>

</configuration>

You can retrieve the encrypted string with the following line of code:

string connString = ConfigurationSettings.AppSettings["SqlConnString"];

Note You can use Web.config or Machine.config to store encrypted connection strings.
Machine.config is preferred as it is in a system directory outside of a virtual directory. This is
discussed further in the next section, "Using Web.config and Machine.config."

4. The application calls a method on the serviced component to decrypt the connection string.

5. The serviced component interacts with DPAPI using P/Invoke to call the Win32 DPAPI functions.

6. The decrypted string is returned to the Web application.

Note To store encrypted connection strings in the Web.config file in the first place, write a utility application that
takes the connection strings and calls the serviced component's EncryptData method to obtain the encrypted
string. It is essential that you run the utility application while logged on with the same account that you use to run
the Enterprise Services server application.

Using DPAPI directly from ASP.NET

If you use the machine store (and call the DPAPI functions with the CRYPTPROTECT_LOCAL_MACHINE flag) you can
call the DPAPI functions directly from an ASP.NET Web application (because you don't need a user profile).

However, because you are using the machine store, any Windows account that can log on to the computer has
access to the secret. A mitigating approach is to add entropy but this requires additional key management.

As alternatives to using entropy with the machine store, consider the following options:

• Use Windows ACLs to restrict access to the encrypted data (whether the data is stored in the file system
or registry).

• Consider hard-coding the entropy parameter into your application to avoid the key management issue.

More information

• For more information about creating a DPAPI library for use with .NET Web applications, see How To:
Create a DPAPI Library in the Reference section of this guide.

• For a detailed implementation walkthrough that shows you how to use DPAPI directly from ASP.NET, see
How To: Use DPAPI (Machine Store) from ASP.NET in the Reference section of this guide.

• For a detailed implementation walkthrough that shows you how to use DPAPI from Enterprise Services,
see How To: Use DPAPI (User Store) from ASP.NET with Enterprise Services in the Reference section of this
guide.

• For more information about Windows Data Protection with DPAPI, see the MSDN article, Windows Data
Protection.

Using Web.config and Machine.config

Storing plain text passwords in Web.config is not recommended. By default, the HttpForbiddenHandler protects
the file from being downloading and viewed by malicious users. However, users who have access directly to the
folders that contain the configuration files can still see the user name and password.

Machine.config is considered a more secure storage location than Web.config because it is located in a system
directory (with ACLs) outside of a Web application's virtual directory. Always lock down Machine.config with ACLs.

More information

For more information about securing Machine.config, see Chapter 8, ASP.NET Security.

Using UDL Files

The OLE DB .NET Data Provider supports UDL file names in its connection string. To reference a UDL file, use "File
Name=name.udl" within the connection string.

Important This option is only available if you use the OLE DB .NET Data Provider to connect to the database. The
SQL Server .NET Data Provider does not use UDL files.

It is not recommended to store UDL files in a virtual directory along with other application files. You should store
them outside the Web application's virtual directory hierarchy and then secure the file or the folder containing the
file with Windows ACLs. You should also consider storing UDL files on a separate logical volume from the operating
system to protect against possible file canonicalization and directory traversal bugs.

ACL granularity

UDL files (or indeed any text file) offer added granularity when you apply ACLs in comparison to Machine.config.
The default ACLs associated with Machine.config grant access to a wide variety of local and remote users. For
example, Machine.config has the following default ACLs:

MachineName\ASPNET:R

BUILTIN\Users:R

BUILTIN\Power Users:C

BUILTIN\Administrators:F

NT AUTHORITY\SYSTEM:F

By contrast, you can lock down your own application's UDL file much further. For example, you can restrict access
to Administrators, the System account, and the ASP.NET process account (which requires read access) as shown
below.

BUILTIN\Administrators:F

MachineName\ASPNET:R

NT AUTHORITY\SYSTEM:F

Note Because UDL files can be modified externally to any ADO.NET client application, connection strings that
contain references to UDL files are parsed every time the connection is opened. This can impact performance and it
is therefore recommended, for best performance, that you use a static connection string that does not include a
UDL file.

To create a new UDL file

1. Open the folder in which you want to create the UDL file.

2. Right-click within the folder, point to New, and then click Text Document.

3. Supply a file name with a .udl file extension.

4. Double-click the new file to display the UDL Properties dialog box.

More information

For more information about using UDL files from Microsoft C#® development tool programs, see article Q308426,
HOW TO: Use Data Link Files with OleDbConnection Object in VC#, in the Microsoft Knowledge Base.

Using Custom Text Files

Many applications use custom text files to store connection strings. If you do adopt this approach consider the
following recommendations:

• Store custom files outside of your application's virtual directory hierarchy.

• Consider storing files on a separate logical volume from the operating system to protect against possible
file canonicalization and directory traversal bugs.

• Protect the file with a restricted ACL that grants read access to your application's process account.

• Avoid storing the connection string in clear text in the file. Instead, consider using DPAPI to store an
encrypted string.

Using the Registry

You can use a custom key in the Windows registry to store the connection string. This information stored can either
be stored in the HKEY_LOCAL_MACHINE (HKLM) or HKEY_CURRENT_USER (HKCU) registry hive. For process
identities, such as the ASPNET account, that do not have user profiles, the information must be stored in HKLM in
order to allow ASP.NET code to retrieve it.

If you do use this approach, you should:

• Use ACLs to protect the registry key using Regedt32.exe.

• Encrypt the data prior to storage.

More information

For more information about encrypting data for storage in the registry, see How To: Store an Encrypted Connection
String in the Registry in the Reference section of this guide.

