
Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

Roadmap

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® .NET Framework version 1.0
 ASP.NET
 Enterprise Services
 Web services
 .NET Remoting
 ADO.NET
 Visual Studio® .NET
 SQL™ Server
 Windows® 2000

Summary: This guide presents a practical, scenario driven approach to designing and building secure ASP.NET
applications for Windows 2000 and version 1.0 of the .NET Framework. It focuses on the key elements of
authentication, authorization, and secure communication within and across the tiers of distributed .NET Web
applications. (This roadmap: 6 printed pages; the entire guide: 608 printed pages)

Download

Download Building Secure ASP.NET Applications in .pdf format. (1.67 MB, 608 printed pages)

Contents

What This Guide Is About
 Part I, Security Models
 Part II, Application Scenarios
 Part III, Securing the Tiers
 Part IV, Reference
Who Should Read This Guide?
What You Must Know
Feedback and Support
Collaborators

Recommendations and sample code in the guide were built and tested using Visual Studio .NET Version 1.0 and
validated on servers running Windows 2000 Advanced Server SP 3, .NET Framework SP 2, and SQL Server 2000 SP
2.

What This Guide Is About

This guide focuses on:

• Authentication (to identify the clients of your application)

• Authorization (to provide access controls for those clients)

• Secure communication (to ensure that messages remain private and are not altered by unauthorized
parties)

Why authentication, authorization, and secure communication?

Security is a broad topic. Research has shown that early design of authentication and authorization eliminates a
high percentage of application vulnerabilities. Secure communication is an integral part of securing your distributed
application to protect sensitive data, including credentials, passed to and from your application, and between
application tiers.

There are many technologies used to build .NET Web applications. To build effective application-level authentication
and authorization strategies, you need to understand how to fine-tune the various security features within each
product and technology area, and how to make them work together to provide an effective, defense-in-depth
security strategy. This guide will help you do just that.

Figure 1 summarizes the various technologies discussed throughout the guide.

Fig . .NET Web application security ure 1

The
dige

Part I, Security Models

he rest of the guide. Familiarity with the concepts, principles, and
tech
cont

•

guide is divided into four parts. The aim is to provide a logical partitioning, which will help you to more easily
st the content.

Part I of the guide provides a foundation for t
nologies introduced in Part I will allow you to extract maximum value from the remainder of the guide. Part I
ains the following chapters.

Chapter 1: Introduction

This chapter highlights the goals of th
principles that apply to the guidance p

e guide, introduces key terminology, and presents a set of core
resented in later chapters.

• Chapter 2: Security Model for ASP.NET Applications

This chapter describes the common characteristics of .NET Web applications from a security perspective and

plications.
introduces the .NET Web application security model. It also introduces the set of core implementation
technologies that you will use to build secure .NET Web ap

• Chapter 3: Authentication and Authorization

lication's multiple tiers is a
critical task. This chapter provides guidance to help you develop an appropriate strategy for your particular
appli se the most appropriate authentication and authorization technique
and s in your application.

• Chapter 4: Secure Communication

Designing a coherent authentication and authorization strategy across your app

cation scenario. It will help you choo
apply them at the correct place

This chnologies that can be used to provide message confidentiality and
ervers on the Internet and

cryption, which can be used to
ote serviced components.

Most applications can be categorized as intranet, extranet, or Internet applications. This part of the guide presents
mmon application scenarios, each of which falls into one of those categories. The key characteristics of

h sce al security threats analyzed.

You
secu

• curity

 chapter introduces the two core te
message integrity for data that flows across the network between clients and s
corporate intranet. These are SSL and IPSec. This chapter also discusses RPC en
secure the communication with rem

Part II, Application Scenarios

a set of co
eac nario are described and the potenti

are then shown how to configure and implement the most appropriate authentication, authorization, and
re communication strategy for each application scenario.

Chapter 5: Intranet Se

This tranet application scenarios.

•

 chapter describes how to secure common in

Chapter 6: Extranet Security

This chapter describes how to secure common extranet application scenarios.

• Chapter 7: Internet Security

This mon Internet application scenarios.

Par

This
asso tains the following chapters.

 chapter describes how to secure com

t III, Securing the Tiers

 part of the guide contains detailed drill-down information that relates to the individual tiers and technologies
ciated with secure .NET Web applications. Part III con

• Chapter 8: ASP.NET Security

This chapter provides in-depth security recommendations for ASP.NET Web applications. It describes how
implement Forms and Windows authentication and how to perform authorization using the various
gatekeepers supported by ASP.NET. Among m

 to

any other topics, it also discusses how to store secrets, how to
use the correct process identity, and how to access network resources such as remote databases by using
Windows a

•

uthentication.

Chapter 9: Enterprise Services Security

This chapter explains how to secure business functionality in serviced components contained within Enterpris
Services applications. It

e
 shows you how and when to use Enterprise Services (COM+) roles for authorization,

and how to configure RPC authentication and impersonation. It also shows you how to securely call serviced
SP.NET Web application and how to identify and flow the original caller's security
e tier serviced component.

components from an A
context through a middl

• Chapter 10: Web Services Security

This ity for Web services using the underlying features of Internet
Info r message-level security, Microsoft is developing the Web Services

,
e Global XML Architecture (GXA) initiative.

 chapter focuses on platform-level secur
rmation Services (IIS) and ASP.NET. Fo

Development Kit, which allows you to build security solutions that conform to the WS-Security specification
part of th

• Chapter 11: Remoting Security

processes or on remote computers. This chapter shows you how to
implement secure .NET Remoting solutions.

•

The .NET Framework provides a remoting infrastructure that allows clients to communicate with objects,
hosted in remote application domains and

Chapter 12: Data Access Security

This chapter presents recommendations and guidance that will help you develop a secure data access
strategy. Top indows authentication from ASP.NET to the database, securing
conn s securely in a database, protecting against SQL injection attacks, and

Part IV, Reference

 guide contains supplementary information to help further your understanding of the
tech

• Chapter 13: Troubleshooting Security

ics covered include using W
ection strings, storing credential

using database roles.

This reference part of the
niques, strategies, and security solutions presented in earlier chapters.

This t of troubleshooting tips, techniques, and tools to help diagnose security related chapter presents a se
issues.

• How Tos

This section contains a series of step-by-step How-to articles that walk you through many of the solution
techniques discussed in earlier chapters.

• Base Configuration

This oftware used during the development and testing of the guide.

• Configuration Stores and Tools

 section lists the hardware and s

This ration stores used by the various authentication, authorization, and secure

• Reference Hub

 section summarizes the configu
communication services and lists the associated maintenance tools.

This vides a set of links to useful articles and Web sites that provide additional background
e.

 section pro
information about the core topics discussed throughout the guid

• How Does It Work?

This section provides supplementary information that details how particular technologies work.

• ASP.NET Identity Matrix

This mmarizes (with examples) the variables available to ASP.NET Web applications, Web services,
and ents hosted within ASP.NET that provide caller, thread, and process-level identity
info

y and Certificates

 section su
 remote compon
rmation.

• Cryptograph

This es supplementary background information about cryptography and certificates.

Security

 section includ

• .NET Web Application

This section provides a diagram that shows the authentication, authorization, and secure communication
services available across the tiers of an ASP.NET application.

• Glossary

A glossary of security terminology used throughout the guide.

If you are a middleware developer or architect, who plans to build, or is currently building .NET Web applications

• Enterprise Services

pport

Questions? Comments? Suggestions? For feedback on this security guide, please send e-mail to
secguide@microsoft.com

Who Should Read This Guide?

using one or more of the following technologies, you should read this guide.

• ASP.NET

• Web services

• Remoting

• ADO.NET

What You Must Know

To most effectively use this guide to design and build secure .NET Web applications, you should already have some
familiarity and experience with .NET development techniques and technologies. You should be familiar with
distributed application architecture and if you have already implemented .NET Web application solutions, you
should know your own application architecture and deployment pattern.

Feedback and Su

.

The security guide is designed to help you build secure .NET distributed applications. The sample code and
guidance is provided as-is. Support is available through Microsoft Product Support for a fee.

Collaborators

Many thanks to the following contributors and reviewers:

Manish Prabhu, Jesus Ruiz-Scougall, Jonathan Hawkins and Doug Purdy, Keith Ballinger, Yann Christensen and
Alexei Vopilov, Laura Barsan, Greg Fee, Greg Singleton, Sebastian Lange, Tarik Soulami, Erik Olson, Caesar Samsi,
Riyaz Pishori, Shannon Pahl, Ron Jacobs, Dave McPherson, Christopher Brown, John Banes, Joel Scambray, Girish
Chander, William Zentmayer, Shantanu Sarkar, Carl Nolan, Samuel Melendez, Jacquelyn Schmidt, Steve Busby,
Len Cardinal, Monica DeZulueta, Paula Paul, Ed Draper, Sean Finnegan, David Alberto, Kenny Jones, Doug Orange,
Alexey Yeltsov, Martin Kohlleppel, Joel Yoker, Jay Nanduri, Ilia Fortunov, Aaron Margosis (MCS), Venkat Chilakala,
John Allen, Jeremy Bostron, Martin Petersen-Frey, Karl Westerholm, Jayaprakasam Siddian Thirunavukkarasu,
Wade Mascia, Ryan Kivett, Sarath Mallavarapu, Jerry Bryant, Peter Kyte, Philip Teale, Ram Sunkara, Shaun Hayes,
Eric Schmidt, Michael Howard, Rich Benack, Carlos Lyons, Ted Kehl, Peter Dampier, Mike Sherrill, Devendra Tiwari,
Tavi Siochi, Per Vonge Nielsen, Andrew Mason, Edward Jezierski, Sandy Khaund, Edward Lafferty, Peter M. Clift,
John Munyon, Chris Sfanos, Mohammad Al-Sabt, Anandha Murukan (Satyam), Keith Brown (DevelopMentor), Andy
Eunson, John Langley (KANA Software), Kurt Dillard, Christof Sprenger, J.K.Meadows, David Alberto, Bernard Chen
(Sapient)

At a Glance

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

Summary: This section allows you to quickly see the scope and coverage of the individual chapters in the guide.
(12 printed pages)

Contents

Chapter 1: Introduction
Chapter 2: Security Model for ASP.NET Applications
Chapter 3: Authentication and Authorization
Chapter 4: Secure Communication
Chapter 5: Intranet Security
Chapter 6: Extranet Security
Chapter 7: Internet Security
Chapter 8: ASP.NET Security
Chapter 9: Enterprise Services Security
Chapter 10: Web Services Security
Chapter 11: .NET Remoting Security
Chapter 12: Data Access Security
Chapter 13: Troubleshooting Security Issues
Reference

Chapter 1: Introduction

This chapter highlights the goals of the guide, introduces key terminology and presents a set of core principles that
apply to the guidance presented in later chapters.

Chapter 2: Security Model for ASP.NET Applications

This chapter describes the common characteristics of.NET Web applications from a security perspective and
introduces the .NET Web application security model. It also introduces the set of core implementation technologies
that you will use to build secure .NET Web applications.

The full range of gatekeepers that allow you to develop defense-in-depth security strategies are also introduced
and the concept of principal-based authorization, using principal and identity objects is explained.

This chapter will help you answer the following questions:

• What are the typical deployment patterns adopted by .NET Web applications?

• What security features are provided by the various technologies that I use to build .NET Web applications?

• What gatekeepers should I be aware of and how do I use them to provide a defense-in-depth security
strategy?

• What are principal and identity objects and why are they so significant?

• How does .NET security relate to Windows security?

Chapter 3: Authentication and Authorization

Designing a coherent authentication and authorization strategy across your application's multiple tiers is a critical
task. This chapter provides guidance to help you develop an appropriate strategy for your particular application
scenario. It will help you choose the most appropriate authentication and authorization technique and apply them
at the correct places in your application.

Read this chapter to learn how to:

• Choose an appropriate authentication mechanism to identify users.

• Develop an effective authorization strategy.

• Choose an appropriate type of role-based security.

• Compare and contrast .NET roles with Enterprise Services (COM+) roles.

• Use database roles.

• Choose between the trusted subsystem resource access model and the impersonation/delegation model,
which is used to flow the original caller's security context at the operating system level throughout an
application's multiple tiers.

These two core resource access models are shown below in Figure 1 and Figure 2.

Figure 1. The Trusted Subsystem model

With the trusted subsystem model:

• Downstream resource access is performed using a fixed trusted identity and security context.

• The downstream resource manager (for example, database) trusts the upstream application to
properly authenticate and authorize callers.

• The resource manager authorizes the application to access resources. Original callers are not
authorized to directly access the resource manager.

• A trust boundary exists between the downstream and upstream components.

• Original caller identity (for auditing) flows at the application (not operating system) level.

Figure 2. The impersonation/delegation model

With the impersonation/delegation model:

• Downstream resource access is performed using the original caller's security context.

• urce manager (for example, database) authorizes individual callers.

• The original caller identity flows at the operating system and is available for platform level

ion

s cha gies that can be used to provide message confidentiality and message
t flows across the network between clients and servers on the Internet and corporate intranet.

se ar iscusses RPC encryption that can be used to secure the communication with

• Apply secure communication techniques throughout the various tiers of your application.