Using the COM+ Catalog

If your Web application includes serviced components, you can store connection strings in the COM+ catalog as
constructor strings. These are easily administered (by using the Component Services tool) and are easily retrieved
by component code. Enterprise Services calls an object's Construct method immediately after instantiating the
object, and passes the configured construction string.

The COM+ catalog doesn't provide a high degree of security, because the information is not encrypted; however, it
raises the security bar in comparison to configuration files because of the additional process hop.

To prevent access to the catalog through the Component Services tool, include only the desired list of users in the
Administrator and Reader roles in the System application.

The following example shows how to retrieve an object constructor string from a serviced component.

[ConstructionEnabled(Default="Default Connection String")]

public class YourClass : ServicedComponent

{

 private string _ConnectionString;

 override protected void Construct(string s)

 {

 _ConnectionString = s;

 }

}

For added security, you can add code to encrypt the construction string prior to storage and decrypt it within the
serviced component.

More information

• For more information on using connection strings, see article Q271284, HOWTO: Access COM+ Object
Constructor String in a VB Component, in the Microsoft Knowledge Base.

• For a complete code sample provided by the .NET Framework SDK, see the object constructor sample
located in \Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Samples\Technologies\ComponentServices\ObjectConstruction.

Authenticating Users Against a Database

If you are building an application that needs to validate user credentials against a database store, consider the
following points:

• Store one-way password hashes (with a random salt value).

• Avoid SQL injection when validating user credentials.

Store One-way Password Hashes (with Salt)

Web applications that use Forms authentication often need to store user credentials (including passwords) in a
database. For security reasons, you should not store passwords (clear text or encrypted) in the database.

You should avoid storing encrypted passwords because it raises key management issues—you can secure the
password with encryption, but you then have to consider how to store the encryption key. If the key becomes
compromised, an attacker can decrypt all the passwords within your data store.

The preferred approach is to:

• Store a one way hash of the password. Re-compute the hash when the password needs to be
validated.

• Combine the password hash with a salt value (a cryptographically strong random number). By
combining the salt with the password hash, you mitigate the threat associated with dictionary attacks.

Creating a salt value

The following code shows how to generate a salt value by using random number generation functionality provided
by the RNGCryptoServiceProvider class within the System.Security.Cryptography namespace.

public static string CreateSalt(int size)

{

 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

 byte[] buff = new byte[size];

 rng.GetBytes(buff);

 return Convert.ToBase64String(buff);

}

Creating a hash value (with salt)

The following code fragment shows how to generate a hash value from a supplied password and salt value.

public static string CreatePasswordHash(string pwd, string salt)

{

 string saltAndPwd = string.Concat(pwd, salt);

 string hashedPwd =

 FormsAuthentication.HashPasswordForStoringInConfigFile(

 saltAndPwd, "SHA1");

 return hashedPwd;

}

More information

For the full implementation details of this approach, see How To: Use Forms Authentication with SQL Server 2000
in the Reference section of this guide.

SQL Injection Attacks

If you're using Forms authentication against a SQL database, you should take the precautions discussed in this
section to avoid SQL injection attacks. SQL injection is the act of passing additional (malicious) SQL code into an
application which is typically appended to the legitimate SQL code contained within the application. All SQL
databases are susceptible to SQL injection to varying degrees, but the focus in this chapter is on SQL Server

You should pay particular attention to the potential for SQL injection attacks when you process user input that
forms part of a SQL command. If your authentication scheme is based on validating users against a SQL database,
for example, if you're using Forms authentication against SQL Server, then you must guard against SQL injection
attacks.

If you build SQL strings using unfiltered input, your application may be subject to malicious user input (remember,
never trust user input). The risk is that when you insert user input into a string that becomes an executable
statement, a malicious user can append SQL commands to your intended SQL statements by using escape
characters.

The code fragments in the following sections use the Pubs database that is supplied with SQL Server to illustrate
examples of SQL injection.

The Problem

Your application may be susceptible to SQL injection attacks when you incorporate user input or other unknown
data into database queries. For example, both of the following code fragments are susceptible to attack.

• You build SQL statements with unfiltered user input.

• SqlDataAdapter myCommand = new SqlDataAdapter(

• "SELECT au_lname, au_fname FROM authors WHERE au_id = '" +

• Login.Text + "'", myConnection);

• You call a stored procedure by building a single string that incorporates unfiltered user input.

• SqlDataAdapter myCommand = new SqlDataAdapter("LoginStoredProcedure '"
+

• Login.Text + "'", myConnection);

Anatomy of a SQL Script Injection Attack

When you accept unfiltered user input values (as shown above) in your application, a malicious user can use
escape characters to append their own commands.

Consider a SQL query that expects the user's input to be in the form of a Social Security Number, such as 172-32-
xxxx, which results in a query like this:

SELECT au_lname, au_fname FROM authors WHERE au_id = '172-32-xxxx'

A malicious user can enter the following text into your application's input field (for example a text box control).

' ; INSERT INTO jobs (job_desc, min_lvl, max_lvl) VALUES ('Important Job',
25, 100) -

In this example, an INSERT statement is injected (but any statement that is permitted for the account that's used
to connect to SQL Server could be executed). The code can be especially damaging if the account is a member of
the sysadmin role (this allows shell commands using xp_cmdshell) and SQL Server is running under a domain
account with access to other network resources.

The command above results in the following combined SQL string:

SELECT au_lname, au_fname FROM authors WHERE au_id = '';INSERT INTO

jobs (job_desc, min_lvl, max_lvl) VALUES ('Important Job', 25, 100) --

In this case, the ' (single quotation mark) character that starts the rogue input terminates the current string literal
in your SQL statement. It closes the current statement only if the following parsed token doesn't make sense as a
continuation of the current statement, but does make sense as the start of a new statement.

SELECT au_lname, au_fname FROM authors WHERE au_id = ' '

The ; (semicolon) character tells SQL that you're starting a new statement, which is then followed by the malicious
SQL code:

; INSERT INTO jobs (job_desc, min_lvl, max_lvl) VALUES ('Important

Job', 25, 100)

Note The semicolon is not necessarily required to separate SQL statements. This is vendor/implementation
dependent, but SQL Server does not require them. For example, SQL Server will parse the following as two
separate statements:

SELECT * FROM MyTable DELETE FROM MyTable

Finally, the -- (double dash) sequence of characters is a SQL comment that tells SQL to ignore the rest of the text,
which in this case, ignores the closing ' (single quote) character (which would otherwise cause a SQL parser error).

The full text that SQL executes as a result of the statement shown above is:

SELECT au_lname, au_fname FROM authors WHERE au_id = '' ; INSERT INTO

jobs (job_desc, min_lvl, max_lvl) VALUES ('Important Job', 25, 100) --'

The solution

The following approaches can be used to call SQL safely from your application.

• Use the Parameters collection when building your SQL statements.

• SqlDataAdapter myCommand = new SqlDataAdapter(

• "SELECT au_lname, au_fname FROM Authors WHERE au_id=

• @au_id",

• myConnection);

•

• SqlParameter parm = myCommand.SelectCommand.Parameters.Add(

• "@au_id",

• SqlDbType.VarChar, 11);

• parm.Value= Login.Text;

• Use the Parameters collection when you call a stored procedure.

• // AuthorLogin is a stored procedure that accepts a parameter

• // named Login

• SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin",
myConnection);

• myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;

• SqlParameter parm = myCommand.SelectCommand.Parameters.Add(

• "@LoginId", SqlDbType.VarChar,11);

• parm.Value=Login.Text;

If you use the Parameters collection, no matter what a malicious user includes as input, the input is treated
as a literal. An additional benefit of using the Parameters collection is that you can enforce type and length
checks. Values outside of the range trigger an exception. This is a healthy example of defense in depth.

• Filter user input for SQL characters. The following method shows how to ensure that any string literal used
in a simple SQL comparison statement (equal to, less than, greater than) is safe. It does this by ensuring that
any apostrophe used in the string is escaped with an additional apostrophe. Within a SQL string literal, two
consecutive apostrophes are treated as an instance of the apostrophe character within the string rather than
as delimiters.

• private string SafeSqlLiteral(string inputSQL)

• {

• return inputSQL.Replace("'", "''");

• }

• ...

• string safeSQL = SafeSqlLiteral(Login.Text);

• SqlDataAdapter myCommand = new SqlDataAdapter(

• "SELECT au_lname, au_fname FROM authors WHERE au_id = '" +

• safeSQL + "'", myConnection);

Additional best practices

The following are some additional measures you can take to limit the chance of exploit, as well as limit the scope of
potential damage:

• Prevent invalid input at the gate (the front-end application) by limiting the size and type of input. By
limiting the size and type of input, you significantly reduce the potential for damage. For example, if your
database lookup field is eleven characters long and comprised entirely of numeric characters, enforce it.

• Run SQL code with a least privileged account. This significantly reduces the potential damage that can be
done.

For example, if a user were to inject SQL to DROP a table from the database, but the SQL connection used an
account that didn't have appropriate permissions, the SQL code would fail. This is another reason not to use
the sa account or database owner account for your application's SQL connections.

• When an exception occurs in your SQL code, do not expose the SQL errors raised by the database to the
end user. Log error information and show only user friendly information. This prevents exposing unnecessary
detail that could help an attacker.

Protecting Pattern Matching Statements

If input is to be used within string literals in a 'LIKE' clause, characters other than apostrophe also take on special
meaning for pattern matching.

For example, in a LIKE clause the % character means "match zero or more characters." In order to treat such
characters in the input as literal characters without special meaning, they also need to be escaped. If they are not
handled specially, the query can return incorrect results; a non-escaped pattern matching character at or near the
beginning of the string could also defeat indexing.

For SQL Server, the following method should be used to ensure valid input:

private string SafeSqlLikeClauseLiteral(string inputSQL)

{

 // Make the following replacements:

 // ' becomes ''

 // [becomes [[]

 // % becomes [%]

 // _ becomes [_]

 string s = inputSQL;

 s = inputSQL.Replace("'", "''");

 s = s.Replace("[", "[[]");

 s = s.Replace("%", "[%]");

 s = s.Replace("_", "[_]");

 return s;

}

Auditing

Auditing of logons is not on by default within SQL Server. You can configure this either through SQL Server
Enterprise Manager or in the registry. The dialog box in Figure 12.7 shows auditing enabled for both the success
and failure of user logons.

Log entries are written to SQL log files which are by default located in C:\Program Files\Microsoft SQL
Server\MSSQL\LOG. You can use any text reader, such as Notepad, to view them.

Figure 12.7. SQL Server Properties dialog with Audit level settings

You can also enable SQL Server auditing in the registry. To enable SQL Server auditing, create the following
AuditLevel key within the registry and set its value to one of the REG_DWORD values specified below.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\AuditLevel

You can choose from one of the following values, which allow you to capture the level of detail you want:

3—captures both success and failed login attempts.

2—captures only failed login attempts.

1—captures only success login attempts.

0—captures no logins.

It is recommended that you turn on failed login auditing because this is a way to determine if someone is
attempting a brute attack into SQL Server. The performance impacts of logging failed audit attempts are minimal
unless you are being attacked, in which case you need to know anyway.