• Choose between SSL and IPSec.

• Configure secure communication.

• Use RPC encryption.

The chapter addresses the need to provide secure communicatio nnels between your application's various

 The downstream reso

auditing and per caller authorization.

Chapter 4: Secure Communicat

Thi pter introduces the two core technolo
integrity for data tha
The e SSL and IPSec. It also d
remote serviced components.

Read this chapter to learn how to:

n cha
physical tiers as shown in Figure 3.

Fig . A typical Web deploymure 3 ent model, with secure communications

Chapter 5: Intranet Security

s cha n scenarios and for each one presents recommended
urity conf tion steps necessary to build the secure solution are presented,

ns.

lication scenarios covered in this chapter are:

•
This scenario is shown in Figure 4.

• ASP.NET to Web services to SQL Server

• ASP.NET to Remoting to SQL Server

• Flowing the original caller to the database

This includes multi-tier Kerberos delegation scenarios, as shown in Figure 5.

Thi pter presents a set of common intranet applicatio
sec igurations. In each case, the configura
together with analysis and related scenario variatio

The app

ASP.NET to SQL Server

• ASP.NET to Enterprise Services to SQL Server

Figure 4. Security configuration for ASP.NET to remote SQL Server scenarios

Figure
Ke s delegation scenario

 5. Security configuration for ASP.NET to remote Enterprise Services to remote SQL Server
rbero

pplication to a remote SQL Server
database.

ctions to SQL Server using Windows authentication.

ined database roles.

n.

• Secure sensitive data with a combination of SSL and IPSec.

l caller's security context across multiple application

• Flow the original caller's security context by using Basic authentication.

• Authorize users with a combination of ASP.NET file authorization, URL authorization, .NET roles and
Enterprise Services (COM+) roles.

• Effectively use impersonation within an ASP.NET Web application.

Read this chapter to lean how to:

• Use the local ASPNET account to make calls from an ASP.NET Web a

• Establish trusted database conne

• Authorize database access with SQL Server user-def

• Avoid storing credentials within your applicatio

• Implement Kerberos delegation to flow the origina
tiers to a back-end database.

Chapter 6: Extranet Security

This chapter presents a set of comm
security configurations, configuration step

on extranet application scenarios and for each one presents recommended
s and analysis.

change)

This

This chapter covers the following extranet scenarios.

• Exposing a Web Service (B2B partner ex

 scenario is shown in Figure 6.

• Exposing a Web Application (partner application portal)

Figure 6. Security configuration for Web Service B2B partner exchange scenario

Read this chapter to lean how to:

• Authenticate partner companies by using client certificate authentication against a dedicated extranet
Active Directory.

• Map certificates to Windows accounts.

• Authorize partner companies by using ASP.NET file authorization and .NET roles.

• Use the ASPNET identity to access a remote SQL Server database located on the corporate intranet.

Chapter 7: Internet Security

This chapter presents a set of common Internet application scenarios, and for each one presents recommended

ernet application scenarios:

r

This

security configurations, configuration steps, and analysis.

This chapter covers the following Int

• ASP.NET to SQL Server

• ASP.NET to Remote Enterprise Services to SQL Serve

 scenario is shown in Figure 7.

Figure . Security configuration for ASP.NET to remote7 Enterprise Services to SQL Server

ad thi

dential database.

b application to SQL Server through a firewall.

ervices application through a
firewall by using SOAP.

Secure calls to serviced component in the application's middle tier.

s chap tions for ASP.NET Web applications. This chapter covers the
 secure communication services provided by IIS and ASP.NET. These are

strate

Re s chapter to learn how to:

• Use Forms authentication with a SQL Server cre

• Avoid storing passwords in the credential database.

• Authorize Internet users with URL Authorization and .NET roles.

• Use Windows authentication from an ASP.NET We

• Secure sensitive data with a combination of SSL and IPSec.

• Communicate from an ASP.NET Web application to a remote Enterprise S

•

Chapter 8: ASP.NET Security

Thi ter provides in-depth security recommenda
range of authentication, authorization and
illu d in Figure 8.

Figure 8. ASP.NET security services

Read this chapter to learn how to:

ET authentication modes.

• Implement Forms authentication.

ization.

security, using principal permission
dema

eb application.

.

unt.

environments.

eb application.

•

• Configure ASP.NET security in Web Farm scenarios.

r explains how to secure business functionality in serviced components contained within Enterprise
Services applications. It shows you how and when to use Enterprise Services (COM+) roles for authorization, and

 securely call serviced
components from an ASP.NET Web application and how to identify and flow the original caller's security context
through a middle tier serviced component.

• Configure the various ASP.N

• Implement Windows authentication.

• Work with IPrincipal and IIdentity objects.

• Effectively use the IIS and ASP.NET gatekeepers.

• Configure and use ASP.NET File authorization.

• Configure and use ASP.NET URL author

• Implement declarative, imperative and programmatic role-based
nds and IPrincipal.IsInRole.

• Know when and when not to use impersonation within an ASP.NET W

• Choose an appropriate account to run ASP.NET

• Access local and network resources using the ASP.NET process identity.

• Access remote SQL Server databases using the local ASPNET acco

• Call COM objects from ASP.NET.

• Effectively use the anonymous Internet user account in Web hosting

• Store secrets in an ASP.NET W

Secure session and view state.

Chapter 9: Enterprise Services Security

This chapte

how to configure RPC authentication and impersonation. It also shows you how to

Figure 9 shows the Enterprise Services security features covered by this chapter.

Figure 9. Enterprise Services security overview

Read this chapter to learn how to:

• Configure an Enterprise Services application using .NET attributes.

tion.

mmatically and
decl

•

programma

• Access local and network resources from a serviced component.

 passed to and from serviced components.

Chapter 10: Web Services Security

This chapter focuses on platform level security for Web services using the underlying features of IIS and ASP.NET.
For message level security, Microsoft is developing the Web Services Development Kit, which allows you to build
security solutions that conform to the WS-Security specification, part of the Global XML Architecture (GXA)
initiative.

The ASP.NET Web services platform security architecture is shown in Figure 10.

• Secure server and library applications.

• Choose an appropriate account to run an Enterprise Services server applica

• Implement method level Enterprise Services (COM+) role based security both progra
aratively.

Configure ASP.NET as a DCOM client.

• Securely call serviced components from ASP.NET.

• Compare Enterprise Services (COM+) roles with .NET roles.

• Identify callers within a serviced component.

• Flow the original caller's security context through an Enterprise Services application by using
tic impersonation within a serviced component.

• Use RPC encryption to secure sensitive data

• Understand the process of RPC authentication level negotiation.

• Use DCOM through firewalls.

Figure 10. Web services security architecture

ad thi

eb service.

uthorization in Web
servi

ough a Web service.

 service through a Web service proxy.

m model for Web services.

t

 learn how to:

Use URL authentication and .NET roles to authorize access to remote components.

Use File authentication with remoting. This requires you to create a physical .rem or .soap file that
corr mote component's object URI.

ork resources from a remote component.

tication to a remote component through the remote component proxy object.

Re s chapter to learn how to:

• Implement platform-based Web service security solutions.

• Develop an authentication and authorization strategy for a W

• Use client certificate authentication with Web services.

• Use ASP.NET file authorization, URL authorization, and .NET roles to provide a
ces.

• Flow the original caller's security context thr

• Call Web services using SSL.

• Access local and network resources from Web services.

• Pass credentials for authentication to a Web

• Implement the trusted subsyste

• Call COM objects from Web services.

Chapter 11: .NET Remoting Security

The .NET Framework provides a remoting infrastructure that allows clients to communicate with objects, hosted in
remote application domains and processes, or on remote computers. This chapter shows you how to implemen
secure .NET Remoting solutions.

Read this chapter to

• Choose an appropriate host for remote components.

• Use all of the available gatekeepers to provide defense-in-depth security.

•

•
esponds to the re

• Access local and netw

• Pass credentials for authen

• Flow the original caller's security context through a remote component.

nd from remote components using a combination of SSL and IPSec.

se Web services.

apte

s cha ts recommendations and guidance that will help you develop a secure data access strategy. The
y issues covered by this chapter are shown in Figure 11. These include storing connection strings securely, using
 appropriate identity for database access, securing data passed to and from the database, using an appropriate
thentication mechanism and implementing authorization in the database.

• Secure communication to a

• Know when to use remoting and when to u

Ch r 12: Data Access Security

Thi pter presen
ke
an
au

Figure 11. Data Access security overview

Read this chapter to learn how to:

• Use Windows authentication from ASP.NET to your database.

• Secure connection strings.

• Use DPAPI from ASP.NET Web applications to store secrets such as connection strings and credentials.

• Store credentials for authentication securely in a database.

• Validate user input to protect against SQL injection attacks.

• Mitigate the security threats associated with the use of SQL authentication.

• Know which type of database roles to use.

• Compare and contrast database user roles with SQL Server application roles.

• Secure communication to SQL Server using IPSec and also SSL.

• Create a least privilege database account.

• Enable auditing in SQL Server.

Chapter 13: Troubleshooting Security Issues

This chapter provides troubleshooting tips, techniques and tools to help diagnose security related issues. Read this
chapter to learn a proven process for effectively troubleshooting security issues you may encounter while building
your ASP.NET applications. For example, you'll learn techniques for determining identity in your ASP.NET pages,
which can be used to diagnose authentication and access control issues. You'll also learn how to troubleshoot
Kerberos authentication. The chapter concludes with a concise list of some of the more useful troubleshooting
tools, used by Microsoft support to troubleshoot customer issues.

Reference

Use the supplementary information in this section of the guide to help further your understanding of the
gies and security solutions presented in earlier chapters. Detailed How To articles provide step-

es that enable you to implement specific security solutions. It contains the following information:

rticles

 Does it Work?

 Matrix

• .NET Web Application Security Figure

ossary

techniques, strate
by-step procedur

• Reference Hub

• How To a

• How

• ASP.NET Identity

• Base Configuration

• Configuring Security

• Cryptography and Certificates

• Gl

In ction

 Meier, Ale

trodu

J.D. x Mackman, Michael Dunner and Srinath Vasireddy
Microsoft Corporation

November 2002

Applies to:
 Microsoft® ASP.NET

See the Landing Page for the starting point and a complete overview of Building Secure ASP.NET Applications.

 Summary: This chapter defines the scope and organization of the guide and highlights its goals. It also introduces
key terminology and presents a set of core principles that apply to the guidance presented in later chapters. (7
printed pages)

Contents

The Connected Landscape
Scope

at Are the Goals Wh of this Guide?
How You Should Read This Guide
Organization of the Guide
Ke inologyy Term
Pri snciple
Summary

Build ications is challenging. Your application is only as secure as its weakest link.
th dist s and making those parts work together in a secure

n r nologies.

logy and keeping a
p ahe o build secure applications, can you afford the time

and effort to learn? More to the point, can you afford not to?

e Co

you able to apply what you know when you build .NET
 today's landscape of Web-based distributed

applications, where Web services connect businesses to other business and business to customers and where
for example, to users on intranets, extranets and the Internet?

e (XML) and Hypertext Transport
Protocol (HTTP), but fundamentally they pass potentially sensitive information using plain text.

Intranet applications are not without their risks considering the sensitive nature of payroll and Human

This guide focuses on:

ing secure distributed Web appl
Wi ributed applications, you have a lot of moving part
fashio equires a working knowledge that spans products and tech

You already have a lot to consider; integrating various technologies, staying current with techno
ste ad of the competition. If you don't already know how t

Th nnected Landscape

If you already know how to build secure applications, are
Web applications? Are you able to apply your knowledge in

applications offer various degrees of exposure;

Consider some of the fundamental characteristics of this connected landscape:

• Web services use standards such as SOAP, Extensible Markup Languag

• Internet business-to-consumer applications pass sensitive data over the Web.

• Extranet business-to-business applications blur the lines of trust and allow applications to be called by
other applications in partner companies.

•
Resource (HR) applications. Such applications are particularly vulnerable to rogue administrators and
disgruntled employees.

Scope

• Authentication (to identify the clients of your application)

• Authorization (to provide access controls for those clients)

n and secure communication?

ta, including credentials, passed to and from your application and between
application tiers.

hat Guide?

s guid eference for the Microsoft .NET Framework —for
t you t Kit

• Secure communication (to ensure that messages remain private and are not altered by unauthorized
parties)

Why authentication, authorizatio

Security is a broad topic. Research has shown that early design of authentication and authorization eliminates a
high percentage of application vulnerabilities. Secure communication is an integral part of securing your distributed
application to protect sensitive da

W Are the Goals of This

Thi e is not an introduction to security. It is not a security r
tha have the .NET Framework Software Developmen (SDK) available from MSDN; see the "References"

tion o the documentation leaves off and presents a scenario-
nd proven techniques, as gleaned from the field, customer

 insight from the product teams at Microsoft.

ed to show you how to:

• Identify where and how you need to perform authentication.

ntify where and how you need to secure communication both to your application (from your end users)
and between application tiers.

w to avoid them.

ation related to authentication and authorization.

o make things work.

lso when to use various security features.

w Y ide

 guid llows you to pick and choose which chapters to read. For
ample, if you are interested in learning about the in-depth security features provided by a specific technology,

hapters 8 through 12), which contains in-depth material covering
ET, Enterprise Services, Web Services, .NET Remoting, and data access.

y chapters (Chapters 1 through 4) in Part I of the guide first, because
se wil del and identify the core technologies and security services at your

to secure specific scenarios.

ation and reference material in Part IV of the guide will help further your understanding of
. It also contains a library of How Tos that enable you to develop working security

solutions in the shortest possible time.

sec f this guide for details. This guide picks up where
based approach to sharing recommendations a
experience and

The information in this guide is design

• Raise the security bar for your application.