You can also script against SQL Database Management Objects (DMO). The following code fragment shows some
sample VBScript code.

Sub SetAuditLevel(Server As String, NewAuditLevel As SQLDMO_AUDIT_TYPE)

 Dim objServer As New SQLServer2

 objServer.LoginSecure = True 'Use integrated security

 objServer.Connect Server 'Connect to the target SQL Server

 'Set the audit level

 objServer.IntegratedSecurity.AuditLevel = NewAuditLevel

 Set objServer = Nothing

End Sub

From SQL Server Books online, the members of the enumerated type, SQLDMO_AUDIT_TYPE are:

SQLDMOAudit_All 3 Log all authentication attempts regardless of success

 or failure

SQLDMOAudit_Failure 2 Log failed authentication

SQLDMOAudit_Success 1 Log successful authentication

SQLDMOAudit_None 0 Do not log authentication attempts

Process Identity for SQL Server

Run SQL Server using a least-privileged domain account. When you install SQL Server, you have the option of
running the SQL Server service using the local SYSTEM account, or a specified account.

Don't use the SYSTEM account or an administrator account. Instead, use a least-privileged domain account. You do
not need to grant this account any specific privileges, as the installation process (or SQL Server Enterprise
Manager, if you are reconfiguring the SQL Service after installation) grants the specified account the necessary
privileges.

Summary

The following is a summary that highlights the recommendation for data access in your .NET Web applications:

• Use Windows authentication to SQL Server when possible.

• Use accounts with least privilege in the database.

• Use least-privileged, local accounts for running ASP.NET/Enterprise Services when connecting to SQL
Server.

• If you are using SQL authentication, take the following steps to improve security:

• Use custom accounts with strong passwords.

• Limit the permissions of each account within SQL Server using database roles.

• Add ACLs to any files used to store connection strings.

• Encrypt connection strings.

• Consider DPAPI for credential storage.

• When you use Forms authentication against SQL, take precautions to avoid SQL injection attacks.

• Don't store user passwords in databases for user validation. Instead, store password hashes with a salt
instead of clear text or encrypted passwords.

• Protect sensitive data sent over the network to and from SQL Server.

• Windows authentication protects credentials, but not application data.

• Use IPSec or SSL.

Troubleshooting Security Issues

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

See the Landing Page for the starting point and a complete overview of Building Secure ASP.NET Applications.

Summary: This section presents a set of troubleshooting tips, techniques and tools to help diagnose security
related issues. (19 printed pages)

Contents

Process for Troubleshooting
Troubleshooting Authentication Issues
Troubleshooting Authorization Issues
ASP.NET
Determining Identity
.NET Remoting
SSL
IPSec
Auditing and Logging
Troubleshooting Tools

Process for Troubleshooting

The following approach has proven to be helpful for resolving security and security context related issues.

1. Start by describing the problem very clearly. Make sure you know precisely what is supposed to happen,
what is actually happening, and most importantly, the detailed steps required to reproduce the problem.

2. Isolate the problem as accurately as you can. Try to determine at which stage during the processing of a
request the problem occurs. Is it a client or server related issue? Does it appear to be a configuration or code
related error? Try to isolate the problem by stripping away application layers. For example, consider building a
simple console-based test client application to take the place of more complex client applications.

3. Analyze error messages and stack traces (if they are available). Always start by consulting the Windows
event and security logs.

4. Check the Microsoft Knowledge Base to see if the problem has been documented as a Knowledge Base
article.

5. Many security problems relate to the identity used to run code; these are not always the identities you
imagine are running the code. Use the code samples presented in the Determining Identity subsection of the
"ASP.NET" section in this chapter to retrieve and diagnose identity information. If the identities appear
incorrect, check the configuration settings in web.config and machine.config and also check the IIS
authentication settings for your application's virtual directory. Factors that can affect identity within an
ASP.NET Web application include:

• The <processModel> element in machine.config used to determine the process identity of the
ASP.NET worker process (aspnet_wp.exe)

• Authentication settings in IIS

• Authentication settings in web.config

• Impersonation settings in web.config

6. Even if it appears that the correct settings are being used and displayed, you may want to explicitly
configure a web.config file for your application (in the application's virtual directory) to make sure it is not

inheriting settings from a higher-level application (perhaps from a web.config in a higher-level virtual
directory) or from machine.config.

7. Use some of the troubleshooting tools listed in the Troubleshooting Tools section later in this chapter to
capture additional diagnostics.

8. Attempt to reproduce the problem on another computer. This can help isolate environmental-related
problems and can indicate whether or not the problem is in your application's code or configuration.

9. If your application is having problems accessing a remote resource, you may be running into
impersonation/delegation related problems. Identify the security context being used for the remote resource
access, and if you are using Windows authentication, verify that the account providing the context (for
example, a process account), should be able to be authenticated by the remote computer.

10. Search newsgroups to see if the problem has already been reported. If not, post the problem to the
newsgroup to see if anyone within the development community can provide assistance.

The online newsgroup for ASP.NET is located at:
http://communities.microsoft.com/newsgroups/default.asp?icp=mscom&slcid=US&newsgroup=microsoft.publi
c.dotnet.framework.aspnet.

11. Call the Microsoft Support Center. For details, see the Microsoft Knowledge Base.

Searching for Implementation Solutions

If you have a specific issue and need to understand the best way to tackle the problem, use the following
approach.

• Search in Chapters 5, 6, and 7 of this guide for your scenario or a similar scenarios.

• Consult the MSDN library documentation and samples.