• Identify where and how you need to perform authorization.

• Ide

• Identify common pitfalls and ho

• Identify top risks and their mitig

• Avoid opening up security just t

• Identify not only how, but a

• Eliminate FUD (fear, uncertainty and doubt).

• Promote best practices and predictable results.

Ho ou Should Read This Gu

The e has been developed to be modular. This a
ex
you can jump straight to Part III of the guide (C
ASP.N

However, you are encouraged to read the earl
the l help you understand the security mo
disposal. Application architects should make sure they read Chapter 3, which provides some key insights into
designing an authentication and authorization strategy that spans the tiers of your Web application. Part I will
provide you with the foundation materials that will allow you to extract maximum benefit from the remainder of the
guide.

The intranet, extranet and Internet chapters (Chapters 5 through 7) in Part II of the guide will show you how to
secure specific application scenarios. If you know the architecture and deployment pattern that is or will be
adopted by your application, use this part of the guide to understand the security issues involved and the basic
configuration steps required

Finally, additional inform
specific technology areas

Organization of the Guide

The guide is divided into four parts. The aim is to provide a logical partitioning, which will help you to more easily
digest the content.

 I, Security Models

t 1 of ides a foundation for the rest of the guide. Familiarity with the concepts, principles and
hnolo nable you to extract maximum value from the remainder of the guide. Part 1

ins t .

n"

r ASP.NET Applications "

thorization"

ication"

enarios

st app be categorized as intranet, extranet or Internet applications. This part of the guide presents a
set of common application scenarios, each of which falls into one of the aforementioned categories. The key

enario are described and the potential security threats analyzed.

cure
ed

itfalls to watch out for and frequently asked questions (FAQ). Part II contains the following
chapters:

•

Par

s part
with

•

•

•
, a brief overview of the security architecture as it applies to the particular technology in

ented. Authentication and authorization strategies are discussed for each technology along with

h chap
h

pres
reco

Part

Part

Par the guide prov
tec gies introduced in Part 1 will e
conta he following chapters

• Chapter 1, "Introductio

• Chapter 2, "Security Model fo

• Chapter 3, "Authentication and Au

• Chapter 4, "Secure Commun

Part II, Application Sc

Mo lications can

characteristics of each sc

You are then shown how to configure and implement the most appropriate authentication, authorization and se
communication strategy for each application scenario. Each scenario also contains sections that include a detail
analysis, common p

Chapter 5, "Intranet Security"

• Chapter 6, "Extranet Security"

• Chapter 7, "Internet Security"

t III, Securing the Tiers

Thi of the guide contains detailed information that relates to the individual tiers and technologies associated
 secure .NET-connected Web applications. Part III contains the following chapters:

Chapter 8, "ASP.NET Security"

• Chapter 9, "Enterprise Services Security"

Chapter 10, "Web Services Security"

• Chapter 11, ".NET Remoting Security"

Chapter 12, "Data Access Security"

Within each chapter
question is pres
configurable security options, programmatic security options and actionable recommendations of when to use the
particular strategy.

Eac ter offers guidance and insight that will allow you to choose and implement the most appropriate
aut entication, authorization and secure communication option for each technology. In addition, each chapter

ents additional information specific to the particular technology. Finally, each chapter concludes with a concise
mmendation summary.

 IV, Reference

This reference part of the guide contains supplementary information to help further your understanding of
tec niques, strategies, and security solutions presented in earlier chapters. Detailed How Tos provide step-by-ste

edures that enable you to implement specific secur

the
h p

proc ity solutions. It contains the following information:

•

• ation"

•

•

•

•

Key

This section introduces some key security terminology used throughout the guide. Although a full glossary of
minology i
ow

•

• Impersonation. This is the technique used by a server application to access resources on behalf of a
clien

• Delegation. An extended form of impersonation that allows a server process that is performing work on
beh ros

hat

e server to local resource access while impersonating.

ity Context. Security context is a generic term used to refer to the collection of security settings
 the security-related behavior of a process or thread. The attributes from a process' logon session

le,

Principles

There are a number of overarching principles that apply to the guidance presented in later chapters. The following
summarizes these principles:

• Adopt the principle of least privilege. Processes that run script or execute code should run under a
least privileged account to limit the potential damage that can be done if the process is compromised. If a
malicious user manages to inject code into a server process, the privileges granted to that process determine
to a large degree the types of operations the user is able to perform. Code that requires additional trust (and
raised privileges) should be isolated within separate processes.

The ASP.NET team made a conscious decision to run the ASP.NET account with least privileges (using the
ASPNET account). During the beta release of the .NET Framework, ASP.NET ran as SYSTEM, an inherently less
secure setting.

• Chapter 13, "Troubleshooting Security"

How Tos

"Base Configur

• "Configuration Stores and Tools"

"How Does It Work?"

• "ASP.NET Identity Matrix"

"Cryptography and Certificates"

• "ASP.NET Security Model"

"Reference Hub"

"Glossary"

 Terminology

ter s provided within the "Reference" section of this guide, make sure you are very familiar with the
foll ing terms:

• Authentication. Positively identifying the clients of your application; clients might include end-users,
services, processes or computers.

• Authorization. Defining what authenticated clients are allowed to see and do within the application.

Secure Communications. Ensuring that messages remain private and unaltered as they cross networks.

t. The client's security context is used for access checks performed by the server.

alf of a client, to access resources on a remote computer. This capability is natively provided by Kerbe
on Microsoft® Windows® 2000 and later operating systems. Conventional impersonation (for example, t
provided by NTLM) allows only a single network hop. When NTLM impersonation is used, the one hop is used
between the client and server computers, restricting th

• Secur
that affect
and access token combine to form the security context of the process.

• Identity. Identity refers to a characteristic of a user or service that can uniquely identify it. For examp
this is often a display name, which often takes the form authority/user name.

• Use defense in depth. Place check points within each of the layers and subsystems within your
application. The check points are the gatekeepers that ensure that only authenticated and authorized users

• Don't trust user input. Applications should thoroughly validate all user input before performing
ith that input. The validation may include filtering out special characters. This preventive measure

protects the application against accidental misuse or deliberate attacks by people who are attempting to inject
s commands into the system. Common examples include SQL injection attacks, script injection and

• Use secure defaults. A common practice among developers is to use reduced security settings, simply to

security settings, test the effects and understand the implications before making the change.

es or
 use

platform features or proven techniques for securing your data.

eck at the gate. You don't always need to flow a user's security context to the back end for
. Often, in a distributed system, this is not the best choice. Checking the client at the gate

er at the first point of authentication (for example, within the Web application on
ing which resources and operations (potentially provided by downstream

uld be allowed to access.

design solid authentication and authorization strategies at the gate, you can circumvent the need to
delegate the original caller's security context all the way through to your application's data tier.

n it, don't assume security is taken care of for

• Reduce surface area. Avoid exposing information that is not required. By doing so, you are potentially
ope errors gracefully; don't expose any more
informa user.

.
de details that could help an

atta ent log.

ly as secure as your weakest link. Security is a concern across all of your

 disable the ASP.NET output cache module. If a future security vulnerability is found
in the module, your application is not threatened.

This chapter has provided some foundation material to prepare you for the rest of the guide. It has described the
ls of esented its overall structure. Make sure you are familiar with the key terminology and
iple is chapter, because these are used and referenced extensively throughout the

thcom

are able to access the next downstream layer.

operations w

maliciou
buffer overflow.

make an application work. If your application demands features that force you to reduce or change default

• Don't rely on security by obscurity. Trying to hide secrets by using misleading variable nam
storing them in odd file locations does not provide security. In a game of hide-and-seek, it's better to

• Ch
authorization checks
refers to authorizing the us
the Web server), and determin
services) the user sho

If you

• Assume external systems are insecure. If you don't ow
you.

ning doors that can lead to additional vulnerabilities. Also, handle
tion than is required when returning an error message to the end

• Fail to a secure mode. If your application fails, make sure it does not leave sensitive data unprotected
Also, do not provide too much detail in error messages; meaning don't inclu

cker exploit a vulnerability in your application. Write detailed error information to the Windows ev

• Remember you are on
application tiers.

• If you don't use it, disable it. You can remove potential points of attack by disabling modules and
components that your application does not require. For example, if your application doesn't use output
caching, then you should

Summary

goa the guide and pr
princ s introduced in th
for ing chapters.

Sec

. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
soft

Nov

App
Micros

See

urity Model for ASP.NET Applications

J.D
Micro Corporation

ember 2002

lies to:
 oft® ASP.NET

the Landing Page for the starting point and a complete overview of Building Secure ASP.NET Applications.

Summary: This chapter describes the common characteristics of .NET Web applications from a security
perspective and introduces the .NET Web application security model. It also introduces the set of core
implementation technologies that you will use to build secure .NET Web applications. (16 printed pages)

Contents

.NET Web Applications
Implementation Technologies
Security Architecture
Identities and Principals
Summary

vices
that span the tiers of a typical .NET Web application.

• Provide a frame of reference for typical .NET Web applications

• Identify the authentication, authorization and secure communication security features provided by the
eb applications

• Identify gatekeepers and gates that can be used in your application to enforce trust boundaries

ons.

Logical Tiers

Logical application architecture views any system as a set of cooperating services grouped in the following layers:

• User Services

• Business Services

• Data Services

ic types of services invariably present in any
on of interfaces between tiers. This segmentation

allows you to make more discreet architecture and design choices when implementing each layer, and to build a

ices are responsible for the client interaction with the system and provide a common bridge
into ic encapsulated by components within the Business Services layer. Traditionally, User
Servic t often with interactive users. However, they also perform the initial processing of
prog ests from other systems, where no visible user interface is involved. Authentication and

This chapter introduces .NET Web application security. It provides an overview of the security features and ser

The goal of the chapter is to:

various implementation technologies used to build .NET W

.NET Web Applications

This section provides a brief introduction to .NET Web applications and describes their characteristics both from a
logical and physical viewpoint. It also provides an introduction to the various implementation technologies used to
build .NET Web applicati

The value of this logical architecture view is to identify the gener
system, to ensure proper segmentation and to drive the definiti

more maintainable application.

The layers can be described as follows:

• User Serv
the core business log

es are associated mos
rammatic requ

auth ise nature of which varies depending upon the client type, are typically performed
within the User Services layer.

Business Services provide the core functionality of the system and encapsulate business logic. They are
inde nd back-end systems or data sources. This provides the stability and
flexibility necessary to evolve the system to support new and different channels and back-end systems.
Typ siness request involves a number of cooperating components within the
Business Services layer.

a Services provide access to data (hosted within the boundaries of the system), and to other (back-

ources, and encapsulate
specific access rules and data formats.

 logic thin a system may correlate with, but is relatively independent from,
ssible physical distribution of the components implementing the services.

It is also important to remember that the logical tiers can be identified at any level of aggregation; that is, the tiers
tem as a whole (in the context of its environment and external interactions) and for any

mple, each remote node that hosts a Web service consists of User Services (handling

 thre n no way imply specific numbers of physical tiers. All three logical
vices mputer, or they may be spread across multiple computers.

e Web

A common deployment pattern for .NET Web applications is to locate business and data access components on the
inimizes the network hops, which can help performance. This model is shown in Figure 2.1.

orization, the prec

•
pendent from the delivery channel a

ically, to service a particular bu

• Dat
end) systems through generic interfaces, which are convenient to use from components within the Business
Services layer. Data Services abstract the multitude of back-end systems and data s

The al classification of service types wi
the po

can be identified for the sys
contained subsystem. For exa
incoming requests and messages), Business Services and Data Services.

Physical Deployment Models

The e logical service layers described earlier, i
ser may be physically located on the same co

Th server as an application server

Web server. This m

Figure 2.1. The Web server as an application server

Re application tier mote

rticularly for Internet scenarios where the Web tier
is self-contained within a perimeter network (also known as DMZ, demilitarized zone, and screened subnet) and is

te application tier with packet filtering firewalls. The remote application tier

The remote application tier is a common deployment pattern, pa

separated from end users and the remo
is shown in Figure 2.2.

Figu .2. The introduction of a remotere 2 application tier

• ASP.NET

• emoting

QL Server™ 2000

P.NE

P. sed
to b T, see the following resources:

ecurity

Implementation Technologies

.NET Web applications typically implement one or more of the logical services by using the following technologies:

• Enterprise Services

• Web services

.NET R

• ADO.NET and Microsoft® S

• Internet Protocol Security (IPSec)

• Secure Sockets Layer (SSL)

AS T

AS NET is typically used to implement User Services. ASP.NET provides a pluggable architecture that can be u
uild Web pages. For more information about ASP.NE

• Chapter 8, ASP.NET S

• ASP.NET in the "Reference Hub" section of this guide

Enterprise Services

Enterprise Services provide infrastructure-level services to applications. These include distributed transactions and
resource management services such as object pooling for .NET components. For more information about Enterprise
Services, see the following resources:

• Chapter 9, Enterprise Services Security

• Understanding Enterprise Services (COM+) in .NET on MSDN®

• Enterprise Services in the "Reference Hub" section of this guide

ge of data and the remote invocation of application logic using SOAP-based
message exchanges to move data through firewalls and between heterogeneous systems. For more information

vices, se sources:

Chapter 10, Web Services Security

Web Services

Web services enable the exchan

about Web ser e the following re

•

• XML Web Ser velopment Centervices De on M

• Web Services

SDN

 in the "Reference Hub" section

moting

.NET Remoting provid work for accessing di ss and machine boundaries. For
more information abo moting, see the follow

er 11, . ng Security

 of this guide

.NET Re

es a frame
ut .NET Re

stributed objects across proce
ing resources:

• Chapt NET Remoti

• Remoting in

 and SQL 000

the "Reference Hub" section of this guide

ADO.NET Server 2

ADO.NET provides data access services. It is designed p for distribute ations, and it
has rich support for the disconnected scenarios inhere eb applicati re information
about ADO.NET, see the following resources:

 D s Security

 from the ground u
ntly associated with W

d Web applic
ons. For mo

• Chapter 12, ata Acces

• ADO.NET in the "Reference Hub" section of t

es i the em authentication m nisms (Kerberos or
NTLM). Authorization and granu at can be applied to individual database
objects. For more information about SQL Server 2000 ources:

• Chapter 12, Data Access Security

his guide

SQL Server provid ntegrated security that uses
is provided by logons

operating syst
lar permissions th
, see the following res

echa

ocol (IPSec)

IPSec provides point-to-point, transport level encryption and authentication services. For more information about
wing resources:

Internet Prot Security

IPSec, see the follo

• Chapter 4, Secure Communication.

• IPSec–The New Security Standard fo
aswamy and Dan Harkins (Prentic

r the Internet, Intranets and Virtual Private Networks by Naganand
Dor e Hall PTR, ISBN; ISBN: 0-13-011898-2); Chapter 4 is available on
Tech

cure

e communication channel. Data sent over the channel is encrypted. For more

• Chapter 4, Secure Communication

Net.

Se Sockets Layer (SSL)

SSL provides a point-to-point secur
information about SSL, see the following resources:

• Microsoft® Windows® 2000 and IIS 5.0 Administrator's Pocket Consultant (Microsoft Press, ISBN: 0-
7356-1024-X); Chapter 6 is available on TechNet

Sec ity Arch

Figure 2.
various t
througho
Enterpris
stretch from the client browser or device, right through to the database. Channels are secured with a combination
of Secure

ur itecture

3 shows the remote application tier model together with the set of security services provided by the
echnologies introduced earlier. Authentication and authorization occurs at many individual points
ut the tiers. These services are provided primarily by Internet Information Services (IIS), ASP.NET,
e Services and SQL Server. Secure communication channels are also applied throughout the tiers and

 Sockets Layer (SSL) or IPSec.

Security architecture Figure 2.3.

The n, and secure communication features provided by the technologies discussed
earlier are summarized in Table 2.1.

Security Across the Tiers

authentication, authorizatio

Table 2.1. Security features

Technology Authentication Authorization Secure Communication

IIS Anonymous
Basic
Digest

IP/DNS Address Restrictions
Web Permissions
NTFS Permissions; Windows

SSL

Windows Integrated Access Control Lists (ACLs) on
(Kerberos/NTLM)
Certificate

requested files

ASP.NET None (Custom) File Authorization
Windows URL Authorization
Forms
Passport

Principal Permissions
.NET Roles

We es Windows
None (Custom)

File Authorization
URL Authorization

b servic

tication Principal Permissions
.NET Roles

SSL and Message level
encryption

Message level authen

Re File Authorization moting Windows

ns

SSL and message level
encryption URL Authorization

Principal Permissio
.NET Roles

Enterprise Services Windows Enterprise Services (COM+) Remote Procedure C
Roles

all
(RPC) Encryption

NTFS Permissions

SQL Server 2000 Windows (Kerberos/NTLM) Server logins

Fixed database roles
User defined roles
Application roles

SSL
SQL authentication Database logins

Object permissions

Windows 2000 Kerberos Windows ACLs IPSec
NTLM

Aut

e .NET

• ASP.NET Authentication Modes

 Enterprise Services Authentication

• SQL Server Authentication

ASP.NET authentication modes

ASP.NET authentication modes include Windows, Forms, Passport and None.

Windows authentication. With this authentication mode, ASP.NET relies on IIS to authenticate users
and epresent the authenticated identity. IIS provides the following
authentication mechanisms:

• Basic authentication. Basic authentication requires the user to supply credentials in the form of
 to prove their identity. It is a proposed Internet standard based on RFC 2617

hentication

Th Framework on Windows 2000 provides the following authentication options:

•

•
 create a Windows access token to r

a user name and password .
Microsoft Internet Explorer support Basic authentication. The user's

er's credentials unencrypted, the Web server can issue
remote calls (for example, to access remote computers and resources) using the user's credentials.

n

Both Netscape Navigator and
credentials are transmitted from the browser to the Web server in an unencrypted Base64 encoded
format. Because the Web server obtains the us

Note Basic authentication should only be used in conjunction with a secure channel (typically
established by using SSL). Otherwise, user names and passwords can be easily stolen with network
monitoring software. If you use Basic authentication you should use SSL on all pages (not just a logo
page), because credentials are passed on all subsequent requests. For more information about using Basic
authentication with SSL, see Chapter 8, "ASP.NET Security."

• Digest authentication. Digest authentication, introduced with IIS 5.0, is similar to Basic
authentication except that instead of transmitting the user's credentials unencrypted from the browser to
the Web server, it transmits a hash of the credentials. As a result it is more secure, although it requires

• LM

 confirm the identity of the user. It is supported only by Internet
Explorer (and not by Netscape Navigator), and as a result tends to be used only in intranet scenarios,

us access

te to

onymous authentication. If you do not need to authenticate your clients (or you implement
thentication scheme), IIS can be configured for Anonymous authentication. In this event, the

an Internet Explorer 5.0 or later client and specific server configuration.

 Integrated Windows authentication. Integrated Windows Authentication (Kerberos or NT
depending upon the client and server configuration) uses a cryptographic exchange with the user's
Internet Explorer Web browser to

where the client software can be controlled. It is used only by the Web server if either anonymo
is disabled or if anonymous access is denied through Windows file system permissions.

• Certificate authentication. Certificate authentication uses client certificates to positively
identify users. The client certificate is passed by the user's browser (or client application) to the Web
server. (In the case of Web services, the Web services client passes the certificate by means of the
ClientCertificates property of the HttpWebRequest object). The Web server then extracts the user's
identity from the certificate. This approach relies on a client certificate being installed on the user's
computer and as a result tends to be used mostly in intranet or extranet scenarios where the user
population is well known and controlled. IIS, upon receipt of a client certificate, can map the certifica
a Windows account.

• An
a custom au

Web server creates a Windows access token to represent all anonymous users with the same anonymous
(or guest) account. The default anonymous account is IUSR_MACHINENAME, where MACHINENAME is the

ter specified at install time.

entication. This approach uses client-side redirection to forward unauthenticated users to a
specified HTML form that allows them to enter their credentials (typically user name and password). These

hen validated and an authentication ticket is generated and returned to the client. The
 of for

ometimes used solely for Web site personalization. In this case, you need write little
P.NET handles much of the process automatically with simple configuration. For

eb server in plain text. As a
result, you should use Forms authentication in conjunction with a channel secured by SSL. For

on of the authentication cookie transmitted on subsequent requests, you should
ge.

t you either don't want to authenticate users or that you are using a custom

etails about ASP.NET authentication, see Chapter 8, ASP.NET Security

NetBIOS name of your compu

• Passport authentication. With this authentication mode, ASP.NET uses the centralized authentication
services of Microsoft Passport. ASP.NET provides a convenient wrapper around functionality exposed by the
Microsoft Passport Software Development Kit (SDK), which must be installed on the Web server.

• Forms auth

credentials are t
authentication ticket maintains the user identity and optionally a list of roles that the user is a member
the duration of the user's session.

Forms authentication is s
custom code because AS
personalization scenarios, the cookie needs to hold only the user name.

Note Forms authentication sends the user name and password to the W

continued protecti
consider using SSL for all pages within your application and not just the logon pa

• None. None indicates tha
authentication protocol.

More information

For more d .

g the underlying Remote Procedure Call (RPC) transport
infrastructure, which in turn uses the operating system Security Service Provider Interface (SSPI). Clients of

A se
with
proc and Principals" section
later

The i

• Default: The default authentication level for the security package is used.

• ticates at the start of each remote procedure call.

Packet Integrity: Authenticates and verifies that none of the data has been modified in transit.

n

r 9, Enterprise Services Security

Enterprise Services authentication

Enterprise Services authentication is performed by usin

Enterprise Services applications may be authenticated using Kerberos or NTLM authentication.

rviced component can be hosted in a Library application or Server application. Library applications are hosted
in client processes and as a result assume the client's identity. Server applications run in separate server
esses under their own identity. For more information about identity, see the "Identities
 in this chapter.

ncoming calls to a serviced component can be authenticated at the following levels:

• None: No authentication occurs.

• Connect: Authentication occurs only when the connection is made.

Call: Authen

• Packet: Authenticates and verifies that all call data is received.

•

• Packet Privacy: Authenticates and encrypts the packet, including the data and the sender's identity and
signature.

More informatio

For more information about Enterprise Services authentication, see Chapte .

SQL Server authentication

SQL Server can authenticate
authentication scheme referr

 us own built-in
ed

• SQL Server and Win
SQL Server authentication
authentication.

• Windows Only. The u nect to the instance of Microsoft SQL Server by using Windows
authentication.

More information

The relative merits of each app n Chapter 12, "Data Access Security

ers by using Windows authentication (NTLM or Kerberos) or can use its
 to as SQL authentication. The following two options are available:

dows. Clients can connect to an instance of Microsoft SQL Server by using either
or Windows authentication. This is sometimes referred to as mixed mode

ser must con

roach are discussed i ."

Authorization

ramework on Window f the following authorization options:

• ASP.NET Authorization

ervices Au

• SQL Server Authorizat

ASP.NET authorization options

uthorization options
ASP.NET provides the following

ization. T
application configuration fil files and folders within

lication's Uniform ifier (URI) namespace. For example, you can selectively deny or
allow access to specific file ed by means of a URL) to nominated users. You can also
restrict access based on th the type of HTTP verb used to issue a request (GET,
POST, and so on).

pplied Windows
indows authentication.

You can use it to restrict access to specified files on a Web server. Access permissions are determined by
Windows ACLs attached to the files.

• Principal Permission Demands. Principal permission demands can be used (declaratively or
programmatically) as an additional fine-grained access control mechanism. They allow you to control access to
classes, methods or individual code blocks based on the identity and group membership of individual users.

• NET Roles. .NET roles are used to group together users who have the same permissions within your
application. They are conceptually similar to previous role-based implementations, for example Windows
groups and COM+ roles. However, unlike these earlier approaches, .NET roles do not require authenticated
Windows identities and can be used with ticket-based authentication schemes such as Forms authentication.

.NET roles can be used to control access to resources and operations and they can be configured both
declaratively and programmatically.

More information

For more information about ASP.NET authorization, see Chapter 8, ASP.NET Securi

The .NET F s 2000 provides o

 Options

• Enterprise S thorization

ion

ASP.NET a can be used by ASP.NET Web applications, Web services and remote components.
 authorization options:

• URL Author his is an authorization mechanism, configured by settings within machine and
es. URL Authorization allows you to restrict access to specific

your app Resource Ident
s or folders (address
e user's role membership and

URL Authorization requires an authenticated identity. This can be obtained by a Windows or ticket-based
authentication scheme.

• File Authorization. File authorization applies only if you use one of the IIS-su
authentication mechanisms to authenticate callers and ASP.NET is configured for W

ty.

Enterprise Services authorization

Acc functionality contained in serviced components within Enterprise Services applications is governed by
En rprise Services role membership. These are different from .NET roles and can contain Windows

ess to
te group or user

accounts. Role membership is defined within the COM+ catalog and is administered by using the Component
rvices

re inf

 m

Se tool.

Mo ormation

For ore information about Enterprise Services authorization, see Chapter 9, Enterprise Services Security.

SQL Server authorization

SQL Server allows fine-grained permissions that can be applied to individual database objects. Permissions may
based on role membership (SQL Server provides fixed database roles, user defined roles and application roles),
permission may be granted to individual Windows user or group accounts.

be
or

More information

For more information about SQL Server authorization, see Chapter 12, Data Access Security.