• Refer to one of the many ASP.NET information Web sites, such as:

• www.asp.net

• www.gotdotnet.com

• www.asptoday.com

• Search the Microsoft Knowledge Base for an appropriate How To article.

• Post questions to newsgroups.

• Call the Microsoft Support Center.

Troubleshooting Authentication Issues

The first step when troubleshooting authentication issues is to distinguish between IIS and ASP.NET authentication
failure messages.

• If you are receiving an IIS error message you will not see an ASP.NET error code. Check the IIS
authentication settings for your application's virtual directory.

Create a simple HTML test page to remove ASP.NET from the solution.

• If you are receiving an ASP.NET error message, review the ASP.NET authentication settings within your
application's web.config file.

IIS Authentication Issues

Because the authentication process starts with IIS, make sure IIS is configured correctly.

• Make sure a user is being authenticated. Consider enabling just Basic authentication and manually log in
to ensure you know what principal is being authenticated. Log in with a user name of the form
"domain\username".

• Restart IIS to ensure log on sessions aren't being cached. (Run IISReset.exe to restart IIS.)

• Close your browser between successive tests to ensure the browser isn't caching credentials.

• If you are using Integrated Windows authentication, check browser settings as described below.

• Click Tools from the Internet Options menu and then click the Advanced tab. Select Enable
Integrated Windows Authentication (requires restart). Then restart the browser.

• Click Tools from the Internet Options menu, and then click the Security tab. Select the
appropriate Web content zone and click Custom Level. Within User Authentication ensure the Logon
setting is set correctly for your application. You may want to select Prompt for user name and
password to ensure that for each test you are providing explicit credentials and that nothing is being
cached.

• If the browser prompts you for credentials, this could mean you are currently logged into a
domain that the server doesn't recognize (for example, you may be logged in as administrator on the
local machine).

• When you browse to an application on your local computer, your interactive logon token is used,
as you are interactively logged onto the Web server.

• Test with a simple Web page that displays security context information. A sample page is provided later in
this chapter.

If this fails, enable auditing on the requested file and check the Security event log. You must also enable
auditing using Group Policy (through either the Local Security Policy tool, or the Domain Security Policy tool).
Examine the log for invalid usernames or invalid object access attempts.

• If your Web application is having problems accessing a remote resource, enable auditing on the
remote resource.

• An invalid username and/or password usually means that the account used to run ASP.NET on
your Web server is failing to be correctly authenticated at the remote computer. If you are attempting to
access remote resources with the default ASPNET local account, check that you have duplicated the
account (and password) on the remote computer.

• If you see an error message that indicates that the login has failed for NT
AUTHORITY\ANONYMOUS, this indicates that the identity on the Web server does not have any network
credentials and is attempting to access the remote computer.

Identify which account is being used by the Web application for remote resource access and confirm that
it has network credentials. If the Web application is impersonating, this requires either Kerberos
delegation (with suitably configured accounts) or Basic authentication at the Web server.

Using Windows Authentication

If the <authentication> element in your application's web.config is configured for Windows authentication, use
the following code in your Web application to check whether anonymous access is being used (and the
authenticated user is the anonymous Internet user account [IUSR_MACHINE]).

WindowsIdentity winId = HttpContext.Current.User.Identity as WindowsIdentity;

if (null != winId)

{

 Response.Write(winId.IsAnonymous.ToString());

}

Using Forms Authentication

Make sure that the cookie name specified in the <forms> element is being retrieved in the global.asax event
handler correctly (Application_AuthenticateRequest). Also, make sure the cookie is being created. If the client
is continuously sent back to the login page (specified by the loginUrl attribute on the <forms> element) this
indicates that the cookie is not being created for some reason, or an authenticated identity is not being placed into
the context (HttpContext.User)

Kerberos Troubleshooting

Use the following tools to help troubleshoot Kerberos-related authentication and delegation issues.

• Kerbtray.exe. This utility can be used to view the Kerberos tickets in the cache on the current computer.
It is part of the Windows 2000 Resource Kit and can be downloaded from the Microsoft Download Center.
Search for "Kerbtray.exe".

• Klist.exe. This is a command line tool similar to Kerbtray, but it also allows you to view and delete
Kerberos tickets. Once again, it is part of the Windows 2000 Resource Kit and can be downloaded from the
Microsoft Download Center. Search for "Klist.exe"

• Setspn.exe. This is a command-line tool that allows you to manage the Service Principal Names (SPN)
directory property for an Active Directory service account. SPNs are used to locate a target principal name for
running a service. It is part of the Windows 2000 Resource Kit and can be downloaded from the Microsoft
Download Center. Search for "setspn.exe".

Troubleshooting Authorization Issues

Check Windows ACLs

If your application is having problems accessing a file or registry key (or any securable Windows object protected
with ACLs), check the ACLs to ensure that the Web application identity has at least read access.

Check Identity

Also make sure you know which identity is being used for resource access by the ASP.NET Web application. This is
likely to be:

• The ASP.NET process identity (as configured on the <processModel> element in web.config.

This defaults to the local ASPNET account specified with the username "machine" and password
"AutoGenerate".

• The authenticated caller's identity (if impersonation is enabled within web.config) as shown below.

• <identity impersonate="true" />

If you have not disabled anonymous access in IIS, this will be IUSR_MACHINE.

• A specified impersonation identity as shown below (although this is not recommended).

• <identity impersonate="true" userName="Bob" password="password" />

More information

For more information about the identity used to run ASP.NET and the identity used to access local and network
resources, see Chapter 8, ASP.NET Security.

Check the <authorization> Element

Confirm that the <allow> and <deny> elements are configured correctly.