Gatekeepers and Gates

Throughout the remainder of this document, the term gatekeeper is used to identify the technology that is
. For

m

Each of the core technologies listed earlier provide gatekeepers for access authorization. Requests must pass

 through:

henticate users (that is, you disable Anonymous authentication). IIS Web
s control mechanism to restrict the capabilities of Web users to access

specific files and folders. Unlike NTFS file permissions, Web permissions apply to all Web users, as opposed to
individual users or groups. NTFS file permissions provide further restrictions on Web resources such as Web

ctions apply to individual users or groups.

FS file permissions. A user must be authorized by both
cess the file or folder. A failed Web permission check results in IIS
den response, whereas a failed NTFS permission check results in IIS

returning an HTTP 401–Access Denied.

per uses Enterprise Services roles to authorize access to business

SQL Server 2000 includes a series of gates that include server logins, database logins, and database

tached to secure resources.

thorization based on the identity of the user or service calling into
esource. The value of multiple gates is in-depth security with multiple

aries the set of gatekeepers and identifies for each one the gates that they are

le 2.2. Gatekeepers responsibilities and the gates they provide

responsible for a gate. A gate represents an access control point (guarding a resource) within an application
example, a resource might be an operation (represented by a method on an object) or a database or file syste
resource.

through a series of gates before being allowed to access the requested resource or operation. The following
describes the gates the requests must pass

• IIS provides a gate when you aut
permissions can be used as an acces

pages, images files, and so on. These restri

IIS checks Web permissions, followed by NT
mechanisms for them to be able to ac
returning an HTTP 403–Access Forbid

• ASP.NET provides various configurable and programmatic gates. These include URL Authorization, File
Authorization, Principal Permission demands, and .NET Roles.

• The Enterprise Services gatekee
functionality.

•
object permissions.

• Windows 2000 provides gates using ACLs at

The bottom line is that gatekeepers perform au
the gate and attempting to access a specific r
lines of defense. Table 2.2 summ
responsible for.

Tab

Gatekeeper Gates

Windows Operating System Logon rights (positive and negative, for example "Deny logon locally")
Other privileges (for example "Act as part of the operating system")
Access checks against secured resources such as the registry and file system.

Access checks use ACLs attached to the secure resources, which specify who is and
 the types of operation that may

TCP/IP filtering

who is not allowed to access the resource and also
be permitted.

IP Security

IIS igest, Integrated, Certificate)
IP address and domain name restrictions (these can be used as an additional line of
Authentication (Anonymous, Basic, D

defense, but should not be relied upon due to the relative ease of spoofing IP
addresses).
Web permissions
NTFS permissions

ASP
File Authorization

.NET URL Authorization

Principal Permission Demands
.NET Roles

Enterprise Services Windows (NTLM / Kerberos) authentication
les Enterprise Services (COM+) ro

Impersonation levels

Web services Uses gates provided by IIS and ASP.NET

Remoting Uses gates provided by the host. If hosted in ASP.NET it uses the gates provided by
IIS and ASP.NET. If hosted in a Windows service, then you must develop a custom
solution.

ADO.NET Connection strings. Credentials may be explicit or you may use Windows
authentication (for example, if you connect to SQL Server)

SQL Server Server logins
Database logins
Database object permissions

By u
acce back-end resources. The scope of access is narrowed by successive gates that become more and

ular as the request proceeds through the application to the back-end resources.

Con is shown in Figure 2.4.

sing the various gates throughout the tiers of your application, you can filter out users that should be allowed
ss to your

more gran

sider the Internet-based application example using IIS that

Fig iltering users with gatekeepers

re 2.4 illustrates the following:

ure 2.4. F

Figu

•

• File authorization might further narrow access down to 100 users.

r Web application code might allow only 10 users to access your restricted resource, based on
specific role membership.

Ide

c
secu nd IIdentity objects.

want to know the security context code is running under, the identity of the
is consulted. With .NET programming, if you want to query the

The .NET Framework uses identity and principal objects to represent users when .NET code is running and together

within the System.Security.Principal namespace. Common interfaces allow the .NET
Framework to treat identity and principal objects in a polymorphic fashion, regardless of the underlying

eme

The mbership through an IsInRole method and also provides
ss to an associated IIdentity object.

You can disable Anonymous authentication in IIS. As a result, only accounts that IIS is able to
authenticate are allowed access. This might reduce the potential number of users to 10,000.

• Next, in ASP.NET you use URL Authorization, which might reduce the user count to 1,000 users.

• Finally, you

ntities and Principals

.NET se urity is layered on top of Windows security. The user centric concept of Windows security is based on
rity context provided by a logon session while .NET security is based on IPrincipal a

In Windows programming when you
process owner or currently executing thread
security context of the current user, you retrieve the current IPrincipal object from Thread.CurrentPrincipal.

they provide the backbone of .NET role-based authorization.

Identity and principal objects must implement the IIdentity and IPrincipal interfaces respectively. These
interfaces are defined

impl ntation details.

IPrincipal interface allows you to test role me
acce

public interface IPrincipal

{

 bool IsInRole(string role);

 IIdentity Identity {get;}

}

The ntity interface provides additional authentication details such as the name and authentication type. IIde

pu interface IIdentity blic

{

 string authenticationType {get;}

 bool IsAuthenticated {get;}

 string Name {get;}

}

The Framework supplies a number of concrete implementations of IPrincipal and IIdentity as shown
Fig e 2.5 and described in the following sections.

 .NET in
ur

Figure 2.5. IPrincipal and IIdentity implementation classes

WindowsPrincipal and WindowsIdentity

The .NET version of a Windows security context is divided between two classes:

• WindowsPrincipal. This class stores the roles associated with the current Windows user. The
WindowsPrincipal implementation treats Windows groups as roles. The IPrncipal.IsInRole method returns
true or false based on the user's Windows group membership.

• WindowsIdentity. This class holds the identity part of the current user's security context and can be
obtained from the static WindowsIdentity.GetCurrent()method. This returns a WindowsIdentity object
that has a Token property that returns an IntPtr that represents a Windows handle to the access token
associated with the current execution thread. This token can then be passed to native Win32® application
programming interface (API) functions such as GetTokenInformation, SetTokenInformation,
CheckTokenMembership and so on, to retrieve security information about the token.

Note The static WindowsIdentity.GetCurrent()method returns the identity of the currently executing
thread, which may or may not be impersonating. This is similar to the Win32 GetUserName API.

GenericPrincipal and Associated Identity Objects

These implementations are very simple and are used by applications that do not use Windows authentication and
where the application does not need complex representations of a principal. They can be created in code very
easily and as a result a certain degree of trust must exist when an application deals with a GenericPrincipal.

If you are relying upon using the IsInRole method on the GenericPrincipal in order to make authorization
decisions, you must trust the application that sends you the GenericPrincipal. This is in contrast to using
WindowsPrincipal objects, where you must trust the operating system to provide a valid WindowsPrincipal
object with an authenticated identity and valid group/role names.

The following types of identity object can be associated with the GenericPrincipal class:

• FormsIdentity. This class represents an identity that has been authenticated with Forms authentication.
It contains a FormsAuthenticationTicket, which contains information about the user's authentication
session.

• PassportIdentity. This class represents an identity that has been authenticated with Passport
authentication and contains Passport profile information.

• GenericIdentity. This class represents a logical user that is not tied to any particular operating system
technology and is typically used in association with custom authentication and authorization mechanisms.

ASP.NET and HttpContext.User

Typically, Thread.CurrentPrincipal is checked in .NET code before any authorization decisions are made.
ASP.NET, however, provides the authenticated user's security context using HttpContext.User.

This property accepts and returns an IPrincipal interface. The property contains an authenticated user for the
ntext.User when it makes authorization decisions.

 module automatically constructs a
ject and stores it in HttpContext.User. If you use other authentication mechanisms such

as Forms or Passport, you must construct a GenericPrincipal object and store it in HttpContext.User.

ASP.NET identities

 the execution of an ASP.NET Web application, there may be multiple identities present
ese identities include:

• HttpContext.User returns an IPrincipal object that contains security information for the current Web

ing
T Web applications.

However, if the Web application has been configured for impersonation, the identity represents the
ticated user (which if IIS Anonymous authentication is in effect, is IUSR_MACHINE).

f the currently executing .NET thread, which rides on top

•

current request. ASP.NET retrieves HttpCo

When you use Windows authentication, the Windows authentication
WindowsPrincipal ob

At any given time during
during a single request. Th

request. This is the authenticated Web client.

• WindowsIdentity.GetCurrent()returns the identity of the security context of the currently execut
Win32 thread. By default, this identity is ASPNET; the default account used to run ASP.NE

authen

• Thread.CurrentPrincipal returns the principal o
of the Win32 thread.

More information

For a detailed analysis of ASP.NET identity for a combination of Web application configurations (both with
and without impersonation), see ASP.NET Identity Matrix within the "Reference" section of this guide.

• For more information about creating your own IPrincipal implementation, see Chapter 8, ASP.NET
Security, and How to Implement IPrincipal in the "Reference" section of this guide.

the curr r own security model.

hough there is no security built into the Remoting architecture, it was designed with security in mind. It is left up

not Remoting boundaries depends on the location of the client and remote
mple:

te
main(s), the remoting infrastructure copies a reference to the IPrincipal object associated with

the caller's context to the receiver's context.

• case, IPrincipal objects are not transmitted between processes.

l object based on the supplied credentials.

mm

s cha
rela
impl

•

• used to provide secure communications across the layers of a
.NET Web application; for example, from browser to database.

 when you use Basic or Forms
authentication.

Remoting and Web Services

In ent version of the .NET Framework, Remoting and Web services do not have thei
They both inherit the security feature of IIS and ASP.NET.

Alt
to the developer and/or administrator to incorporate certain levels of security in Remoting applications. Whether or

principal objects are passed across
object, for exa

• Remoting within the same process. When remoting is used between objects in the same or separa
application do

Remoting across processes. In this
The credentials used to construct the original IPrincipal must be transmitted to the remote process, which
may be located on a separate computer. This allows the remote computer to construct an appropriate
IPrincipa

Su ary

Thi pter has introduced the full set of authentication and authorization options provided by the various .NET
ted technologies. By using multiple gatekeepers throughout your .NET Web application, you will be able to
ement a defense-in-depth security strategy. To summarize:

ASP.NET applications can use the existing security features provided by Windows and IIS.

A combination of SSL and IPSec can be

• Use SSL to protect the clear text credentials passed across the network

• .NET represents users who have been identified with Windows authentication using a combination of the
WindowsPrincipal and WindowsIdentity classes.

al and GenericIdentity or FormsIdentity classes are used to represent users who
have be n-Windows authentication schemes, such as Forms authentication.

nd identity implementations by creating classes that implement
IPri

plications, the IPrincipal object that represents the authenticated user is
assoc HTTP Web request using the HttpContext.User property.

ur application through which authorized users can access
reso s are responsible for controlling access to gates.

• Use multiple gatekeepers to provide a defense-in-depth strategy.

Authentication and Authorization

• The GenericPrincip
en identified with no

• You can create your own principal a
ncipal and IIdentity.

• Within ASP.NET Web ap
iated with the current

• Gates are access control points within yo
urces or services. Gatekeeper

The next chapter, Chapter 3, , provides additional information to help you choose
enario. the most appropriate authentication and authorization strategy for your particular application sc

Authentication and Authorization

.
Micr

Nov

See the Landing Page

J.D Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy
osoft Corporation

ember 2002

Applies to:
 Microsoft® ASP.NET

 for the starting point and a complete overview of Building Secure ASP.NET Applications.

n and authorization
technique and apply them at the correct places in your application. (22 printed pages)

Con

Desi

Summary: This chapter provides guidance to help you develop an appropriate authorization strategy for your
particular application scenario. It will help you choose the most appropriate authenticatio

tents

gning an Authentication and Authorization Strategy
Au ation Approachesthoriz

ing IdentityFlow
-Based AuthorizationRole

Choosing an Authentication Mechanism
Summary

Desi uth ributed Web applications is a challenging task. The
good news is that proper authentication and authorization design during the early phases of your application
deve ment help

s chap on and will also help
wer t

• what mechanisms should I use?

• What au

inst

• ications and design considerations for heterogeneous and homogenous platforms?

•

• How should I flow user identity throughout the tiers of my application? When should I use operating
n/delegation?

st, any meaningful authorization policy requires authenticated users.

ser

Some gatekeepers such as ASP.NET file authorization, Enterprise Services (COM+) roles and Windows ACLs,
 (in the form of a WindowsIdentity object that encapsulates a

Windows access token, which defines the caller's security context). Other gatekeepers, such as ASP.NET URL
arily

Designing an Authentication and Authorization Strategy

gning an a entication and authorization strategy for dist

lop s to mitigate many top security risks.

Thi ter will help you design an appropriate authorization strategy for your applicati
ans he following key questions:

Where should I perform authorization and

thentication mechanism should I use?

• Should I use Active Directory® directory service for authentication or should I validate credentials aga
a custom data store?

What are the impl

How should I represent users who do not use the Microsoft® Windows® operating system within my
application?

system level impersonatio

When you consider authorization, you must also consider authentication. The two processes go hand in hand for
two reasons:

• Fir

• Second, the way in which you authenticate users (and specifically the way in which the authenticated u
identity is represented within your application) determines the available gatekeepers at your disposal.

require an authenticated Windows identity

authorization and .NET roles, do not. They simply require an authenticated identity; one that is not necess
represented by a Windows access token.