• If you have <deny users="?" /> and you are using Forms authentication and/or IIS anonymous
authentication, you must explicitly place an IPrincipal object into HttpContext.User or you will receive an
access denied 401 response.

• Make sure the authenticated user is in the roles specified in <allow> and <deny> elements.

ASP.NET

Enable Tracing

ASP.NET provides quick and simple tracing to show the execution of events within a page and the values of
common variables. This can be a very effective diagnostic aid. Use the page level Trace directive to turn on
tracing, as shown below:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"
Inherits="Test.WebForm1" Trace="true" %>

More information

For more information on the new tracing feature in ASP.NET see the Knowledge Base article Q306731, INFO: New
Tracing Feature in ASP.NET.

Configuration Settings

Most application settings should be placed in web.config. The following list shows main security related settings
that can be placed in web.config.

<authentication>

<authorization>

<trust>

<identity>

The following setting which controls the identity used to run the ASP.NET worker process (aspnet_wp.exe) must be
located in machine.config.

<processModel>

Configuration settings for an application are always retrieved from the application's web.config file first. These
override any equivalent settings within machine.config. If you want a particular setting to be applied to your
application, explicitly configure the setting in the application's web.config file.

The main (and often only) web.config file for a particular application lives in its virtual directory root. Subdirectories
can also contain web.config files. Settings in these files override the settings from web.config files in parent
directories.

Determining Identity

Many security and access-denied problems relate to the identity used for resource access. The following code
samples presented in this section can be used to help determine identity in Web pages, COM objects, and Web
services.

For more information about .NET identity variables, see ASP.NET Identity Matrix in the Reference section of this
guide.

Determining Identity in a Web Page

The following script can be used to gather security context-related information and indicates the identity being
used to run a Web page.

To use this code, copy and paste it to create a file with a .aspx file extension. Copy the file to an IIS virtual
directory and view the page from a browser.

<%@ Page language="c#" AutoEventWireup="true" %>

<%@ Import Namespace="System.Threading" %>

<%@ Import Namespace="System.Security.Principal" %>

<HTML>

 <HEAD>

 <title>WhoAmI</title>

 </HEAD>

 <body>

 <form id="WhoAmI" method="post" runat="server">

 <TABLE id=contextTable border=1>

 <TR>

 <TD align=middle colSpan=3 rowSpan="">

 HttpContext.Current.User.Identity</TD>

 </TR>

 <TR>

 <TD>Name</TD>

 <TD><asp:Label ID="contextName" Runat=server /></TD>

 </TR>

 <TR>

 <TD>IsAuthenticated</TD>

 <TD><asp:Label ID="contextIsAuth" Runat=server /></TD>

 </TR>

 <TR>

 <TD>AuthenticationType</TD>

 <TD><asp:Label ID="contextAuthType" Runat=server /></TD>

 </TR>

 </TABLE>

 <TABLE id=windowsIdentityTable border=1>

 <TR>

 <TD align=middle colSpan=3
rowSpan="">WindowsIdentity.GetCurrent()</TD>

 </TR>

 <TR>

 <TD>Name</TD>

 <TD><asp:Label ID="windowsName" Runat=server /></TD>

 </TR>

 <TR>

 <TD>IsAuthenticated</TD>

 <TD><asp:Label ID="windowsIsAuth" Runat=server /></TD>

 </TR>

 <TR>

 <TD>AuthenticationType</TD>

 <TD><asp:Label ID="windowsAuthType" Runat=server /></TD>

 </TR>

 </TABLE>

 <TABLE id=threadIdentityTable border=1>

 <TR>

 <TD align=middle colSpan=3

 rowSpan="">Thread.CurrentPrincipal.Identity</TD>

 </TR>

 <TR>

 <TD>Name</TD>

 <TD><asp:Label ID="threadName" Runat=server /></TD>

 </TR>

 <TR>

 <TD>IsAuthenticated</TD>

 <TD><asp:Label ID="threadIsAuthenticated" Runat=server /></TD>

 </TR>

 <TR>

 <TD>AuthenticationType</TD>

 <TD><asp:Label ID="threadAuthenticationType" Runat=server /></TD>

 </TR>

 </TABLE>

 </form>

 </body>

</HTML>

<script runat=server>

 void Page_Load(Object sender, EventArgs e)

 {

 IIdentity id = HttpContext.Current.User.Identity;

 if(null != id)

 {

 contextName.Text = id.Name;

 contextIsAuth.Text = id.IsAuthenticated.ToString();

 contextAuthType.Text = id.AuthenticationType;

 }

 id = Thread.CurrentPrincipal.Identity;

 if(null != id)

 {

 threadName.Text = id.Name;

 threadIsAuthenticated.Text = id.IsAuthenticated.ToString();

 threadAuthenticationType.Text = id.AuthenticationType;

 }

 id = WindowsIdentity.GetCurrent();

 windowsName.Text = id.Name;

 windowsIsAuth.Text = id.IsAuthenticated.ToString();

 windowsAuthType.Text = id.AuthenticationType;

 }

</script>

Determining Identity in a Web service

The following code can be used within a Web service to obtain identity information.

[WebMethod]

public string GetDotNetThreadIdentity()

{

 return Thread.CurrentPrincipal.Identity.Name;

}

[WebMethod]

public string GetWindowsThreadIdentity()

{

 return WindowsIdentity.GetCurrent().Name;

}

[WebMethod]

public string GetUserIdentity()

{

 return User.Identity.Name;

}

[WebMethod]

public string GetHttpContextUserIdentity()

{

 return HttpContext.Current.User.Identity.Name;

}

More information

• Security-related Knowledge Base articles

• Security-related Knowledge Base articles that deal with frequently seen error messages

Determining Identity in a Visual Basic 6 COM Object

The following method can be used to return the identity of a Visual Basic® 6 COM object. You can call Visual Basic
6.0 COM objects directly from ASP.NET applications through COM interop. The following method can be helpful
when you need to troubleshoot access denied errors from your component when it attempts to access resources.