The following steps identify a process that will help you develop an authentication and authorization strategy for
your application:

1. Identify resources

2. Choose an authorization strategy

3. Choose the identities used for resource access

5. Choose an authentication approach

entify

ntify se to clients. Typical resources include:

• Web Server resources such as Web pages, Web services, static resources (HTML pages and images).

ces and data from directory stores such as Active

ization strategies are:

 based on the role membership of the
caller. Roles are used to partition your application's user base into sets of users that share the same security

for example, Senior Managers, Managers and Employees .Users are mapped
zed to perform the requested operation, the application uses fixed identities

trusted by the respective resource managers (for

 security context. This impersonation approach

In th jority of .NET Web applications where scalability is essential, a role-based approach to authorization
represents the best choice. For certain smaller scale intranet applications that serve per-user content from

ources (such as files) that can be secured with Windows ACLs against individual users, a resource-based

The pattern for role-based authorization is:

• Authenticate users within your front-end Web application.

 Map users to roles.

example, databases) trust the
application to authorize callers and are willing to grant permissions to the trusted service identity or identities.

fic HR application
(but not to individual users).

4. Consider identity flow

6. Decide how to flow identity

Id Resources

Ide resources that your application needs to expo

• Database resources such as per-user data or application-wide data.

• Network resources such as remote file system resour
Directory.

You must also identify the system resources that your application needs to access. This is in contrast to resources
that are exposed to clients. Examples of system resources include the registry, event logs and configuration files.

Choose an Authorization Strategy

The two basic author

• Role based. Access to operations (typically methods) is secured

privileges within the application;
to roles and if the user is authori
with which to access resources. These identities are
example, databases, the file system and so on).

• Resource based. Individual resources are secured using Windows ACLs. The application impersonates
the caller prior to accessing resources, which allows the operating system to perform standard access checks.
All resource access is performed using the original caller's
severely impacts application scalability, because it means that connection pooling cannot be used effectively
within the application's middle tier.

e vast ma

res
approach may be appropriate.

recommended and common

•

• Authorize access to operations (not directly to resources) based on role membership.

• Access the necessary back-end resources (required to support the requested and authorized operations)
by using fixed service identities. The back-end resource managers (for

For example, a database administrator may grant access permissions exclusively to a speci

Mo ormation

For more informa

re inf

• tion about the two contrasting authorization approaches, see Authorization Approaches
late

•

r in this chapter.

For more information about role-based authorization and the various types of roles that can be used, see
Role-Based Authorization later in this chapter.

Cho

nally Web services, Enterprise Services and

.NET Remoting components. In all cases, the identity used for resource access can be:

key

• Service account. This approach uses a (fixed) service account. For example:

ccess this might be a fixed SQL user name and password presented by the

n't have Windows accounts to work with, you can construct your own
identities (using IPrincipal and IIdentity implementations) that can contain details that relate to your own
spec e could include role lists, unique identifiers, or any other type of

 identity with IPrincipal and IIdentity types and placing them in the current
Web context (using HttpContext.User), you immediately benefit from built-in gatekeepers such as .NET roles

s.

example, if a back-end
resource manager needs to perform per-caller authorization, the caller's identity must be passed to that resource

rough your application.

Choose an Authentication Approach

Two key factors that influence the choice of authentication approach are first and foremost the nature of your
application's user base (what types of browsers are they using and do they have Windows accounts), and secondly
your application's impersonation/delegation and auditing requirements.

More information

ose the Identities Used for Resource Access

Answer the question, "who will access resources?"

Choose the identity or identities that should be used to access resources across the layers of your application. This
includes resources accessed from Web-based applications, and optio

• Original caller's identity. This assumes an impersonation/delegation model in which the original caller
identity can be obtained and then flowed through each layer of your system. The delegation factor is a
criteria used to determine your authentication mechanism.

• Process identity. This is the default case (without specific impersonation). Local resource access and
downstream calls are made using the current process identity. The feasibility of this approach depends on the
boundary being crossed, because the process identity must be recognized by the target system.

This implies that calls are made in one of the following ways:

• Within the same Windows security domain

• Across Windows security domains (using trust and domain accounts, or duplicated user names
and passwords where no trust relationship exists)

• For database a
component connecting to the database.

• When a fixed Windows identity is required, use an Enterprise Services server application.

• Custom identity. When you do

ific security context. For example, thes
custom information.

By implementing your custom

and PrincipalPermission demand

Consider Identity Flow

To support per-user authorization, auditing, and per-user data retrieval you may need to flow the original caller's
identity through various application tiers and across multiple computer boundaries. For

manager.

Based on resource manager authorization requirements and the auditing requirements of your system, identify
which identities need to be passed th

For more detailed considerations that help you to choose an authentication mechanism for your application, see
Choosing an Authentication Mechanism later in this chapter.

Decide How to Flow Identity

You can flow identity (to provide security context) at the application level or you can flow identity and security
context at the operating system level.

To flow identity at the application level, use method and stored procedure parameters. Application identity flow
supports:

• Per-user data retrieval using trusted query parameters

• SELECT x,y FROM SomeTable WHERE username="bob"

 tier

Operating system identity flow supports:

• Platform level auditing (for example, Windows auditing and SQL Server auditing)

Per-user authorization based on Windows identities

low ide ing system level, you can use the impersonation/delegation model. In some
umst , while in others (where perhaps the environment does not support

Kerberos) you may need to use other approaches such as, using Basic authentication. With Basic authentication,
 user' access downstream network

resources.

g Identity

• Custom auditing within any application

•
To f ntity at the operat
circ ances you can use Kerberos delegation

the s credentials are available to the server application and can be used to

More information

For more information about flowing identity and how to obtain an impersonation token with network credentials
(that is, supports delegation), see Flowin later in this chapter.

There are two basic approaches to authorization:

 application-defined, logical roles. Members of a particular role
share the same privileges within the application. Access to operations (typically expressed by method calls) is

mbership of the caller.

 secured using Windows ACLs. The ACL determines which users
are allowed to access the resource and also the types of operation that each user is allowed to perform (read,
writ

Role Based

th a ro
auth mbership of the caller. Roles (analyzed and defined at application design time) are

d as l ithin
 a ss to

spec n.

Where within your application this role mapping occurs is a key design criterion; for example:

Authorization Approaches

• Role based. Users are partitioned into

authorized based on the role-me

Resources are accessed using fixed identities (such as a Web application's or Web service's process identity).
The resource managers trust the application to correctly authorize users and they authorize the trusted
identity.

• Resource based. Individual resources are

e, delete and so on).

Resources are accessed using the original caller's identity (using impersonation).

Wi le-based (or operations-based) approach to security, access to operations (not back-end resources) is
orized based on the role me

use ogical containers that group together users who share the same security privileges (or capabilities) w
the pplication. Users are mapped to roles within the application and role membership is used to control acce

ific operations (methods) exposed by the applicatio

• On one extreme, role mapping might be performed within a back-end resource manager such as a
database. This requires the original caller's security context to flow through your application's tiers to the

 With this
ger

ck-end tiers; for

entities to access back-end resource managers provides
greater opportunities for application scalability (thanks to connection pooling). Also, the use of trusted identities

viates the
difficu

This approach tends to work best for applications that provide access to resources that can be individually secured
with Windows ACLs, such as files. An example would be an FTP application or a simple data driven Web application.
The approach starts to break down where the requested resource consists of data that needs to be obtained and
consolidated from a number of different sources; for example, multiple databases, database tables, external
applications or Web services.

The resource-based approach also relies on the original caller's security context flowing through the application to
the back-end resource managers. This can require complex configuration and significantly reduces the ability of a
multi-tiered application to scale to large numbers of users, because it prevents the efficient use of pooling (for
example, database connection pooling) within the application's middle tier.

Resource Access Models

The two contrasting approaches to authorization can be seen within the two most commonly used resource-access
security models used by .NET Web applications (and distributed multi-tier applications in general). These are:

•

t

The Trusted Subsystem Model

y to access downstream services and resources. The
he

t

The model name stems from the fact that the downstream service (perhaps a database) trusts the upstream

the
database using the trusted identity.

back-end database.

• On the other extreme, role mapping might be performed within your front-end Web application.
approach, downstream resource managers are accessed using fixed identities that each resource mana
authorizes and is willing to trust.

• A third option is to perform role mapping somewhere in between the front-end and ba
example, within a middle tier Enterprise Services application.

In multi-tiered Web applications, the use of trusted id

alle need to flow the original caller's security context at the operating system level, something that can
be lt (if not impossible in certain scenarios) to achieve.

Resource Based

The resource-based approach to authorization relies on Windows ACLs and the underlying access control mechanics
of the operating system. The application impersonates the caller and leaves it to the operating system in
conjunction with specific resource managers (the file system, databases, and so on) to perform access checks.

 The trusted subsystem model

• The impersonation/delegation model

Each model offers advantages and disadvantages both from a security and scalability perspective. The nex
sections describe these models.

With this model, the middle tier service uses a fixed identit
security context of the original caller does not flow through the service at the operating system level, although t
application may choose to flow the original caller's identity at the application level. It may need to do so to suppor
back-end auditing requirements, or to support per-user data access and authorization.

service to authorize callers. Figure 3.1 shows this model. Pay particular attention to the trust boundary. In this
example, the database trusts the middle tier to authorize callers and allow only authorized callers to access

 3.1. The Trusted Subsystem mFigure odel

The ing:

•

•

 identity

 id

The d
Win
Win

ernati
conn

For more information about the relative merits of Windows and SQL authentication when communicating with SQL
Data Access Security

pattern for resource access in the trusted subsystem model is the follow

 Authenticate users

Map users to roles

• Authorize based on role membership

• Access downstream resource manager using a fixed trusted

Fixed entities

fixed identity used to access downstream systems and resource managers is often provided by a preconfigure
dows account, referred to as a service account. With a Microsoft SQL Server™ resource manager, this implies
dows authentication to SQL Server.

Alt vely, some applications use a nominated SQL account (specified by a user name and password in a
ection string) to access SQL Server. In this scenario, the database must be configured for SQL authentication.

Server, see Chapter 12, .

le to perform slightly more fine-grained authorization, based on the
role membership of the caller. For example, you may have two groups of users, one who should be authorized to

Consider the following approach with SQL Server:

 application-specific roles. For example, you might want
to use one account for Internet users and another for internal operators and/or administrators.

• rver user-defined database role, and establish the necessary database
permissions for each role.

• cation and use role membership to determine which account to
impersonate before connecting to the database.

This shown in Figure 3.2.

Using multiple trusted identities

Some resource managers may need to be ab

perform read/write operations and the other read-only operations.

• Create two Windows accounts, one for read operations and one for read/write operations.

More generally, you have separate accounts to mirror

Map each account to a SQL Se

Map users to roles within your appli

 approach is

Figure 3.2. Using multiple identities to access a database to support more fine-grained authorizatio

The Impersonation / Delegat

n

ion Model

l, a service or component (usually somewhere within the logical business services layer)
 the client's identity (using operating system-level impersonation) before it accesses the next

 is

As a result of the delegation, the security context used for the downstream resource access is that of the client.

ice to perform per-caller authorization using the original caller's identity.

e to use operating system-level auditing features.

As a concrete example of this technique, a middle-tier Enterprise Services component might impersonate the caller
base. acce ng a database connection tied to the security context of

ler. With this mo tabase au
d on permission to the ind of

the caller). The impersonation/delegation model is

With this mode
impersonates
downstream service. If the next service in line is on the same computer, impersonation is sufficient. Delegation
required if the downstream service is located on a remote computer.

This model is typically used for a couple of reasons:

• It allows the downstream serv

• It allows the downstream servic

prior to accessing a data The database is ssed usi
the original cal
decisions base

del, the da
s assigned

thenticates each and every caller and makes authorization
ividual caller's identity (or the Windows group membership
shown in Figure 3.3.

Figure 3.3. The impersonation/delegation mod

Choosing a Resource Access Model

The trusted subsystem model is used in the vast m f Internet applications and large-scale intranet
applications, primarily for scalability reasons. The impersonation model tends to be used in smaller-scale

scalability rimary con -
repudiation) is a critical concern.

Advantage of the impersonation / delegation m

The primary advantage of the impersonation / dele ting allows
administrators to track which users have attempted idered

el

ajority o

applications where is not the p cern and those applications where auditing (for reasons of non

odel

gation model is auditing (close to the data). Audi
 to access specific resources. Generally auditing is cons

most authoritative if the audits are generated at the precise time of resource access and by the same routines th
access the resource.

The impersonation / delegation model supports this by m

at

aintaining the user's security context for downstream
resource access. This allows the back-end system to authoritatively log the user and the requested access.

 challenges. Most security service providers don't support delegation, Kerberos is the
notab

Processes that perform impersonation require higher privileges (specifically the Act as part of the operating
syst indows 2000 and will not apply to Windows Server).

• Scalability. The impersonation / delegation model means that you cannot effectively use database
 pooling, because database access is performed by using connections that are tied to the individual
ntexts of the original callers. This significantly limits the application's ability to scale to large

that
back-end resources increases (and

Advantages of the trusted subsystem model

ing advantages:

his model because all back-end resource access uses the security context of the service account,
regardless of the caller's identity.

ngle identity.

 trusted-subsystem model, only the middle-tier service account

Disadvantages of the trusted subsystem model

 from a couple of drawbacks:

 level) the
identity of the original caller to the back end, and have the auditing performed there. You have to trust the

server clocks are
synchronized).

s

Distributed applications can be divided into multiple secure subsystems. For example, a front-end Web application,
iddle-ti stems. Each

u ociated security context) to the
next downstream subsystem in order to support authorization against the original caller.

Disadvantages of the impersonation / delegation model

The disadvantages associated with the impersonation / delegation model include:

• Technology
le exception.

em privilege). (This restriction applies to W

connection
security co
numbers of users.

• Increased administration effort. ACLs on back-end resources need to be maintained in such a way
each user is granted the appropriate level of access. When the number of
the number of users increases), a significant administration effort is required to manage ACLs.

The trusted subsystem model offers the follow

• Scalability. The trusted subsystem model supports connection pooling, an essential requirement for
application scalability. Connection pooling allows multiple clients to reuse available, pooled connections. It
works with t

• Minimizes back-end ACL management. Only the service account accesses back-end resources (for
example, databases). ACLs are configured against this si

• Users can't access data directly. In the
is granted access to the back-end resources. As a result, users cannot directly access back-end data without
going through the application (and being subjected to application authorization).

The trusted-subsystem model suffers

• Auditing. To perform auditing at the back end, you can explicitly pass (at the application

middle-tier and you do have a potential repudiation risk. Alternatively, you can generate an audit trail in the
middle tier and then correlate it with back-end audit trails (for this you must ensure that the

• Increased risk from server compromise. In the trusted-subsystem model, the middle-tier service is
granted broad access to back-end resources. As a result, a compromised middle-tier service potentially make
it easier for an attacker to gain broad access to back-end resources.

Flowing Identity

a m er Web service, a remote component, and a database represent four different security subsy
performs authentication and authorization.

Yo must identify those subsystems that must flow the caller's identity (and ass

Application vs. Operating System Identity Flow

s

e authenticated caller's identity do not automatically flow across

res that allow you to retrieve and process user-specific data. For

Strategies for flowing identities include using the delegation features of the operating system or passing tickets
and/or credentials at the application level. For example:

• To flow identity at the application level, you typically pass credentials (or tickets) using method argument
or stored procedure parameters.

Note GenericPrincipal objects that carry th
processes. This requires custom code.

You can pass parameters to stored procedu
example:

SELECT CreditLimit From Table Where UserName="Bob"

.

extended form of impersonation called delegation.

un using the security context of the server
he process' security context are maintained by the process' logon session

Windows access token. All local and remote resource access is performed
ess.

Impersonation

e
.

er's token must have network credentials. If it doesn't, all remote resource access is performed
as the anonymous user (AUTHORITY\ANONYMOUS LOGON).

ows

authenticated caller can be delegated.

Table 3.1. IIS Authentication types

This approach is sometimes referred to as a trusted query parameter approach

• Operating system identity flow requires an

Impersonation and Delegation

Under typical circumstances, threads within a server application r
process. The attributes that comprise t
and are exposed by the process level
using the process level security context that is determined by the Windows account used to run the server proc

When a server application is configured for impersonation, an impersonation token is attached to the thread used
to process a request. The impersonation token represents the security context of the authenticated caller (or
anonymous user). Any local resource access is performed using the thread impersonation token that results in th
use of the caller's security context

Delegation

If the server application thread attempts to access a remote resource, delegation is required. Specifically, the
impersonated call

There are a number of factors that determine whether or not a security context can be delegated. Table 3.1 sh
the various IIS authentication types and for each one indicates whether or not the security context of the

Authentication Type Can Delegate Notes

Anonymous Depends If the anonymous account (by default IUSR_MACHINE) is
configured
unless the
identical local ching usernames and
passwords)
If the anon ain account it can be
delegated.

in IIS as a local account, it cannot be delegated
local (Web server) and remote computer have

accounts (with mat
.
ymous account is a dom

Basic Yes If Basic auth local accounts, it can be
delegated if ocal accounts on the local and remote
computers counts can also be
delegated.

entication is used with
 the l
are identical. Domain ac

Digest No

Integrated Windows Depends Integrated ws authentication either results in NTLM or
Kerberos (d stem on
client and server computer).
NTLM does upport delegation.

supports delegation with a suitably configured
environment.

in t Kerberos

Windo
epending upon the version of operating sy

not s
Kerberos

For more formation, see How To: Implemen
Delegation for Windows 2000 in the References section of this
guide.

Client Certificates Depends Can be dele d if used with IIS certificate mapping and the
pped to a local account that is duplicated on the

mputer or is mapped to a domain account.
 because the credentials for the mapped account are

stored on the local server and are used to create an Interactive
logon session (which has network credentials).
Active Directory certificate mapping does not support
delegation.

gate
s macertificate i

remote co
This works

Important Kerberos delegation under Windows 2000 is unconstrained. In other words, a user may be able to
make multiple network hops across multiple remote computers. To close this potential security risk, you should

it the in account's reach by removing the account from the Domain Users group and allow the
ount to nly to log on to specific computers.

le-Bas

st .NET Web applications will use a role-based approach to authorization. You need to consider the various role
es an propriate for your application scenario. You have the following options:

Enterprise Services (COM+) roles

 flexible and revolve around IPrincipal objects that contain the list of roles that an

You can perform authorization using .NET roles either declaratively using PrincipalPermission demands or
l.IsInRole method.

T rol n

ion uses Windows authentication, ASP.NET automatically constructs a WindowsPrincipal that is
ached n process is

lete and
horiza

The ows
authentication, .NET roles are the same as Windows groups.

ows authentication mechanism such as Forms or Passport, you must write code
to create a GenericPrincipal object (or a custom IPrincipal object) and populate it with a set of roles obtained

a store such as a SQL Server database.

lim scope of the doma
acc be used o

Ro ed Authorization

Mo
typ d choose the one(s) most ap

• .NET roles

•

• SQL Server User Defined Database roles

• SQL Server Application roles

.NET Roles

.NET roles are extremely
authenticated identity belongs to. .NET roles can be used within Web applications, Web services, or remote
components hosted within ASP.NET (and accessed using the HttpChannel).

programmatically in code, using imperative PrincipalPermission demands or the IPrincipa

.NE es with Windows authenticatio

If your applicat
att to the context of the current Web request (using HttpContext.User). After the authenticatio
comp ASP.NET has attached to object to the current request, it is used for all subsequent .NET role-based
aut tion.

Windows group membership of the authenticated caller is used to determine the set of roles. With Wind

.NET roles with non-Windows authentication

If your application uses a non-Wind

from a custom authentication dat

Custom IPrincipal objects

The .NET Role-based security mechanism is extensible. You can develop your own classes that implement
IPrincipal and IIdentity and provide your own extended role-based authorization functionality.

As long as the custom IPrincipal object (containing roles obtained from a custom data store) is attached to the
current request context (using HttpContext.User), basic role-checking functionality is ensured.

 i
Prin om identity. Furthermore, you can implement extended role
semantics; for example, by providing an additional method such as IsInMultipleRoles(string [] roles) which

uld al

Mor

By mplementing the IPrincipal interface, you ensure that both the declarative and imperative forms of
cipalPermission demands work with your cust

wo low you to test and assert for membership of multiple roles.

e information

• For more information about .NET role-based authorization, see Chapter 8, ASP.NET Security.

For more information about creating GenericPrincipal objects, see • l How To: Create GenericPrincipa
Objects with Forms Authentication in the Reference section of this guide.

ise Services (COM+) roles pushes access checks to the middle tier and allows you to use database
connection pooling when connecting to back-end databases. However, for meaningful Enterprise Services (COM+)

-bas tion must impersonate and flow the original caller's identity
(using a Windows access token) to the Enterprise Services application. To achieve this, the following entries must
be pla

Enterprise Services (COM+) Roles

Using Enterpr

role ed authorization, your front-end Web applica

ced in the Web application's Web.config file.

<authentication mode="Windows" />

<identity impersonate="true" />

If it i uffi ethods),
you can dep n tool.

If you requi some of the administrative and deployment
advantage rise Services (COM+) roles, because role logic is hard-coded.

SQL erv Defined Database Roles

With this a ou create roles in the database, assign permissions based on the roles and map Windows
group and user accou is approach requires you to flow the caller's identity to the back end (if you
are u the pre entication to SQL Server).

SQL erv

With is a ted to the roles within the database, but SQL Server application roles
cont no result, you lose the granularity of the original caller.

With applic ication (as opposed to a set of users). The
application a cepts a role name and password. One of the
main sad of this approach is that it requires the application to securely manage credentials (the role
name password).

Mor fo

For more informa er user defined database roles and application roles, see Chapter 12, Data

s s cient to use declarative checks at the method level (to determine which users can call which m
loy your application and update role membership using the Component Services administratio

re programmatic checks in method code, you lose
s of Enterp

 S er User

pproach, y
nts to the roles. Th

sing ferred Windows auth

 S er Application Roles

 th pproach, permissions are gran
ain user or group accounts. As a

ation roles, you are authorizing access to a specific appl
ctivates the role using a built-in stored procedure that ac

 di vantages
 and associated

e in rmation

tion about SQL Serv
Acce Securityss .

.NE ol

The owi tures of .NET roles and Enterprise Services (COM+) roles.

Table 3.2. Comparing Enterprise Services roles with .NET roles

T R es versus Enterprise Services (COM+) Roles

foll ng table presents a comparison of the fea

Feature Enterprise Services Roles .NET Roles

Administration Component Services Administration
Tool

Custom

Data ore Custom data store (for example, SQL Server or
Active Directory)

 St COM+ Catalog

Declara ive Yes t
[SecurityRole("Manager")]

Yes
[PrincipalPermission(
SecurityAction.Demand,
Role="Manager")]

Imperative Yes
ContextUtil.IsCallerInRole()

Yes
IPrincipal.IsInRole

Class, Inte
Method Level
Gran rity

rface and Yes Yes

ula

Extensible No
om IPrincipal implementation)

 Yes
(using cust

Available to
component

 all .NET
s

Only for components that
derive from ServicedComponent base
class

Yes

Role Memb
accounts roles ARE Windows groups–no extra level of

ership Roles contain Windows group or user When using WindowsPrincipals,

abstraction

Requ ex
Inte
implementa

Yes
To obtain method level authorization,
an interface must be explicitly defined
and implemented

No ires plicit
rface

tion

Using .NET Ro

You can secure the foll

• File

• Fo

• W

• Web services (.asmx files)

• Objects

• M

• Code blo

The fact that you can use .NET roles to protect operations (performed by methods and properties) and specific
code block to local and remote resources accessed by your application.

Note items in the preceding list (Files, folders, Web pages, and Web services) are protected using
the U lAut nModule, which can use the role membership of the caller (and the caller's identity) to make
authorization d

If yo use
cons ts a he associated
role set.

To use .NE mechanism, you must write code to:

les

owing items with .NET roles:

s

lders

eb pages (.aspx files)

ethods and properties

cks within methods

s means that you can protect access

 The first four
r horizatio

ecisions.

u Windows authentication, much of the work required to use .NET roles is done for you. ASP.NET
truc WindowsPrincipal object and the Windows group membership of the user determines t

T roles with a non-Windows authentication

• Ca

• Valid

• Re request.

e G esents the authenticated user and is used for subsequent .NET role checks,
such a ission demands and programmatic IPrincipal.IsInRole checks.

More info

For more in ocess involved in creating a GenericPrincipal object for Forms authentication,
see Chapte ET Security

pture the user's credentials.

ate the user's credentials against a custom data store such as a SQL Server database.

trieve a role list, construct a GenericPrincipal object and associate it with the current Web

Th enericPrincipal object repr
s declarative PrincipalPerm

rmation

formation about the pr
r 8, ASP.N .

Checking role membership

The following type available:

Important cated user) being
associated with the current request. For ASP.NET Web applications, the IPrincipal object must be attached to
HttpConte ed to
Thread.Cu

• Manual role checks. For fine-grained authorization, you can call the IPrincipal.IsInRole method to
thor rship of the caller. Both AND and OR logic

• D le checks (gates to your methods). You can annotate methods with the
inci ssionAttribute class (which can be shortened to PrincipalPermission), to declaratively

demand role membership. These support OR logic only. For example you can demand that a caller is in at
st one spe le, the caller must be a teller or a manager). You cannot specify that a caller

must be a manager and a teller using declarative checks.

• Im ission.Demand
within code to perform fine-grained authorization logic. Logical AND and OR operations are supported.

Role-chec

The followi d imperative
techniques.