Private Declare Function GetUserName Lib "advapi32.dll" _

 Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As
Long

Public Function WhoAmI()

 Dim sBuff As String

 Dim lConst As Long

 Dim lRet As Long

 Dim sName As String

 lConst = 199

 sBuff = Space$(200)

 lRet = GetUserName(sBuff, lConst)

 WhoAmI = Trim$(Left$(sBuff, lConst))

End Function

.NET Remoting

If a remote object is hosted in ASP.NET, and is configured for Windows authentication, you must specify the
credentials to be used for authentication through the credentials property of the channel. If you do not explicitly set
credentials, the remote object is called without any credentials. If Windows authentication is required, this will
result in an HTTP status 401, access denied response.

To use the credentials associated with the current thread impersonation token (if the client thread is
impersonating), or the process token (with no impersonation), use default credentials. This can be configured in
the client-side configuration file using the following setting:

<channel ref="http" useDefaultCredentials="true" />

If an ASP.NET Web application calls a remote component and the Web application is configured for impersonation,
the Web application must be using Kerberos or Basic authentication. All other authentication types can not be used
in delegation scenarios.

If the Web application is not configured for impersonation, the process identity of the ASP.NET worker process is
used. This is specified on the <processModel> element of machine.config and defaults to the local ASPNET
account.

Note Ensure the process in running under an account that can be authenticated by the remote computer.

More Information

For more information about setting client-side credentials when calling remote components, see Chapter 11, U.NET
Remoting Security U.

SSL

To troubleshoot SSL related problems:

• Confirm whether you can telnet to port 443 on the IP addresses of the client and server computer. If you
cannot, this usually signifies that the sspifilt.dll is not loaded, or is the wrong version, or perhaps conflicts with
other ISAPI extensions.

• Examine the certificate. If you can telnet to 443, check the certificates attribute using the browser's View
Certificate dialog box. Check the certificate's effective and expiration dates, whether the common name is
correct, and also what the Authority Information Access (AIA) or Certificate Revocation List (CRL) distribution
point is.

Confirm that you can browse directory to those AIA/CRL points successfully.

• If you are using a custom client application (and not a Web browser) to access an SSL-enabled Web site
that requires client certificates, check that the client certificate is located in the correct store that the client
application accesses.

When you use a browser, the certificate must be in the interactive user's user store. Services or custom
applications may load the client certificate from the machine store or a store associated with a service
account's profile. Use the Services MMC snap-in (available when Certificate Services is installed), from the
Administrative Tools program group to examine the contents of certificate stores.

More Information

See the following SSL related Knowledge Base articles.

• Q257591, UDescription of the Secure Sockets Layer (SSL) HandshakeU

• Q257586, UDescription of the Client Authentication Process During the SSL HandshakeU

• Q257587, UDescription of the Server Authentication Process During the SSL HandshakeU

• Q301429, UHOWTO: Install Client Certificate on IIS Server for ServerXMLHTTP Request ObjectU

• Q295070, USSL (https) Connection Slow with One Certificate but Faster with OthersU

IPSec

The following articles in the Knowledge Base provides steps for troubleshooting IPSec issues.

• Q259335, UBasic L2TP/IPSec Troubleshooting in WindowsU

Auditing and Logging

Windows Security Logs

Consult the Windows event and security logs early on in the problem diagnostic process.

More information

For more information on how to enable auditing and monitoring events, see the Knowledge Base and article
Q300958, UHOW TO: Monitor for Unauthorized User Access in Windows 2000U.

SQL Server Auditing

By default, logon auditing is disabled. You can configure this either through SQL Server™ Enterprise Manager or by
changing the registry.

SQL Server log files are by default located in the following directory. They are text-based and can be read with any
text editor such as Notepad.

C:\Program Files\Microsoft SQL Server\MSSQL\LOG

To enable logon auditing with Enterprise Manager

1. Start Enterprise Manager.

2. Select the required SQL Server in the left hand tree control, right-click and then click Properties.

3. Click the Security tab.

4. Select the relevant Audit level—Failure, Success or All.

To enable logon auditing using a registry setting

1. Create the following AuditLevel key within the registry and set its value to one of the REG_DWORD
values specified below.

2. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\AuditLevel

3. Set the value of this key to one of the following numeric values, which allow you to capture the relevant
level of detail.

3—captures both success and failed login attempts.

2—captures only failed login attempts.

1—captures only success login attempts.

0—captures no logins.

It is recommended that you turn on failed login auditing as this is a way to determine if someone is attempting a
brute force attack into SQL Server. The performance impacts of logging failed audit attempts are minimal unless
you are being attacked, in which case you need to know anyway.

You can also set audit levels by using script against the SQL Server DMO (Database Management Objects), as
shown in the following code fragment.

Sub SetAuditLevel(Server As String, NewAuditLevel As SQLDMO_AUDIT_TYPE)

 Dim objServer As New SQLServer2

 objServer.LoginSecure = True 'Use integrated security

 objServer.Connect Server 'Connect to the target SQL Server

 'Set the audit level

 objServer.IntegratedSecurity.AuditLevel = NewAuditLevel

 Set objServer = Nothing

End Sub

From SQL Server Books online, the members of the enumerated type, SQLDMO_AUDIT_TYPE are:

SQLDMOAudit_All 3 Log all authentication attempts - success or failure

SQLDMOAudit_Failure 2 Log failed authentication

SQLDMOAudit_None 0 Do not log authentication attempts

SQLDMOAudit_Success 1 Log successful authentication

Sample log entries

The following list shows some sample log entries for successful and failed entries in the SQL Server logs.