1. Author on:

Note nerally authorize based on role membership,
ich authorize sets of users who share the same privileges within your application.

ser name check

s of .NET role checks are

 .NET role checking relies upon an IPrincipal object (representing the authenti

xt.User. For Windows Forms applications, the IPrincipal object must be attach
rrentPrincipal.

au ize access to specific code blocks based on the role membe
can be used when checking role membership.

eclarative ro
Pr palPermi

lea cific role (for examp

perative role checks (checks within your methods). You can call PrincipalPerm

king examples

ng code fragments show some example role checks using programmatic, declarative, an

izing Bob to perform an operati

 Although you can authorize individual users, you should ge
wh allows you to

• Direct u

• GenericIdentity userIdentity = new GenericIdentity("Bob");

• if (userIdentity.Name=="Bob")

• {

• }

• Declarative check

• [PrincipalPermissionAttribute(SecurityAction.Demand,

• User="Bob")]

• public void DoPrivilegedMethod()

• {

• }

• Imperative check

• PrincipalPermission permCheckUser = new

• PrincipalPermission(

• "Bob",

• null);

• permCheckUser.Demand();

2. Au tellers to perform an operation:

eck

thorizing

• Direct role name ch

• GenericIdentity userIdentity = new GenericIdentity("Bob");

• // Role names would be retrieved from a custom data store

• string[] roles = new String[]{"Manager", "Teller"};

• GenericPrincipal userPrincipal = new

• GenericPrincipal(userIdentity,

• roles);

• if (userPrincipal.IsInRole("Teller"))

• {

• }

• Declarative check

• [PrincipalPermissionAttribute(SecurityAction.Demand,

• Role="Teller")]

• void SomeTellerOnlyMethod()

• {

• }

• Imperative check

• public SomeMethod()

• {

• PrincipalPermission permCheck = new PrincipalPermission(

• null,"Teller");

• permCheck.Demand();

• // Only Tellers can execute the following code

• // Non members of the Teller role result in a security

• exception

• . . .

• }

3. horize managers OR tellers to perform operati :

Direct role name check

Aut on

•

• if (Thread.CurrentPrincipal.IsInRole("Teller") ||

• Thread.CurrentPrincipal.IsInRole("Manager"))

• {

• // Perform privileged operations

• }

tive check • Declara

• SecurityAction.Demand, [PrincipalPermissionAttribute(

• Role="Teller"),

• PrincipalPermissionAttribute(SecurityAction.Demand,

• Role="Manager")]

• public void DoPrivilegedMethod()

• {

• Ã‚Â…

• }

• Imperative check

• PrincipalPermission permCheckTellers = new

• PrincipalPermission(

• null,"Teller");

• PrincipalPermission permCheckManagers = new

• PrincipalPermission(

• null,"Manager");

•

4. Authorize only those people who are managers AND tellers to perform operation:

rect role name check

 (permCheckTellers.Union(permCheckManagers)).Demand();

• Di

• if (Thread.CurrentPrincipal.IsInRole("Teller") &&

• Thread.CurrentPrincipal.IsInRole("Manager"))

• {

• // Perform privileged operation

• }

• Declarative check

It is not possible to perform AND checks with .NET roles declaratively. Stacking PrincipalPermission
demands together results in a logical OR.

• Imperative check

• PrincipalPermission permCheckTellers = new

• PrincipalPermission(

• null,"Teller");

• permCheckTellers.Demand();

• PrincipalPermission permCheckManagers = new

• PrincipalPermission(

• null, "Manager");

• permCheckManagers.Demand();

Choosing an Authentication Mechanism

This section presents guidance that is designed to help you choose an appropriate authentication mechanism for
common application scenarios. You should start by considering the following issues:

• Identities. A Windows authentication mechanism is appropriate only if your application's users have
Windows acco a henti a trus c by y ati
server.

redential management. One of the key advantages of Windows authentication is that it enables you to
perating system take care of credential management. With non-Windows approaches, such as Forms

, you must carefully consider where and how you store user credentials. The two most common
approaches are to use:

SQL Server databases

User objects n Active tory

re information about the security considerations of using SQL Server as a credential store, see Chapter
Data Access Security

unts that c n be aut cated by ted authority a cessible our applic on's Web

• C
let the o
authentication

•

•
For mo
12,

 withi Direc

.

mation about using Forms authentication against custom data stores (including Active
, see Chapter 8, ASP.NET Security

For more infor
Directory) .

 . Do yo ed to imp nt an imp nation/deleg model and flow the inal
s security context at the operating system level across tiers? For example, to support auditing or per-

user (granular) authorization. If so, you need to be able to impersonate the caller and delegate their security
s chapter.

ser type. Do your users all have Internet Explorer or do you need to support a user base with
wser types? Table 3.3 illustrates which authentication mechanisms require Internet Explorer

browsers, and which support a variety of common browser types.

• Identity
caller'

flow u ne leme erso ation orig

context to the next downstream subsystem, as described in the "Delegation" section earlier in thi

• Brow
mixed bro

Table 3.3. Authentication browser requirements

Authentication Type Requires
Internet
Explorer

Notes

Fo No rms

Passport No

Integrated Windows (Kerberos or
T M)

Yes Kerberos also requires Windows 2000 or later operatin
systems on the client and server coN L

g
mputers and

accounts configured for delegation. For more
information, see How To: Implement Kerberos
Delegation for Windows 2000 in the Reference section of
this guide.

Basi t c No Basic authentication is part of the HTTP 1.1 protocol tha
is supported by virtually all browsers

Digest Yes

Ce ficate No Clients require X.509 certificates rti

Inte et Scen

• The basi

• Users do not have Windows accounts in the server's domain or in a trusted domain accessible by
the server.

rn arios

c assumptions for Internet scenarios are:

• Q295070, USSL (https) Connection Slow with One Certificate but Faster with OthersU

IPSec

The following articles in the Knowledge Base provides steps for troubleshooting IPSec issues.

• Q259335, UBasic L2TP/IPSec Troubleshooting in WindowsU

Auditing and Logging

Windows Security Logs

Consult the Windows event and security logs early on in the problem diagnostic process.

More information

For more information on how to enable auditing and monitoring events, see the Knowledge Base and article
Q300958, UHOW TO: Monitor for Unauthorized User Access in Windows 2000U.

SQL Server Auditing

By default, logon auditing is disabled. You can configure this either through SQL Server™ Enterprise Manager or by
changing the registry.

SQL Server log files are by default located in the following directory. They are text-based and can be read with any
text editor such as Notepad.

C:\Program Files\Microsoft SQL Server\MSSQL\LOG

To enable logon auditing with Enterprise Manager

1. Start Enterprise Manager.

2. Select the required SQL Server in the left hand tree control, right-click and then click Properties.

3. Click the Security tab.

4. Select the relevant Audit level—Failure, Success or All.

To enable logon auditing using a registry setting

1. Create the following AuditLevel key within the registry and set its value to one of the REG_DWORD
values specified below.

2. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\AuditLevel

3. Set the value of this key to one of the following numeric values, which allow you to capture the relevant
level of detail.

3—captures both success and failed login attempts.

2—captures only failed login attempts.

1—captures only success login attempts.

0—captures no logins.

It is recommended that you turn on failed login auditing as this is a way to determine if someone is attempting a
brute force attack into SQL Server. The performance impacts of logging failed audit attempts are minimal unless
you are being attacked, in which case you need to know anyway.

You can also set audit levels by using script against the SQL Server DMO (Database Management Objects), as
shown in the following code fragment.

Sub SetAuditLevel(Server As String, NewAuditLevel As SQLDMO_AUDIT_TYPE)

 Dim objServer As New SQLServer2

 objServer.LoginSecure = True 'Use integrated security

 objServer.Connect Server 'Connect to the target SQL Server

 'Set the audit level

 objServer.IntegratedSecurity.AuditLevel = NewAuditLevel

 Set objServer = Nothing

End Sub

From SQL Server Books online, the members of the enumerated type, SQLDMO_AUDIT_TYPE are:

SQLDMOAudit_All 3 Log all authentication attempts - success or failure

SQLDMOAudit_Failure 2 Log failed authentication

SQLDMOAudit_None 0 Do not log authentication attempts

SQLDMOAudit_Success 1 Log successful authentication

Sample log entries

The following list shows some sample log entries for successful and failed entries in the SQL Server logs.

Successful login using Integrated Windows authentication:

2002-07-06 22:54:32.42 logon Login succeeded for user

'SOMEDOMAIN\Bob'. Connection: Trusted.

Successful login using SQL standard authentication:

2002-07-06 23:13:57.04 logon Login succeeded for user

'SOMEDOMAIN\Bob'. Connection: Non-Trusted.

Failed login:

2002-07-06 23:21:15.35 logon Login failed for user

'SOMEDOMAIN\BadGuy'.

IIS Logging

IIS logging can be set to different formats. If you use W3C Extended Logging, then you can take advantage of
some additional information. For example, you can turn on Time Taken to log how long a page takes to be served.
This can be helpful for isolating slow pages on your production Web site. You can also enable URI Query which will
log Query String parameters, which can be helpful for troubleshooting GET operations against your Web pages. The
figure below shows the Extended Properties dialog box for IIS logging.

Figure 13.1. IIS extended logging properties

Troubleshooting Tools

The list of tools presented in this section can prove invaluable and will help you diagnose both security and non-
security related problems.

File Monitor (FileMon.exe)

This tool allows you to monitor files and folders for access attempts. It is extremely useful to deal with file access
permission issues. It is available from USysinternals.comU.

More information

For more information see the Knowledge Base article Q286198, UHOWTO: Track 'Permission Denied' Errors on DLL
FilesU.

Fusion Log Viewer (Fuslogvw.exe)

Fusion Log Viewer is provided with the .NET Framework SDK. It is a utility that can be used to track down problems
with Fusion binding (see the .NET Framework documentation for more information).

To create Fusion logs for ASP.NET, you need to provide a log path in the registry and you need to enable the log
failures option through the Fusion Log Viewer utility.

To provide a log path for your log files, use regedit.exe and add a directory location, such as e:\MyLogs, to the
following registry key:

[HKLM\Software\Microsoft\Fusion\LogPath]

ISQL.exe

ISQL can be used to test SQL from a command prompt. This can be helpful when you want to efficiently test
different logins for different users. You run ISQL by typing isql.exe at a command prompt on a computer with SQL
Server installed.

Connecting by using SQL authentication

You can pass a user name by using the -U switch and you can optionally specify the password with the -P switch.
If you don't specify a password, ISQL will prompt you for one. The following command, issued from a Windows
command prompt, results in a password prompt. The advantage of this approach (rather than using the -P switch)
is that the password doesn't appear on screen.

C:\ >isql -S YourServer -d pubs -U YourUser

Password:

Connecting by using Windows authentication

You can use the -E switch to use a trusted connection which uses the security context of the current interactively
logged on user.

C:\ >isql -S YourServer -d pubs -E

Running a simple query

Once you are logged in, you can run a simple query, such as the one shown below.

1> use pubs

2> SELECT au_lname, au_fname FROM authors

3> go

To quit ISQL, type quit at the command prompt.

Windows Task Manager

Windows Task Manager on Windows XP and Windows Server 2003 allows you to display the identity being used to
run a process.

To view the identity under which a process is running

1. Start Task Manager.

2. Click the Processes tab.

3. From the View menu, click Select Columns.

4. Select User Name, and click OK.

The user name (process identity) is now displayed.

Network Monitor (NetMon.exe)

NetMon is used to capture and monitor network traffic.

More information

See the following Knowledge Base articles:

• Q243270, UHOW TO: Install Network Monitor in Windows 2000U

• Q148942, UHOW TO: Capture Network Traffic with Network Monitor U

• Q252876, UHOW TO: View HTTP Data Frames Using Network MonitorU

• Q294818, UFrequently Asked Questions About Network MonitorU

There are a couple of additional tools to capture the network trace when the client and the server are on the same
machine (this can't be done with Netmon):

• tcptrace.exe. Available from UPocketSOAP.comU. This is particularly useful for Web services since you can
set it up to record and show traffic while your application runs. You can switch to Basic authentication and use
tcptrace to see what credentials are being sent to the Web service.

• packetmon.exe. Available from UAnalogX.comU. This is a cut down version of Network Monitor, but much
easier to configure.

Registry Monitor (regmon.exe)

This tool allows you to monitor registry access. It can be used to show read accesses and updates either from all
processes or from a specified set of processes. This tool is very useful when you need to troubleshoot registry
permission issues. It is available from USysinternals.comU.

WFetch.exe

This tool is useful for troubleshooting connectivity issues between IIS and Web clients. In this scenario, you may
need to view data that is not displayed in the Web browser, such as the HTTP headers that are included in the
request and response packets.

More information

For more information about this tool and the download, see the Knowledge Base article Q284285, UHow to Use
Wfetch.exe to Troubleshoot HTTP ConnectionsU.

Visual Studio .NET Tools

The Microsoft .NET Framework SDK security tools can be found at the U.NET Framework ToolsU Web site.

More information

See the following Knowledge Base articles:

• Q316365, UINFO: ROADMAP for How to Use the .NET Performance CountersU

• Q308626, UINFO: Roadmap for Debugging in .NET Framework and Visual StudioU

WebServiceStudio

This tool can be used as a generic client to test the functionality of your Web service. It captures and displays the
SOAP response and request packets.

You can download the tool from the UWeb Service ToolsU page at GotDotNet.com.

Windows 2000 Resource Kits

UWindows 2000 Resource KitsU

Windows 2000 Resource Kit UFree Tool DownloadsU