Successful login using Integrated Windows authentication:

2002-07-06 22:54:32.42 logon Login succeeded for user

'SOMEDOMAIN\Bob'. Connection: Trusted.

Successful login using SQL standard authentication:

2002-07-06 23:13:57.04 logon Login succeeded for user

'SOMEDOMAIN\Bob'. Connection: Non-Trusted.

Failed login:

2002-07-06 23:21:15.35 logon Login failed for user

'SOMEDOMAIN\BadGuy'.

IIS Logging

IIS logging can be set to different formats. If you use W3C Extended Logging, then you can take advantage of
some additional information. For example, you can turn on Time Taken to log how long a page takes to be served.
This can be helpful for isolating slow pages on your production Web site. You can also enable URI Query which will
log Query String parameters, which can be helpful for troubleshooting GET operations against your Web pages. The
figure below shows the Extended Properties dialog box for IIS logging.

Figure 13.1. IIS extended logging properties

Troubleshooting Tools

The list of tools presented in this section can prove invaluable and will help you diagnose both security and non-
security related problems.

File Monitor (FileMon.exe)

This tool allows you to monitor files and folders for access attempts. It is extremely useful to deal with file access
permission issues. It is available from USysinternals.comU.

More information

For more information see the Knowledge Base article Q286198, UHOWTO: Track 'Permission Denied' Errors on DLL
FilesU.

Fusion Log Viewer (Fuslogvw.exe)

Fusion Log Viewer is provided with the .NET Framework SDK. It is a utility that can be used to track down problems
with Fusion binding (see the .NET Framework documentation for more information).

To create Fusion logs for ASP.NET, you need to provide a log path in the registry and you need to enable the log
failures option through the Fusion Log Viewer utility.

To provide a log path for your log files, use regedit.exe and add a directory location, such as e:\MyLogs, to the
following registry key:

[HKLM\Software\Microsoft\Fusion\LogPath]

ISQL.exe

ISQL can be used to test SQL from a command prompt. This can be helpful when you want to efficiently test
different logins for different users. You run ISQL by typing isql.exe at a command prompt on a computer with SQL
Server installed.

Connecting by using SQL authentication

You can pass a user name by using the -U switch and you can optionally specify the password with the -P switch.
If you don't specify a password, ISQL will prompt you for one. The following command, issued from a Windows
command prompt, results in a password prompt. The advantage of this approach (rather than using the -P switch)
is that the password doesn't appear on screen.

C:\ >isql -S YourServer -d pubs -U YourUser

Password:

Connecting by using Windows authentication

You can use the -E switch to use a trusted connection which uses the security context of the current interactively
logged on user.

C:\ >isql -S YourServer -d pubs -E

Running a simple query

Once you are logged in, you can run a simple query, such as the one shown below.

1> use pubs

2> SELECT au_lname, au_fname FROM authors

3> go

To quit ISQL, type quit at the command prompt.

Windows Task Manager

Windows Task Manager on Windows XP and Windows Server 2003 allows you to display the identity being used to
run a process.

To view the identity under which a process is running

1. Start Task Manager.

2. Click the Processes tab.

3. From the View menu, click Select Columns.

4. Select User Name, and click OK.

The user name (process identity) is now displayed.

Network Monitor (NetMon.exe)

NetMon is used to capture and monitor network traffic.

More information

See the following Knowledge Base articles:

• Q243270, UHOW TO: Install Network Monitor in Windows 2000U

• Q148942, UHOW TO: Capture Network Traffic with Network Monitor U

• Q252876, UHOW TO: View HTTP Data Frames Using Network MonitorU

• Q294818, UFrequently Asked Questions About Network MonitorU

There are a couple of additional tools to capture the network trace when the client and the server are on the same
machine (this can't be done with Netmon):

• tcptrace.exe. Available from UPocketSOAP.comU. This is particularly useful for Web services since you can
set it up to record and show traffic while your application runs. You can switch to Basic authentication and use
tcptrace to see what credentials are being sent to the Web service.

• packetmon.exe. Available from UAnalogX.comU. This is a cut down version of Network Monitor, but much
easier to configure.

Registry Monitor (regmon.exe)

This tool allows you to monitor registry access. It can be used to show read accesses and updates either from all
processes or from a specified set of processes. This tool is very useful when you need to troubleshoot registry
permission issues. It is available from USysinternals.comU.

WFetch.exe

This tool is useful for troubleshooting connectivity issues between IIS and Web clients. In this scenario, you may
need to view data that is not displayed in the Web browser, such as the HTTP headers that are included in the
request and response packets.

More information

For more information about this tool and the download, see the Knowledge Base article Q284285, UHow to Use
Wfetch.exe to Troubleshoot HTTP ConnectionsU.

Visual Studio .NET Tools

The Microsoft .NET Framework SDK security tools can be found at the U.NET Framework ToolsU Web site.

More information

See the following Knowledge Base articles:

• Q316365, UINFO: ROADMAP for How to Use the .NET Performance CountersU

• Q308626, UINFO: Roadmap for Debugging in .NET Framework and Visual StudioU

WebServiceStudio

This tool can be used as a generic client to test the functionality of your Web service. It captures and displays the
SOAP response and request packets.

You can download the tool from the UWeb Service ToolsU page at GotDotNet.com.

Windows 2000 Resource Kits

UWindows 2000 Resource KitsU

Windows 2000 Resource Kit UFree Tool DownloadsU

